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This paper is concerned with modeling of anisotropic fracture forming limit diagram considering non - 

directionality of the equi - biaxial fracture strain. A new anisotropic ductile fracture criterion is developed 

based on the Lou–Huh ductile fracture criterion (Lou et al., 2012). In an attempt to predict the form- 

ing severity of advanced high - strength steel (AHSS) sheets, the proposed fracture criterion is converted 

into a Fracture Forming Limit Diagram (FFLD) and anisotropic fracture locus considering the sheet metal 

orientation. Tensile tests of the DP980 steel sheet with the thickness of 1.2 mm are conducted using vari- 

ous specimen geometries including pure shear, dog - bone, and flat grooved specimens. With Digital Image 

Correlation (DIC) method, equivalent plastic strain distribution on the specimen surface is computed until 

surface crack initiates. The fracture predictability of the proposed fracture criterion is evaluated with the 

experimental results which cover a wide range of stress states in various loading directions. By compar- 

ing fracture strains obtained from the experiments with the ones predicted from the proposed fracture 

criterion, it is clearly confirmed that the fracture criterion proposed is capable of predicting the equiv- 

alent plastic strain at the onset of fracture with great accuracy over a wide range of stress states while 

keeping non-directionality of the equi - biaxial fracture strain. 

© 2018 Published by Elsevier Ltd. 
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In the automotive industries, it is important to evaluate the

orming severity of sheet metals to make an efficient design

f structural components for the auto-body. In dealing with

he forming severity, necking has been regarded as a major

ailure mechanism because it gives the direct information on

he loss of a load carrying capability. Various analytical mod-

ls based on necking, thus, have been proposed to evaluate

he forming limit of sheet metals accurately: the Hill’s localized

ecking model ( Hill, 1952 ); the Swift’s diffuse necking model

 Swift, 1952 ); the imperfection - based Marciniak–Kuczynski model

 Marciniak and Kuczynski, 1967 ); the modified maximum force cri-

erion ( Hora et al., 1996 ); and the vertex theory ( Stören and Rice,

975; Zhu et al., 2001 ). Meanwhile, the experimental method to

easure the forming limit was firmly established in the 1960s by

eeler and Backofen (1964) and Goodwin (1968) . This experimen-

al methodology has been widely accepted as a standard tool and

amed as Forming Limit Diagram (FLD) for indicating the form-

ng limit of sheet metals. The conventional FLD describes necking

imits and thickness reductions in terms of the major and minor
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trains over the deformation modes from the uniaxial tension to

he equi - biaxial tension. 

With increasing demands of advanced high strength steels

AHSSs), aluminum alloys, and magnesium alloys to the automo-

ive industry, there arises a challenging issue to deal with a sudden

racture of sheet metals during forming processes. This undesired

ailure mode, which is often called the shear fracture, mainly re-

ults from the low ductility of advanced metal sheets and it shows

he fracture surface slanted along the maximum shear stress di-

ection through the thickness of metal sheets with little amount of

ecking. This failure phenomenon is observed not only in tension

ut also in shear and compression conditions where the thickness

eduction is negligible. It is, thus, challenging to predict the form-

ng severity of advanced metal sheets appropriately using the con-

entional FLDs and various approaches based on necking or thin-

ing. 

The failure of advanced metals can be regarded as ductile frac-

ure with some amount of deformation, which is induced by the

utual influence among nucleation, growth, and coalescence of

icro - cavities or voids. The forming severity of advanced metal

heets, hence, can be evaluated in aid of ductile fracture criterion

nstead of necking - based forming limit criterion, which lies in the

act that the ductile fracture can take place over a wide range of
 limit diagram considering non-directionality of the equi-biaxial 
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stress states including shear and compression conditions under low

and negative stress triaxiality as reported by Bao and Wierzbicki

(2004), Børvik et al. (2010) , and Khan and Liu (2012a, b) . 

