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Abstract

Weak-label learning is an important branch of multi-label

learning; it deals with samples annotated with incomplete

(weak) labels. Previous work on weak-label learning mainly

considers data represented by a single view. An intuitive

way to leverage multiple features obtained from different

views is to concatenate the features into a single vector.

However, this process is not only prone to over-fitting and

often results in very high time-complexity, but also ignores

the potentially useful complementary information spread

across the different views. In this paper, we propose an

approach based on Matrix Completion for multi-view Weak-

label Learning (McWL). Matrix completion (MC) has sound

theoretical properties and is robust to missing values in

both feature and label spaces. Our method enforces the

optimization of multiple view integration and of MC-based

classification within a unified objective function. Specifically,

a kernel target alignment technique and the loss function of

an MC-based classifier are used to jointly and iteratively

adjust the weights assigned to individual views, and to

optimize the classifier. McWL can selectively integrate

views and is able to assign small weights to views of low

quality. Extensive experiments on a broad range of datasets

validate the effectiveness of our approach against competitive

algorithms.

1 Introduction

In traditional supervised learning, each sample is associ-
ated with a single label, whereas in many applications
a sample is often annotated with multiple labels. For
example, an article can be tagged with multiple topics
given as labels, such as politics, economics, sports, and
culture. Multi-label learning is a paradigm developed to
handle these scenarios, and has attracted much attention
in machine learning and many application domains [1, 2].
Previous studies on multi-label learning usually assume
the labels associated to samples are complete, and no
labels are missing. In many data mining applications,
however, it is rather difficult to collect all the labels
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associated to a sample, and only a partial label set may
be available. For instance, an image may contain ‘tiger’,
‘trees’, and ‘forest’, but we may have available only the
tag tiger for it. This kind of multi-label learning prob-
lem is called weak-label learning [3, 4], and has attracted
increasing attention in recent years [5, 6, 7].

Figure 1: An example of multi-view data with two views:
image and text. By using both views, we can replenish
missing labels (e.g., ‘food’), which cannot be induced by
any of the single views. Courtesy: pixabay.com.

Although previous approaches achieve an excellent
performance for general weak-label learning tasks, they
mainly focus on single view scenarios [4, 5, 6]. However,
in real-world tasks data can have multiple views. Namely,
samples can be represented in several different feature
spaces. For example, web images can be described using
heterogenous features such as texture descriptors, shape
descriptors, color descriptors, and the surrounding text
[8]. An intuitive approach to utilize multiple views is
to concatenate multi-view features into a single vector.
But this strategy neglects the fact that features are
extracted from different spaces with different statistical
properties, and directly employing existing weak-label
methods to multi-view learning may suffer from the
over-fitting problem, especially when the dimensionality
of samples is much larger than the number of samples.
Besides, feature concatenation often leads to high time
complexity, and this time cost may be unacceptable
for many applications [9]. Feature concatenation also
ignores the complementary information across different
views which can help to replenish missing labels. As
an example, Figure 1 contains two different views of
a dataset, an image view and a text view. We can
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easily derive three labels for the image view, namely
‘fox’, ‘water’ and ‘grass’, and two labels for the text
view, namely ‘fish’ and ‘swimming’. If we use the two
views independently, we may obtain some of the high-
level semantic concepts (labels), and miss others. For
example, ‘food’ might become a missing label, since the
image shows a fox trying to catch a fish in the water for
food. Complementary information derived from different
views can be used to replenish missing labels.

Recently, matrix completion (MC) has been exploit-
ed for multi-label leaning [10, 11, 12] and multi-view
multi-label learning [9, 13], due to its solid mathemat-
ical foundation. However, existing MC-based methods
usually model the fusion of multiple views and the pre-
diction tasks as separate objectives. As such, they may
result in an optimal multiple view integration, but not
necessarily in an optimal prediction [14, 15]. In addi-
tion, they all assume that the available data labels are
complete.

To address the aforementioned issues, we propose
a novel multi-view weak-label learning model, termed
as multi-view weak-label learning based on matrix com-
pletion (McWL). McWL effectively and simultaneously
models the fusion of different kinds of features and an
MC-based prediction function. McWL uses graphs to
describe the relationship among samples collected from
different views. To explore the complementarity of d-
ifferent views, a kernel target alignment technique is
then used to combine the graphs into a composite graph.
The composite graph is fed to an MC-based classifier
under the form of constraints. Different from previous
MC-based multi-view multi-label learning approaches
[9, 13], McWL can jointly optimize the integration of
multiple graphs and the MC-based prediction classifi-
er in a unified objective function. In addition, McWL
takes into account the unbalanced label problem which
is often serious in weak-label learning problems [7], and
incorporates a weighted label scheme into the unified
objective function to give more emphasis to the labels
with fewer related samples. Experimental results on five
multi-view multi-label datasets show that the proposed
McWL achieves superior performance against state-of-
the-art approaches across various evaluation criteria.