Various approaches on the ductile fracture have been proposed

over the past decades to predict the onset of fracture over a wide

range of stress states. The proposed approaches can be classified

into two categories such as coupled and uncoupled fracture crite-

ria. The main difference between these two categories of fracture

criteria is whether the strength of metals is affected by damage

accumulated through the void nucleation, the growth, and the co-

alescence of voids. Coupled fracture criteria are firmly established

based on the postulate explained above; on the contrary, uncou-

pled fracture criteria do not consider the effect of accumulated

damage on the load carrying capability of metals. In the case of

coupled fracture criteria, the nucleation and the growth of voids

are mathematically formulated based on porous plasticity intro-

duced by Gurson (1977) . This approach has gained great atten-

tion after Tvergaard and Needleman (1984) incorporated the ef-

fect of void coalescence, which is named as the Gurson–Tvergaard–

Needleman (GTN) ductile fracture criterion. In the GTN ductile

fracture criterion, the accumulated damage is represented by the

void volume fraction which is coupled by the constitutive equation

so as to induce the effect of strength weakening. As a base for-

mula, the GTN ductile fracture criterion has been widely utilized to

predict shear localization at the low stress triaxiality ( Xue, 2008;

Nahshon and Hutchinson, 2008; Nielsen and Tvergaard 2010 ) as

well as void shape changes ( Budiansky et al., 1982; Gologanu et al.,

1993; Danas and Castaneda, 2012 ). Another popular coupled frac-

ture criteria are based on the continuum damage mechanics (CDM)

introduced by Kachanov (1958) , which is further improved by var-

ious research works ( Lemaitre, 1985, 1992, 20 0 0; Chaboche, 1981,

1988a, 1988b; Saanouni and Chaboche, 20 03; Brünig 20 03a, 20 03b,

2006, 2011 ). The CDM considers the damage as an internal vari-

able which grows with plastic deformation to represent the local

distribution of micro - defects which eventually induce the change

of material properties such as macroscopic elastic and hardening

modulus. In the case of uncoupled fracture criteria, dozens of ap-

proaches have been proposed based on microscopic mechanisms

and experimental observations of the ductile fracture with various

hypotheses to solve for special problems ( Freudenthal, 1950; Cock-

croft and Latham, 1968; Brozzo et al., 1972; Oh et al., 1979; Oyane

et al., 1980; Clift et al., 1990; Ko et al., 2007; Xue and Wierzbicki,

2008 ; Bai and Wierzbicki, 2010; Lou et al., 2012, 2014; Park et al.,

2015 ; Mohr and Marcadet, 2015 ). The uncoupled fracture criteria

employ a scalar damage indicator, usually expressed in an inte-

gral form, which continually evolves with plastic deformation. In

this case, the ductile fracture is known to initiate when the dam-

age indicator reaches unity. By employing an uncoupled fracture

criterion in the prediction of fracture initiation in aid of finite el-

ement analysis, Dunand and Mohr (2010) made great emphasis

on the careful choice of hardening moduli in large plastic strain

range in order to guarantee an accuracy of the fracture prediction.

In an attempt to evaluate the anisotropy on the onset of fracture,

Luo et al. (2012) introduced an uncoupled non-associated ductile

fracture criterion based on the linear transformation of the strain

tensor. Gu and Mohr (2015) formulated an anisotropic extension

of the Hosford–Coulomb shear localization criterion based on the

linear transformation of the stress tensor. In modeling anisotropic

ductile fracture criteria above, linear transformation tensors play

a key role in the construction of the anisotropic fracture configu-

ration and the components of those transformation tensors were

set as the model parameters to be calibrated. Recently, Park et al.

(2017) proposed an uncoupled anisotropic ductile fracture criterion

on the basis of the Lou–Huh ductile fracture criterion and sug-

gested an anisotropic stress triaxiality based on the Hill’s 48 cri-

terion. In their research, various fracture - based forming limit crite-
Please cite this article as: N. Park et al., Anisotropic fracture forming

fracture strain, International Journal of Solids and Structures (2018), ht
ia were proposed and discussed according to typical stress states

long different orientations of the metal sheet. 

The main concern of the present paper is to propose a gener-

lized anisotropic fracture forming limit criterion for the advanced

etal sheets considering non - directionality of the equi - biaxial frac-

ure strain. The uncoupled anisotropic ductile fracture criterion by

ark et al. (2017) is extended with a generalized anisotropic stress

riaxiality based on the Yld91 criterion ( Barlat et al., 1991 ) for the

pplication to advanced metal sheets including aluminum alloys.

 theoretical transformation procedure is introduced to construct

he fracture forming limit diagram. Hydraulic bulge and tensile

ests with various specimen geometries are carried out to eval-

ate the material properties and the equivalent plastic strains at

he onset of fracture of the DP980 1.2t (DP980 with the thick-

ess of 1.2 mm) steel sheet. With the postulate of a proportional

oading condition, the parameters of the proposed fracture crite-

ion are calibrated and the prediction of the fracture criterion is

onfirmed with the experimental results. Appendix A is also pro-

ided to generalize anisotropic triaxiality for Yld2004 - 18p criterion

 Barlat et al., 2005 ). 