The rest of this paper is organized as follows. Section
2 discusses related work. Section 3 elaborates on the
proposed McWL. Experimental results and conclusions
are provided in Section 4 and Section 5.

2 Related Work

This work is related to three branches of studies,
weak-label learning, multi-view learning, and matrix
completion. Weak-label learning, as an important branch
of multi-label learning, has attracted great interest and

many weak-label learning algorithms have been proposed
in recent years, e.g. weak-label learning algorithms under
a supervised setting [3, 4, 5] and under a semi-supervised
setting [7, 16, 17]. Most weak-label learning approaches
assume that data is described by a single feature space
(single view), ignoring the widely witnessed multi-view
data.

Multi-view learning deals with data represented by
multiple feature views [18]. Existing approaches have
considered multi-views in conjunction with subspace
learning [9, 19], with co-training [20], or with multiple
kernel learning [21, 15, 22]. Almost all previous multi-
view learning studies assume a complete annotation for
training samples. The only exception is LabelMe [8], but
this method treats each view equally, and may result in
performance degradation when low quality views exist.

Matrix completion (MC) tackles the problem of
recovering a low-rank matrix from a limited number
of observed entries [23]. It has been recently exploited
for multi-label learning [11, 24] and weak-label learning
[12] due to its solid mathematical theory. Although
these methods perform well in single view scenarios,
they cannot be directly used with multi-view data
because they neglect the potential feature correlation
between different views and may cause over-fitting. In
order to make use of available heterogeneous features
from multiple views, some methods have applied matrix
completion to multi-view learning [9, 13]. However,
these techniques usually work under the complete label
assumption, or do not explicitly consider the widely
spread weak-label scenarios. Furthermore, they model
the fusion of multiple views and the MC-based prediction
tasks as separate objectives, which may lead to a
suboptimal solution.

In this study, we design an MC-based multi-view
weak-label learning model, called McWL. McWL jointly
optimizes the fusion of multiple views and the MC-based
prediction in a unified objective function. It is worth
to note that McWL differs from LabelMe [8] in that
it can selectively assign weights to views and is able
to assign smaller weights to noisy views. To the best
of our knowledge, this is the first study that addresses
multi-view weak-label learning using matrix completion.

3 The McWL Approach

In this section, we first introduce the problem statement
and the used notations. We then describe the general
framework, named McWL, which simultaneously inte-
grates the fusion of multiple views and the MC-based
prediction problem for weak-label learning. Finally, we
develop an optimization method to iteratively optimize
the multiple view integration and the MC-based classifi-
er.
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3.1 Data Representation and Notation Suppose
X = {Xv}mv=1 represents a dataset with n samples and
m views, where Xv ∈ Rn×dv is the feature space of the
v-th view. Y = [y1,y2, ...,yn]T ∈ {−1, 1}n×q is the
corresponding weak-label matrix, where yi ∈ {−1, 1}q
is the label vector of xi and q is the number of labels
considered. yic = 1 (c = 1, ..., q) indicates that the c-th
label is a proper label for xi, while yic = −1 gives us no
information (i.e., the absence of a specific label does not
imply that it is not appropriate for the sample). Without
loss of generality, we assume that, out of n samples, the
first l are partially labeled samples, and the remaining
u are unlabeled samples, where n = l + u.

How to define a suitable approach to efficiently
capture the intrinsic structure of samples across different
views is still a challenging problem. In this paper, we
adopted the popular k nearest neighbor (kNN) approach
to construct a graph for each view, where each node
represents a sample, and the weighted edge between two
nodes represents their similarity. In this way, we not
only can efficiently describe the feature-level similarity
among samples and facilitate the integration of multiple
views, but also can leverage the information concerning
unlabeled and labeled samples to train a semi-supervised
weak-label learning classifier. The weighted adjacency
matrix of the kNN graph is defined as follows:
(3.1)

Wv
ij =

{
1, if xv

i ∈ kNN(xv
j ) or xv

j ∈ kNN(xv
i )

0, otherwise

where Wv ∈ Rn×n is the weighted adjacency matrix of
n samples in the v-th view, Wv

ij represents the weight of
the edge between samples i and j. xv

i ∈ kNN(xv
j ) is one

of the k nearest neighbors of xv
j , and the neighborhood

relationship between samples is determined using the
Euclidean distance. For simplicity, we use binary weights
in Eq.(3.1), but other formulations are also possible. Let
W = {Wv}mv=1 denotes the set of adjacency matrices of
m views. Our goal is to use the m graphs defined by
W to train an MC-based multi-view weak-label learning
classifier.

3.2 Integrating multiple views In the past years,
many multi-view approaches have been proposed to use
the complementary information of heterogenous views,
but most of them often treat each view equally [13]
and may result in performance degradation when low
quality (noisy) views exist [15, 18]. As such, to avoid the
influence of noisy views, we try to assign different weights
to different views, and resort to a linear regression
problem as follows:
(3.2)

θ = arg min
θ
||K−W||2F , s.t. W =

m∑
v=1

θvW
v, θv ≥ 0

where θ = [θ1,θ2, ...,θm]; W is the composite weighted
graph learned by combining the m individual graphs
W; K ∈ Rn×n is the target kernel induced from labels
and defined as K =

∑q
c=1 Kc, where Kc is the c-

th label-induced target kernel; || · ||F represents the
Frobenius norm, we use this norm just for its simplicity
and wide applications, other norms like l2,1 can also be
applied. Eq.(3.2) has close connection with kernel-target
alignment [25], and the target aligned kernel can often
enhance the performance of kernel-based classifier and
regression. The c-th label-induced target kernel Kc is
defined as follows:
(3.3)

Kc
ij =


(n+
c )2

l2
, if yic = yjc = 1

n+
c n−c
l2

, if yicyjc = −1, yic + yjc = 0, i, j ≤ l
0, otherwise

where n+
c (n−c ) is the number of samples currently (not)

annotated with the c-th label. Since a label often has less
positive samples than negative ones, that is n+

c < n−c ,

it follows (
n−c
l )2 >

n+
c n−c
l2 . From definition Eq.(3.3), the

more labels two samples have in common, the larger
the weight of the edge connecting them in the target
label graph is. Mostafavi et al. [14] adapted this idea
to define the target kernel and to reconstruct the kernel
label association. They set the weight, corresponding to
the edge between two samples such that one has the c-th
label and the other does not, in the c-th target graph

equal to −n+
c n−c
n2 . However, this setup assumes that

yic = −1 means that the i-th sample is not associated
with the c-th label. As discussed above, this assumption
is often violated in weak-label scenarios. Furthermore,
if sample i is a weak-label sample and W(i, j) is large,
then sample j is likely to share some labels with the i-th
sample. Given this, we set the corresponding entry as
n+
c n−c
l2 instead.

By minimizing Eq.(3.2), we aim to credit large
weights to views in which more similar samples share
more labels, and small weights to views in which similar
samples share few (or no) labels. As a result, we assign
larger weights to views that are coherent with the labels.
This is consistent with the widely used smoothness
assumption [26], which implies that similar samples
should have similar labels.

Based on the fact that tr(KW) = vec(K)T vec(W),
where vec(K) is the vector operator that stacks the
columns of K together, we can rewrite Eq.(3.2) as a
non-negative quadratic programming problem:

(3.4)
θ = arg min

θ
||vec(K)− vec(W)θT ||2F

s.t. θv ≥ 0, 1 ≤ v ≤ m

where vec(W) = [vec(W1), ..., vec(Wm)] ∈ Rn2×m.
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3.3 Matrix completion based multi-view classi-
fication Recently, some MC based methods have been
proposed for single view weak-label learning tasks [12]
and multi-view learning tasks [9, 13]. Although two
existing MC-based multi-view algorithms [9, 13] can be
used in missing label scenarios, neither explicitly consid-
ers the widely witnessed missing labels and they both
need to estimate a matrix of size (n× (d+ q)) (d is the
dimensionality of samples), which may lead to unaccept-
able high time complexity for many applications. Xu et
al. [24] recently proposed a speedup matrix completion
approach (Maxide) by using the feature matrix as side
information. The formulation of Maxide is as follows:

(3.5) min
Z∈Rd×q

L(Z) = α||Z||tr +
1

2
||RΩ(X0Z−Y)||2F

where Z ∈ Rd×q is the target recovery matrix, and
X0 ∈ Rn×d is the feature matrix. α ≥ 0 balances the
importance of the two terms, RΩ(Y) is a linear operator,
where RΩ(Y)i,j = Yi,j if (i, j) is an observed entry in
Y; RΩ(Y)i,j = 0, otherwise. Solving Eq.(3.5) requires
to search for an optimal matrix Z of size d × q. The
main assumption made by the Maxide approach is that
d� n. This usually holds in low-dimensional single view
learning problems, but it does not hold in many multi-
view data mining applications. To transform multi-view
learning tasks into a single view learning problem, one
can concatenate the multi-view features into a single
vector; unfortunately, this transformation may not only
result in impractical time complexity for recovering the
matrix Z (being d� n), but also result in over-fitting
the data. As such, how to effectively and efficiently mine
multi-view data remains a difficult challenge.