. Development of a new anisotropic ductile fracture criterion 

.1. Anisotropic stress triaxiality based on the Yld91 criterion 

With the Lode parameter L P or the normalized Lode angle θ̄ , the

tress triaxiality ηv plays a key role in modeling uncoupled duc-

ile fracture criterion for the reason that the combination of these

tress invariants represents the direction of three - dimensional

rincipal stress vector ( σ 1 , σ 2 , σ 3 ) in Haigh–Westergaard space. It

s, however, challenging to consider the directionality of typical

tress states on the material orientation using these stress invari-

nts because they are isotropic indicators. In an attempt to involve

he influence of material anisotropy into the stress triaxiality, Park

t al. (2017) suggested the anisotropic stress triaxiality based on

he Hill’s 48 criterion σ̄H as follows: 

H = 

σm 

σ̄H 

= 

1 

3 

σ1 + σ2 + σ3 √ 

( σ1 − σ3 ) 
2 
[
F f 2 + G g 2 + H h 

2 + 2 

(
L l 2 + M m 

2 + N n 

2 
)]

where σm 

= 

tr ( σ) 

3 

(1)

f = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
1 − 2 x 2 + x 4 − 2 y 2 + c 2 x 4 + 2 x 2 y 2 + 2 c x 2 − 2 c x 4 

− 4 c x 2 y 2 + 2 c 2 x 2 y 2 − 2 xyzs + 2 xyzsc 
)

+ 

(
1 −L P 

2 

)(
−c 2 + 2 c 2 y 2 − 2 xyzs + 2 xyzsc 

)
+ 

(
1+ L P 

2 

)(
−x 2 − y 2 + 2 y 4 + c 2 x 2 − c 2 y 2 + 2 c 2 y 4 + x 2 y 2 

+ 4 c y 2 − 4 c y 4 + c 2 x 2 y 2 − 2 c x 2 y 2 
)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

g = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
x 2 − 2 x 4 + y 2 + c 2 x 2 − 2 c 2 x 4 − c 2 y 2 − x 2 y 2 − 4 c x 2 + 4 c x 4 

− c 2 x 2 y 2 + 2 c x 2 y 2 
)

+ 

(
1+ L P 

2 

)(
−1 + 2 x 2 + 2 y 2 − y 4 − c 2 y 4 − 2 x 2 y 2 − 2 c y 2 

+ 2 c y 4 − 2 c 2 x 2 y 2 + 4 c x 2 y 2 − 2 xyzs + 2 xyzsc 
)

+ 

(
1 −L P 

2 

)(
−c 2 + 2 c 2 x 2 + 2 xyzs − 2 xyzsc 

)

⎤
⎥⎥⎥⎥⎥⎦

h = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
x 4 − 2 c 2 x 2 + c 2 x 4 + 2 c x 2 − 2 c x 4 + 2 xyzs − 2 xyzsc 

)
+ 

(
1+ L P 

2 

)(
−y 4 + 2 c 2 y 2 − c 2 y 4 − 2 c y 2 + 2 c y 4 

+ 2 xyzs − 2 xyzsc ) 

+ 

(
1 −L P 

2 

)(
−1 + 2 c 2 + x 2 + y 2 − c 2 x 2 − c 2 y 2 

− x 2 y 2 − c 2 x 2 y 2 + 2 c x 2 y 2 
)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
 limit diagram considering non-directionality of the equi-biaxial 
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l = 

⎡ 

⎢ ⎢ ⎣ 

(
−xs − yz + x 3 s + x 2 yz − c x 3 s + x y 2 s − cx y 2 s − 2 c x 2 yz 

+ c 2 x 2 yz 
)

+ 

(
1+ L P 

2 

)(
y 3 z − 2 c y 3 z + c 2 y 3 z + cyz 

)
+ 

(
1 −L P 

2 

)(
c 2 yz + csx + x y 2 s − cx y 2 s 

)