To address this issue, we substitute X0 in Eq.(3.5)
with the composition graph W as side information, and
update the multi-view weak-label learning as follows:

(3.6) min
Z∈Rn×q

L(Z) = α||Z||tr +
1

2
||RΩ(WZ−Y)||2F

Y ∈ Rn×q is the target label matrix, where the first l
data are partially labeled samples and the remaining
are unlabeled samples. It is important to observe that,
unlike existing MC-based multi-view learning approaches
(e.g., [9] and [13]), which need to estimate a matrix of
size n×(d+ q), Eq.(3.6) estimates a significantly smaller
matrix of size n× q.

An inherent property of learning with multi-label
data is class-imbalance among labels, and this issue has
not been addressed in Eq.(3.6). Class-imbalance has
long been regarded as one fundamental threat that can
compromise the performance of standard data mining
algorithms [27]. To address this limitation, we modify
yic into ỹic = yic log n̂

n+
c

, where n̂ =
∑q

c=1 n
+
c , and n+

c

represents the number of samples tagged with the c-
th label. This modification has the effect of putting
more emphasis on labels with fewer relevant samples
and forces the optimizer to focus on these labels. Setting
Ỹ = [ỹ1, ..., ỹn]T , Eq.(3.6) can be rewritten as follows:

(3.7) min
Z∈Rn×q

L(Z) = α||Z||tr +
1

2
||RΩ(WZ− Ỹ)||2F

3.4 The unified objective function Eq.(3.4) can
be used to compute θ for the individual views (kernels)
and fuse these views into a composite graph. An MC-
based classifier can then be applied on the composition
graph W to predict labels. However, this widely
adopted paradigm may result in a suboptimal solution,
since the optimization of multiple views (resources) is
decomposed into two separate objectives, as done in
two MC-based approaches (lrMVL [9], MVMC-LS [13]),
and the optimized composite graph may not be optimal
for the follow-up predictor [15]. To avoid this risk, we
integrate the two objectives defined in Eq.(3.4) and
Eq.(3.7) into a unified function as follows:
(3.8)

θ = arg min
θ,Z
||vec(K)−

m∑
v=1

θvvec(W
v)||2F

+ λ(α||Z||tr +
1

2
||RΩ(

m∑
v=1

θvvec(W
v)Z− Ỹ)||2F )

s.t. θv ≥ 0, 1 ≤ v ≤ m

where λ ≥ 0 is used to control the importance of
multi-view integration and MC-based classification. By
combining the objectives of MC-based classification and
of target graph alignment in a unified objective, we can
therefore enforce the composition graph to be coherently
optimal with respect to both objectives.

3.5 Optimization Two vector variables (θ and Z)
need to be optimized in Eq.(3.8). Since the problem
cannot be solved directly, we develop an EM-style [28]
algorithm to find the optimal solution.

3.5.1 Z update (θ fixed) We initially consider all
views as equally relevant, and initialize θv = 1 (v =
1, 2, ...,m) with W fixed. Our goal is to minimize the
matrix ||Z||tr, where RΩ(WZ) = RΩ(Ỹ). As in the
Singular Vector Thresholding (SVT) method [29], we
can approximate the problem of finding the optimal Z
in Eq.(3.7) with an unconstrained optimization problem.
Eq.(3.7) can be efficiently solved using Maxide [24],
which only needs to estimate a matrix of size n× q.

3.5.2 θ update (Z fixed) Given Z, the subproblem
of optimizing Eq.(3.8) with respect to θ can be rewritten
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as follows:
(3.9)

H(θ) = argmin
θ
− 2θT vec(W)T vec(K) + θT vec(W)T vec(W)θ

+ vec(K)T vec(K) + λ(−2θTµ+ θT Θθ)

s.t. θv ≥ 0, 1 ≤ v ≤ m
where Θ is an m × m matrix with Θ(v′, v′′) =
tr(RΩ(Wv′Z)TRΩ(Wv′′Z)), and µ is an m × 1 vec-
tor with µv = tr(RΩ(Ỹ)TRΩ(WvZ)). Since K, W
and Z are known, the above equation gives a quadratic
programming problem and is convex with respect to θ.
Taking the derivative of H(θ) with respect to θ, we can
obtain the following solution:
(3.10)
θ = (vec(W)T vec(W) +λΘ)−1(vec(W)T vec(K) +λµ)

It’s easy to see that when λ = 0, only the kernel
target alignment criterion is used to optimize θ, and
McWL degenerates into two separate optimization
objectives.

The learning procedure of McWL is summarized in
Algorithm 1.

Algorithm 1 Multi-view weak-label learning based on
Matrix Completion (McWL)

Input: Multi-view feature matrices X , Y, α, λ and k.
Output: Predicted likelihood score matrix Ŷ.
1: Initialize θv = 1(1 ≤ v ≤ m).
2: Construct multiple graphs W using Eq.(3.1).
3: while convergence is not reached do
4: update Z using Eq.(3.7).
5: update θ using Eq.(3.10).
6: end while
7: Return the predicted likelihood score matrix Ŷ = WZ.