⎤ 

⎥ ⎥ ⎦ 

m = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

(
x 3 z − 2 c x 3 z + c 2 x 3 z + cxz 

)
+ 

(
1+ L P 

2 

)(
ys − xz − y 3 s + x y 2 z + c y 3 s − x 2 ys + c x 2 ys 

− 2 cx y 2 z + c 2 x y 2 z 
)

+ 

(
1 −L P 

2 

)(
−c 2 xz + cys + x 2 ys − c x 2 ys 

)

⎤ 

⎥ ⎥ ⎥ ⎦ 

n = 

⎡ 

⎢ ⎣ 

(
x 3 y + cxy − c 2 xy − 2 c x 3 y − x 2 zs + c 2 x 3 y + c x 2 zs 

)
+ 

(
1+ L P 

2 

)(
x y 3 + cxy − c 2 xy − 2 cx y 3 + y 2 zs 

+ c 2 x y 3 − c y 2 zs 
)

+ 

(
1 −L 

2 

)
( −csz ) 

⎤ 

⎥ ⎦ 

, 

 P = 

2 σ2 − σ1 − σ3 

σ1 − σ3 

(2

where c = cos θr , s = sin θr , ˆ u = x ̂ i + y ̂ j + z ̂  k is a unit vector for 

a rotation axis and θr is a rotation angle as shown in Fig . 1 . 

Here, F, G, H, L, M , and N are the anisotropic parameters of

he Hill’s 48 criterion. This anisotropic stress triaxiality is able

o deal with the material anisotropy on typical stress states in

eneral three - dimensional space. Note that the anisotropic yield

riterion to describe the anisotropic stress triaxiality have to in-

lude three - dimensional stress state in terms of the stress triaxi-

lity, the Lode parameter, and the equivalent stress ( ηA , L P , σ̄A ) . In

he present paper, the anisotropic stress triaxiality is generalized

ased on the Yld91 criterion σ̄A so as to extend the applicability

f the anisotropic stress triaxiality to various materials including

luminum alloys. 

 ̄σ m 

A = | S 2 − S 3 | m + | S 3 − S 1 | m + | S 1 − S 2 | m (4) 

A = 

σm 

σ̄A 

= 

1 

3 

σ1 + σ2 + σ3 

m 

√ 

| S 2 −S 3 | m + | S 3 −S 1 | m + | S 1 −S 2 | m 
2 

where σm 

= 

tr ( σ) 

3 

(5) 

here S 1 , S 2 , and S 3 are the principal values of the isotropic plas-

ic equivalent (IPE) transformed stress tensor s , and the exponent

 denotes an isotropic parameter that can assume any positive and

eal value greater than unity. In the Voigt notation, the IPE trans-

ormed stress vector ˜ s is defined as: 

  = L ̃  σ = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

s xx 

s yy 

s zz 

s yz 

s zx 

s xy 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

( c 2 + c 3 ) / 3 −c 3 / 3 −c 2 / 3 0 0 0 

−c 3 / 3 ( c 3 + c 1 ) / 3 −c 1 / 3 0 0 0 

−c 2 / 3 −c 1 / 3 ( c 1 + c 2 ) / 3 0 0 0 

0 0 0 c 4 0 0 

0 0 0 0 c 5 0 

0 0 0 0 0 c 6 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

σxx 

σyy 

σzz 

σyz 

σzx 

σxy 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(6) 

here L is the linear transformation operator proposed by

arlat et al. (1991) and c i ( i = 1, …, 6) are the parameters describing

he anisotropy of the metallic material. In aid of tensor transfor-

ation based on the Rodrigues’ rotation formula ( Rodriguez, 1840 )

A = 

σm 

σ̄A 

= 

1 

3 

σ1 + σ2 + σ3 

| σ1 − σ3 | 
√ 

−3 Q 

(
1 
2 

) 1 
m −1 

{ [
sin 

(
π−θA 

3 

)]m + 

[
sin 

(
θA 

3 

)]m
Please cite this article as: N. Park et al., Anisotropic fracture forming

fracture strain, International Journal of Solids and Structures (2018), ht
ith the Lode parameter, the IPE transformed stress tensor s can

e written as: 

 = ( σ1 − σ3 ) 