3.6 Complexity analysis W = {Wv}mv=1 can be
computed before the iterative process. The time
complexity to compute tr(ZTWTWZ) is O(qn2). Θ
is an m×m symmetric matrix and m is usually smaller
than 10. In each iteration there are m(m + 1)/2
elements to be computed, so the time complexity for Θ is
O(m(m+1)×qn2). The complexity of matrix completion
for Z in Eq.(3.5) is O(r(n+ q) ln (n+ q) lnn), where r is
the rank of the matrix Z to be estimated. Since the cost
of computing the matrix inverse in Eq.(3.10) and the cost
for µ in Eq.(3.9) are smaller than Θ, the overall time
complexity of McWL is max{O(m2Tqn2), O(T (r(n +
q) ln (n+ q) lnn))}, which is O(m2Tqn2) since n � q
and n2 � (n ln (n+ q) lnn). T is the number of
iterations to reach convergence. In practice, T does
not exceed 20. In our study, the adjacency matrix of
the individual view and the composition graph are all
sparse, with O(n) nonzero elements. For this reason,
the actual time costs of the above operations can be

further reduced. In fact, our runtime comparisons on
multi-view datasets show that McWL generally runs
much faster than other MC-based multi-view learning
methods [9, 13].

4 Experiments

4.1 Experimental setup Five multi-view datasets
used in the experiments are summarized in Table 1.
Core15k, Pascal07 and ESPGame are three multi-view
image datasets obtained from [30] and each image is
represented by six representative feature views: HUE,
SIFT, GIST, HSV, LAB and RGB. The dimensionality
of HUE, SIFT, GIST, and the last three feature views are
100, 1000, 512, and around 4000, respectively. Yeast is
a biological dataset with two views [31], namely the
genetic expression and the phylogenetic profile of a
gene. Emotions is a music dataset with two views [31],
where the first view is obtained by extracting periodic
changes from a beat histogram, and the second one is
obtained from the mel frequency cepstral coefficients and
from the spectral centroid, spectral rolloff, and spectral
flux-extracted short-term Fourier transform. For each
dataset, we randomly sample 70% data for training and
use the remaining 30% data for testing (unlabeled data).
No label assignment is provided for any test data. To
create weak-label scenarios for the training data, we
followed the protocol in [24]: for each label c we expose
the label assignment of c for ω% randomly sampled
positive training data, and keep the c label assignment
as unknown for the rest of the training data. For example,
if ω% = 30% and the number of samples annotated with
label c is 100, then we randomly sample 30 points as
positive training data for label c and keep the c label
assignment for the remaining 70 samples as unknown by
changing y.c = 1 to y.c = −1.

Table 1: Datasets used in the experiments. n is the
number of samples, m is the number of views, q is the
number of distinct labels, and Avg is the average number
of labels per sample.

Data sets n m q Avg

Emotions 593 2 6 1.869
Yeast 2417 2 14 4.237
Core15k 4999 6 260 3.396
Pascal07 9963 6 20 1.465
ESPGame 20770 6 268 4.686

4.1.1 Methods We compared McWL against five
state-of-the-art methods: lrMVL [9], MVMC-LS [13],
LabelMe [8], MLAN [22], and MLR-GL [4]. McWL,
lrMVL, and MVMC-LS are three matrix completion
based multi-view multi-label learning methods; LabelMe
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Table 2: Results on different datasets with ω% = 30%. In addition, •/◦ indicates whether McWL is statistically
superior/inferior to the comparing algorithms under a particular evaluation metric (pairwise t-test at 0.05
significance level).

Metric MLAN MLR-GL LabelMe lrMVMC MVMC-LS McWL-En McWL(λ = 0) McWL

Emotions
1-HL 0.566 ± 0.006• 0.602 ± 0.001• 0.629 ± 0.009◦ 0.585 ± 0.003• 0.530 ± 0.003• 0.621 ± 0.005 0.677 ± 0.006◦ 0.623 ± 0.022
1-RL 0.535 ± 0.009• 0.678 ± 0.003◦ 0.557 ± 0.004 0.639 ± 0.008◦ 0.554 ± 0.001• 0.587 ± 0.006◦ 0.683 ± 0.005◦ 0.566 ± 0.043
AP 0.529 ± 0.008• 0.567 ± 0.003• 0.586 ± 0.003 0.544 ± 0.009• 0.489 ± 0.000• 0.583 ± 0.004 0.665 ± 0.005◦ 0.586 ± 0.030

AUC 0.586 ± 0.006• 0.624 ± 0.004• 0.605 ± 0.008• 0.607 ± 0.007• 0.541 ± 0.001• 0.665 ± 0.008◦ 0.746 ± 0.004◦ 0.640 ± 0.035

Yeast
1-HL 0.634 ± 0.002• 0.725 ± 0.002• 0.645 ± 0.005• 0.720 ± 0.001• 0.716 ± 0.002• 0.597 ± 0.002• 0.700 ± 0.002• 0.759 ± 0.001
1-RL 0.730 ± 0.002• 0.787 ± 0.002• 0.775 ± 0.003• 0.784 ± 0.002• 0.760 ± 0.001• 0.571 ± 0.002• 0.729 ± 0.003• 0.810 ± 0.004
AP 0.501 ± 0.002• 0.700 ± 0.002• 0.644 ± 0.009• 0.701 ± 0.002• 0.650 ± 0.002• 0.488 ± 0.001• 0.637 ± 0.004• 0.735 ± 0.005

AUC 0.630 ± 0.002• 0.798 ± 0.001• 0.788 ± 0.005• 0.793 ± 0.002• 0.786 ± 0.001• 0.605 ± 0.003• 0.746 ± 0.002• 0.823 ± 0.003

Core15k
1-HL 0.946 ± 0.000• 0.951 ± 0.001• 0.952 ± 0.000• 0.954 ± 0.000• 0.947 ± 0.000• 0.955 ± 0.000• 0.961 ± 0.000• 0.963 ± 0.000
1-RL 0.726 ± 0.003• 0.866 ± 0.003• 0.776 ± 0.001• 0.860 ± 0.001• 0.756 ± 0.003• 0.647 ± 0.002• 0.787 ± 0.002• 0.885 ± 0.001
AP 0.281 ± 0.001• 0.418 ± 0.010• 0.348 ± 0.005• 0.437 ± 0.001• 0.317 ± 0.002• 0.265 ± 0.003• 0.382 ± 0.002• 0.454 ± 0.001

AUC 0.786 ± 0.002• 0.818 ± 0.003• 0.800 ± 0.001• 0.811 ± 0.001• 0.760 ± 0.003• 0.654 ± 0.001• 0.792 ± 0.002• 0.889 ± 0.001

Pascal07
1-HL 0.847 ± 0.000• 0.882 ± 0.000• 0.882 ± 0.000• 0.882 ± 0.000• 0.845 ± 0.000• 0.857 ± 0.000• 0.878 ± 0.000• 0.893 ± 0.000
1-RL 0.649 ± 0.002• 0.767 ± 0.001• 0.764 ± 0.001• 0.765 ± 0.002• 0.693 ± 0.000• 0.589 ± 0.002• 0.735 ± 0.002• 0.816 ± 0.001
AP 0.424 ± 0.002• 0.485 ± 0.001• 0.485 ± 0.001• 0.483 ± 0.003• 0.398 ± 0.001• 0.306 ± 0.001• 0.444 ± 0.002• 0.535 ± 0.002

AUC 0.730 ± 0.001• 0.787 ± 0.001• 0.785 ± 0.001• 0.786 ± 0.001• 0.699 ± 0.000• 0.610 ± 0.002• 0.754 ± 0.002• 0.839 ± 0.001

ESPGame
1-HL 0.965 ± 0.000• 0.964 ± 0.000• 0.964 ± 0.000• 0.970 ± 0.000• 0.965 ± 0.000• 0.969 ± 0.000• 0.971 ± 0.000• 0.974 ± 0.000
1-RL 0.567 ± 0.002• 0.493 ± 0.015• 0.576 ± 0.000• 0.779 ± 0.001◦ 0.528 ± 0.000• 0.585 ± 0.001• 0.688 ± 0.001• 0.768 ± 0.001
AP 0.071 ± 0.001• 0.034 ± 0.003• 0.025 ± 0.001• 0.185 ± 0.001• 0.052 ± 0.001• 0.141 ± 0.000• 0.213 ± 0.001• 0.307 ± 0.001

AUC 0.589 ± 0.001• 0.489 ± 0.014• 0.555 ± 0.000• 0.784 ± 0.000◦ 0.556 ± 0.000• 0.586 ± 0.001• 0.693 ± 0.001• 0.771 ± 0.000

and MLR-GL are weak-label learning methods, and
MLAN is a multi-view learning method. MLAN
was initially proposed for single label classification;
we adapt it for a multi-label scenario by assigning
multiple labels instead of a single one to unlabeled
data. To further investigate the benefit of simultaneously
optimizing the fusion of multiple views and the MC-
based classification, we introduce McWL(λ = 0) and
McWL-En. McWL(λ = 0) isolates multiple view fusion
from MC-based prediction; McWL-En trains multiple
MC-based classifiers using Eq.(3.7) for individual views
and then combines these base classifiers into an ensemble
classifier.