⎡ 

⎣ 

c 3 h −c 2 g 
3 

c 6 n c 5 m 

c 6 n 

c 1 f−c 3 h 
3 

c 4 l 

c 5 m c 4 l 
c 2 g−c 1 f 

3 

⎤ 

⎦ = 

[ 

s xx s xy s xz 

s xy s yy s yz 

s xz s yz s zz 

] 

(7) 

here f, g, h, l, m , and n are the sub - functions in Eq. (2) . The prin-

ipal values of the IPE transformed stress tensor s can be expressed

y its invariants: 

 

S 1 
S 2 
S 3 

} 

= 2 

√ 

−Q 

⎧ ⎨ 

⎩ 

cos 
(

θA 

3 

)
cos 

(
θA −2 π

3 

)
cos 

(
θA +2 π

3 

)
⎫ ⎬ 

⎭ 

here 

A = co s −1 

( 

R √ 

−Q 

3 

) 

, Q = 

I 2 
3 

, R = 

I 3 
2 

I 2 = ( σ1 − σ3 ) 
2 

⎡ 

⎢ ⎣ 

(−c 2 g+ c 3 h 
3 

)(−c 3 h + c 1 f 
3 

)
+ 

(−c 3 h + c 1 f 
3 

)(−c 1 f+ c 2 g 
3 

)
+ 

(−c 2 g+ c 3 h 
3 

)(−c 1 f+ c 2 g 
3 

)
− c 2 6 n 

2 − c 2 4 l 
2 − c 2 5 m 

2 

⎤ 

⎥ ⎦ 

I 3 = ( σ1 − σ3 ) 
3 

⎡ 

⎢ ⎣ 

(−c 2 g+ c 3 h 
3 

)(−c 3 h + c 1 f 
3 

)(−c 1 f+ c 2 g 
3 

)
+ 2 c 2 6 n 

2 c 2 4 l 
2 c 2 5 m 

2 

−
(−c 2 g+ c 3 h 

3 

)
c 2 4 l 

2 −
(−c 3 h + c 1 f 

3 

)
c 2 5 m 

2 

−
(−c 1 f+ c 2 g 

3 

)
c 2 6 n 

2 

⎤ 

⎥ ⎦ 

(8) 

where I 2 and I 3 are the second, and the third invariants of the IPE

ransformed stress tensor, s , respectively. Note that the first invari-

nt I 1 of the IPE transformed stress tensor, s , is zero ( s kk = 0) and

he principal values are in the order of S 1 ≥ S 2 ≥ S 3 because 0 ≤
≤ π . Substituting Eq. (8) into Eq. (5) gives: 

sin 

(
θA + π

3 

)]m 

} 1 
m 

= 

1 

3 

σ1 + σ2 + σ3 

| σ1 − σ3 | A 

(9) 

It is worth to mention that the Yld91 criterion can reduce to

pecial cases such as the Tresca ( Tresca, 1864 ), the von Mises

 Mises, 1913 ), the Hosford ( Hosford, 1972 ), and the Hill’s 48

 Hill, 1948 ) criteria. For example, when all components in the lin-

ar transformation operator L are set to unity, the IPE transformed

ensor s reduces to the stress deviator tensor σ ′ . In this case, the

nisotropic stress triaxiality proposed can reduce to the isotropic

tress triaxiality by setting the exponent of m to 2. In addition,

he following explicit relation between the anisotropic parameters

f the Yld91 and the Hill’s 48 criteria can be obtained when the

alue of the exponent m is set to 2 ( Prates et al., 2016 ): 

F = 

2 c 2 1 + c 1 c 2 + c 1 c 3 − c 2 c 3 

6 

, L = 

3 

2 

c 2 4 

G = 

2 c 2 2 + c 1 c 2 + c 2 c 3 − c 1 c 3 

6 

, M = 

3 

2 

c 2 5 

 = 

2 c 2 3 + c 1 c 3 + c 2 c 3 − c 1 c 2 

6 

, N = 

3 

2 

c 2 6 (10) 

The generalized anisotropic stress triaxiality based on the Yld91

riterion, therefore, has notable applicability for both isotropic and

nisotropic cases. 