We adapted the original code of lrMVL, MVMC-
LS, LabelMe, MLAN and MLR-GL for our experiments.
The code was downloaded online or provided by the
authors. Five-fold cross validation is used to select the
optimal parameter values for each competitive method.
For lrMVL, we set the parameter µ = 0.25σ1 (σ1 is
the largest singular value of the recovery matrix), and
decreases it using a factor of 0.25 in the continuation
steps until µ = 10−12; parameter λ is tuned using the
set of values {10i|i = −4, · · · , 3}. For MVMC-LS, the
parameter η is tuned using the set {10i|i = −2, · · · , 5}.
For LabelMe, the two parameters θ1 and θ2 are tuned
in [0.1, 1]. For MLAN, the parameter λ is initialized to
a random positive value between 1 and 30, as suggested
in the original paper. In our experiments, parameters
α, λ and k for McWL are tuned in {2i|i = −5, · · · , 5},
[0.1, 1] and [1, 20], respectively, and finally we set α = 23,
λ = 0.5 and k = 15 for experiments. All the experiments
are independently repeated ten times under each fixed
setting, and both the mean and standard deviation are

reported. The source code of McWL is publicly available
at http://mlda.swu.edu.cn/codes.php?name=McWL.

4.1.2 Evaluation Four popular evaluation metrics
for multi-label learning are adopted for performance
comparisons: Hamming Loss (HL), Ranking Loss (RL),
average precision (AP), and adapted AUC. The formal
definition of the first three metrics can be found in
reference [1]. The adaptive AUC is suggested in [4]. To
maintain consistency with other evaluation metrics, we
report 1-HL and 1-RL instead of HL and RL, respectively.
Thus, as for the other metrics, the higher the value of
1-HL and 1-RL, the better the performance is. These
metrics evaluate multi-label classification from different
points of view, and therefore it is unlikely that a single
method outperforms all the other techniques on all the
metrics.

4.2 Results on All Datasets The results obtained
for all the methods on five datasets across four evaluation
metrics are presented in Table 2. A self-test with different
ratios of missing labels (ω%) is carried out to see the
effect on performance, with ω% varying between 30%
and 70%, with a step-size of 20%. McWL, in general,
outperforms other competitive methods in most cases
when ω% = 30% (50% or 70%). For space limitation, we
only report the results for ω% = 30%. From Table
2 we can observe that McWL achieves the best (or
comparable to the best) performance on several datasets
across four evaluation metrics. MLR-GL, LabelMe, and
McWL are weak-label learning methods, but McWL
frequently outperforms the former two methods across
four evaluation metrics. The main reason is that
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the former two methods treat each view equally, and
cannot selectively assign weights to different views. As
previously discussed, an equal weight assignment may
result in performance degradation when low quality
views exist. This comparison justifies our motivation
to give different weights to views. Both MLAN and
McWL are multi-view learning methods; they can jointly
optimize the composite graph and the classifier on the
composite graph and give different weights to different
views, but McWL almost always outperforms MLAN.
The reason is threefold: (i) MLAN assumes the available
labels are complete, ignoring the widely spread weak-
label scenarios; (ii) it does not take into account the
unbalanced label problem, which may be the cause of
performance degradation; and (iii) McWL is an MC-
based classifier, which is more robust to missing values
as suggested in [9] and in [13].

Whereas lrMVMC, MVMC-LS and McWL are
all MC-based multi-view multi-label learning methods,
which aim at integrating multiple views for prediction,
McWL still outperforms the former two methods in
many cases. This is because both lrMVMC and MVMC-
LS are two-phase methods, and they consider the
optimization of multi-view integration and of the MC-
based classification as separate objectives. In addition,
they assume the available labels of samples are complete.
As discussed above, this assumption is often violated in
practice.

McWL(λ = 0) is a degenerate case of McWL ob-
tained by isolating the fusion of multiple views from
the MC-based classification. McWL(λ = 0) is almost
always outperformed by McWL on these datasets, con-
firming the advantage of optimizing the two objectives
simultaneously. When the objectives are treated sep-
arately, an optimal multiple view integration maybe
achieved but may not be optimal for the follow-up pre-
diction [15]. These results corroborate our motivation to
jointly optimize the two objectives. Classifier ensembles
are widely-used and can effectively integrate multiple
views. Nevertheless, McWL-En is outperformed by M-
cWL, which only takes advantage of a single classifier.
The possible reason is that McWL can identify noisy
views, and discard or assign smaller weights to them,
while McWL-En combines multiple views with equal
weights and ignores the impact of noisy (or low quality)
ones. Another related cause is that the performance
of the base classifiers of McWL-En may be poor, since
they operate on separate views, and therefore the ensem-
ble cannot be effective. These comparisons justify once
again our motivation to unify the optimization of the
multiple view fusion and of the MC-based classification.
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Figure 2: View weights learned by McWL, along with
the 1-RL values of each view. The left y-axis of the
biaxial represents the weight, and the right y-axis gives
the 1-RL. The weights and the 1-RL scores are in general
agreement.

4.3 Analysis of assigned weights In Figure 2, we
report the weight coefficients θ learned by McWL, and
the corresponding 1-RL values by using MC for each view.
For a fair comparison and a better visualization, we scale
these weights in the [0,1] interval via θv/

∑m
i=1 θi. Due

to space limitation, we only show the results on Core15k
and Pascal07; we have similar observations on the other
datasets. From Figure 2, we can observe that the trend
of the weight values is consistent with the corresponding
performance, i.e., the views with higher classification
performance usually receive larger weights. According
to both weight coefficients and 1-RL scores, the rank of
the six views is SIFT>LAB>HUE>RGB>HSV>GIST.
These comparisons demonstrate the effectiveness of
McWL in combining multiple views.

4.4 Sensitivity Analysis of Parameters In this
section we test the sensitivity of McWL w.r.t λ and
α. The tested ranges for λ and α are [0.1,1] and
{2i|i = −5, · · · , 5} respectively. For brevity, we only
report the 1-RL and AUC results on Yeast in Figure
3; however, similar results were obtained for the other
datasets as well. From the results, we can see that McWL
achieves a stable and good performance for a wide range
of λ and α values. In addition, as we can see from both
evaluation metrics, the performance of McWL tends to
decrease when λ is close to 0. These results corroborate
our motivation to jointly optimize the two objectives.

In addition, we also conduct experiments to investi-
gate the sensitivity of McWL w.r.t k. Figure 4 gives the
1-RL values of McWL on Yeast and Core15k datasets
when k varies from 1 to 20. The performance trend for
the other datasets are similar to those reported in Figure
4. From the Figure we can see that the performance of
McWL on both datasets increases as k increases, and it
achieves stable performance when k is between 12 and
20. This is mainly because too small k can not well cap-
ture the geometric structure of samples. These results
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Table 3: Runtime comparison (in seconds).

Emotions Yeast Core15k Pascal07 ESPGame Total

McWL 1.05 4.52 43.07 894.95 2966.77 3910.36
MLAN 1.04 38.24 198.83 1500.93 7377.86 9116.89
MLR-GL 0.23 9.29 131.48 335.04 1986.11 2462.16
LabelMe 0.54 0.96 1308.61 6929.49 4542.15 12781.74
lrMVMC 2.34 1.94 4476.23 7725.56 9415.02 21621.08
MVMC-LS 3.74 21.76 21292.15 17278.55 26713.39 65309.59
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Figure 3: Performance of McWL on Yeast under different
combinations of α and λ.
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Figure 4: Sensitivity analysis of parameter k.

confirm the robustness of McWL with respect to k.

4.5 Runtime and Convergence Analysis The
runtime of the comparing methods on the five datasets is
given in Table 3. The experiments are conducted on Cen-
tOS 7 with Inter(R) Xeon(R) E5-2678 and 256GB RAM,
and the methods are implemented in MATLAB 2013a.
We can see that the total runtime of McWL ranks 2nd a-
mong all the methods. MLR-GL is a supervised learning
method; it relaxes the convex-concave optimization prob-
lem into a Second Order Cone Programming (SOCP) [4]
problem, and overall is the fastest. LabelMe and MLAN
do not utilize an MC-based classifier for prediction, and
thus they are faster than lrMVMC and MVMC-LS. An
interesting observation is that although McWL is also
an MC-based classifier, its runtime is superior to that
of MLAN and LabelMe in most cases. This is because,
instead of estimating a matrix of size n× (d+ q) as in
lrMVMC and MVMC-LS, McWL estimates a matrix of
much smaller size n× q.

Figure 5 reports the convergence curve of McWL
on Pascal07 and ESPGame. As we can see, for
both datasets, the algorithm converges in less than 10
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Figure 5: Convergence trend analysis.

iterations. We also observe similar convergence trend on
the other datasets.

5 Conclusion

Weak-label learning has attracted great attention in
many data mining and pattern recognition tasks. Cur-
rent efforts mainly focus on performing weak-label learn-
ing on a single view, despite the abundance of multiple
view features in many real-world data mining tasks. In
this paper, we proposed a multi-view weak-label learn-
ing algorithm based on matrix completion (McWL). M-
cWL differs from previous MC-based multi-view learning
methods in that it integrates the fusion of multiple views
and the MC-based classifier into a unified objective func-
tion, and accounts for weak-label scenarios. Furthermore,
McWL is able to assign smaller weights to views of low
quality. Our experimental results show that McWL out-
performs other competitive methods. Improving the
efficiency of our method and exploiting label correlation-
s of labels in matrix completion remain an interesting
future pursue.
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