.2. Characterization of the stress states 

It is straightforward to make an explicit relation between

 σ 1 , σ 2 , σ 3 ) and ( ηA , L P , σ̄A ) because the proposed anisotropic stress

riaxiality and the Lode parameter are expressed by the princi-

al stresses of the Cauchy stress tensor σ together with the fact
 limit diagram considering non-directionality of the equi-biaxial 
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Fig. 1. Rotation axis and rotation angle for the coordinate transformation (after Park 

et al., 2017 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Rotation axis and rotation angle defined for the application to sheet metal 

forming (after Park et al., 2017 ). 
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p  

(  

u

that the first invariant of the stress deviator tensor σ ′ is zero

( σ ′ 
kk 

= 0 ) : { 

σ1 

σ2 

σ3 

} 

= 

{ 

σm 

+ σ ′ 
1 

σm 

+ σ ′ 
2 

σm 

+ σ ′ 
3 

} 

= 

⎧ ⎨ 

⎩ 

ηA + 

3 −L P 
6 A 

ηA + 

2 L P 
6 A 

ηA − 3+ L P 
6 A 

⎫ ⎬ 

⎭ 

σ̄A 

where 

A = 

√ 

−3 Q 

(
1 

2 

) 1 
m −1 

{[
sin 

(
π − θA 

3 

)]m 

+ 

[
sin 

(
θA 

3 

)]m 

+ 

[
sin 

(
θA + π

3 

)]m 

} 1 
m 

(11)

Here, the principal stresses are in the order of σ 1 ≥ σ 2 ≥ σ 3 .

From the characterization of the stress states with the anisotropic

stress triaxiality, it is possible to depict yield loci lying on three

symmetric planes whose axes are coincident with the material

symmetry axes as shown in Fig. 1 . For example, when the plane

stress condition is assumed as σ 3 = 0 concerning sheet metal form-

ing application, the unit vector of the rotation axis is expressed as

ˆ u = x ̂ i + y ̂ j + z ̂  k = 

ˆ k , such that the sub - functions in Eq. (2) reduce

to: 

f = 1 + 

(
L P − 1 

2 

)
cos 2 θS , g = 

(
L P − 1 

2 

)
cos 2 θS −

(
1 + L P 

2 

)
, 

h = 

(
1 − L P 

2 

)
cos 2 θS n = 

(
L P − 1 

4 

)
sin 2 θS , l = m = 0 (12)

In this case, the rotation angle θ r strands for the loading direc-

tion θ S as shown in Fig. 2 . 
The principal stresses lying on the normal surface of the sheet

metal are then defined as: {
σ1 

σ2 

}
= 

σ̄A √ 

−3 Q 

′ ( 1 
2 

) 1 
m −1 

{[ 
sin 

(
π−θ ′ 

A 
3 

)] m 
+ 

[ 
sin 

(
θ ′ 

A 
3 

)] m 
+ 

[ 
sin 

(
θ ′ 

A +π

3 

)] m } 1 
m 

×
{

1 
1+ L P 

2 

}

where 
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A 

′ = 

√ 

−3 Q 

′ 
(

1 

2 

) 1 
m −1 

{[
sin 

(
π − θ ′ 

A 

3 

)]m 

+ 

[
sin 

(
θ ′ 

A 

3 

)]m 

+ 

[
sin 

(
θ ′ 

A + π

3 

)]m 

} 1 
m 

, θ ′ 
A = cos −1 

( 

R 

′ √ 

−Q 

′ 3 

) 

 

′ = 

1 

9 

(
P 2 
3 

− P 3 

)[ 
P 1 + c 3 

(
L P − 1 

2 

)
cos 2 θS 

] 
− ( P 1 + P 2 ) 

2 

27 

− 1 

12 

c 2 6 sin 

2 
2 θS 

(
L P − 1 

2 

)2 

R 

′ = 

P 1 + P 2 
3 

[
1 

8 

c 2 6 sin 

2 
2 θS 

(
L P − 1 

2 

)2 

− 1 

18 

( P 2 − 3 P 3 ) ( P 1 + 3 P 3 ) 

]

P 1 = c 1 

[ (
L P −1 

2 

)
cos 2 θS +1 

] 
, P 2 = c 2 

[ (
1 −L P 

2 

)
cos 2 θS + 

1 + L P 
2 

] 
, 

P 3 = c 3 

(
L P − 1 

6 

)
cos 2 θS (13)

Concerning the equi - biaxial stress state of σ 1 = σ 2 = σ b to-

ether with σ̄A = σb , A 

′ in Eq. (13) becomes unity regardless of

he values of the anisotropic parameters c i ( i = 1, …, 6) and the

xponent m as well as the loading direction θ S . This makes the

nisotropic stress triaxiality become a constant value of 2/3. The

oss of the directionality on the equi - biaxial stress state can be re-

iewed from the definition of the anisotropic stress triaxiality as

ell. As an anisotropic indicator, the anisotropic stress triaxiality

an be expressed as a quantity scaled from the isotropic stress tri-

xiality as follows: 

A = 

σm 

σ̄A 

= 

σm 

σ̄v 

σ̄v 

σ̄A 

= ηv 
σ̄v 

σ̄A 

(14)

here σ̄v and σ̄A represent the equivalent stresses of the von Mises

sotropic yield criterion and the anisotropic yield criterion, respec-

ively. A scaling factor, defined as the yield stress ratio of σ̄v / ̄σA ,

ecomes unity when the equivalent stress of σ̄A is set to the equi -

iaxial yield stress σ b , which leads to ηA = ηv = 2/3. Except for the

qui - biaxial stress state, the scaling values depend on the Lode pa-

ameter L P , the anisotropic parameters c i ( i = 1, …, 6), and the ex-

onent m : 

A = ηv 

√ 

L 2 
P 
+3 

√ 

−3 Q 

′ ( 1 
2 

) 1 
m −2 

{[ 
sin 

(
π−θ ′ 

A 
3 

)] m 
+ 

[ 
sin 

(
θ ′ 

A 
3 

)] m 
+ 

[ 
sin 

(
θ ′ 

A +π

3 

)] m } 1 
m 

(15)

Fig. 3 shows the distribution of the scaling values in general

tress states according to three loading directions of 0 °, 45 °, and

0 ° from the rolling direction of the sheet metal. Here, the param-

ters of the Yld91 criterion are calibrated using directional yield

tresses of the DP980 1.2t steel sheet obtained from experiments

y Park et al. (2017) and are summarized in Table 1 . It is sim-

ly confirmed that the directionality of the equi - biaxial stress state

 L P = 1) vanishes for the reason that the scaling value becomes

nity regardless of the loading direction as shown in Fig. 4 . 
 limit diagram considering non-directionality of the equi-biaxial 
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Fig. 3. Distribution of the scaling values over a wide range of stress states according 

to the three loading directions: (a) 0 °; (b) 45 °; (c) 90 °. 

Table 1 

Anisotropic characteristic parameters of the Yld91 criterion determined 

by the normalized yield stresses. 

c 1 c 2 c 3 c 4 c 5 c 6 

1.010 0.990 1.004 1 1 1.023 
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Fig. 4. Scaling values according to the Lode parameter at the three loading direc- 

tions. 
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4

.3. Modeling of the anisotropic ductile fracture criterion considering 

he non-directionality of the equi-biaxial fracture strain 

Dozens of anisotropic ductile fracture criteria have been pro-

osed over the past decades with various hypotheses in both cou-

led and uncoupled approaches. For sheet metal forming applica-

ion of advanced metals showing the low ductility, it is crucial to

redict the onset of fracture accurately during complicated form-

ng processes. In an attempt to guide the forming performance of

dvanced materials, the major and minor strains at the onset of

racture can be treated as a physical measure to evaluate the fail-

re of advanced metal sheets. The series of those strain quanti-

ies constitutes the fracture forming limit diagram (FFLD) and can
Please cite this article as: N. Park et al., Anisotropic fracture forming

fracture strain, International Journal of Solids and Structures (2018), ht
e obtained by either experiment or the theoretical model. In the

resent paper, we focus on the construction of the anisotropic fail-

re model for an efficient application to the sheet metal forming

ndustry. 

As a one of the uncoupled approaches to demonstrate the effect

f anisotropy on the fracture strain, a linear transformation can be

onsidered in modeling the anisotropic ductile fracture criterion,

hich is discussed by Luo et al. (2012) and Gu and Mohr (2015) in

etail. In this approach, the components of the linear transforma-

ion matrix are regarded as the parameters to be calibrated for the

racture criterion. The employment of the transformation approach

herefore can give an increase in the model flexibility in evaluat-

ng the fracture strain at a certain loading state considering the

oading direction. However, the enhancement of the model perfor-

ance is not always guaranteed when employing the linear trans-

ormation because it also forces to increase in the non - linearity

etween the stress state and its corresponding fracture strain pre-

icted from the fracture criterion. Each component in the transfor-

ation matrix plays a role as a factor to give more weight in cer-

ain loading states considering the influence of anisotropy on the

racture initiation. One of the limitations of this approach is that

ach weight factor is strongly related to the strain or stress com-

onent: therefore, the weight factors are determined by the least

quare scheme which will eventually result in the anisotropic frac-

ure prediction in an average sense. To release the dependence of

eight term on the stress or strain component, the components

f the linear transformation matrix can be set as the value depen-

ent on the loading direction. There remains, however, a difficulty

o make the relationship of each component according to the load-

ng direction in addition to a problem of the strong non - linearity

mong the model parameters. Meanwhile, in Park et al. (2017) , a

ew attempt is made to deal with the general anisotropic FFLD for

he application to advanced metals including aluminum alloys and

t is also able to consider the non - directionality of the equi - biaxial

tress state for the equivalent plastic strain while the directionality

f the other stress states on the material orientation still holds.

his anisotropic ductile fracture criterion, however, is limited to

he material which conforms to the Hill’s 48 criterion because it

s defined by the anisotropic stress triaxiality based on the Hill’s

8 criterion as follows: (
2 τmax 

σ̄H 

)C 1 
(〈

σ1 / ̄σH + C O 
1 + C O 

〉)C 2 

ε̄ p 
f 

⇒ 

(
1 √ 

T 

)C 1 

×
( 〈 

ηH + 

3 −L P 
6 
√ 

T 
+ C O 

1 + C O 

〉 ) C 2 

ε̄ p 
f 

= C 3 (16) 
 limit diagram considering non-directionality of the equi-biaxial 
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d  
where T = F f 2 + G g 2 + H h 

2 + 2 

(
L l 2 + M m 

2 + N n 

2 
)

where C O represents the stress sensitivity of the cut - off value for

the stress triaxiality to microscopic structures, temperature, and so

on. Under the plane stress condition, T reduces to T ′ : 

T ′ = F 

(
1 + L P 

2 

cos 2 θS + sin 

2 θS 

)2 

+ G 

(
cos 2 θS + 

1 + L P 
2 

sin 

2 θS 

)2 

+ 

(
H cos 2 2 θS + 

N 

2 

sin 

2 
2 θS 

)(
1 − L P 

2 

)2 

(17)

To ensure the accuracy of the anisotropic fracture prediction,

the parameters C i in Eq. (16) can be considered as a function of

the loading direction ( Park et al., 2017) : 

 i ( θS ) = P i cos 4 θS + ( 4 Q i − R i − P i ) cos 2 θS sin 

2 θS + R i sin 

4 θS , 

i = 1 , 2 , 3 (18)

where P i , Q i , and R i denote the model parameters. Note that the di-

rectional dependence in Eq. (18) vanishes when the parameters of

P i , Q i , and R i are set to the same value. For the equi - biaxial stress

state ( ηH = 2/3, L P = 1) under the plane stress condition ( σ 3 = 0),

Eq. (16) with Eq. (18) gives: (
1 √ 

F + G 

)C 1 ( θS ) 

ε̄ b f = C 3 ( θS ) (19)

where ε̄ b 
f 

represents the equivalent plastic strain at the onset of

fracture under the equi - biaxial stress state. It is worth to note that

ε̄ b 
f 

becomes C 3 ( θ S ) only if the equivalent stress is set to the equi -

biaxial yield stress, which leads to F + G = 1. Setting the model pa-

rameters of P 3 , Q 3 , and R 3 to the value of the equi - biaxial fracture

strain subsequently, the non - directionality of the equi - biaxial frac-

ture strain is eventually fulfilled. In a similar analogy to demon-

strate the non - directionality of the equi - biaxial fracture strain, a

new anisotropic ductile fracture criterion is proposed as: (
2 τmax 

σ̄A 

)C 1 ( θS ) 
(〈

σ1 / ̄σA + C O 
1 + C O 

〉)C 2 ( θS ) 

ε̄ p 
f 

⇒ 

(
1 

A 

)C 1 ( θS ) 

×
(〈

ηA + 

3 −L P 
6 A 

+ C O 

1 + C O 

〉)C 2 ( θS ) 

ε̄ p 
f 

= C 3 ( θS ) (20)

It can be simply verified that the proposed formula is able to

consider the non - directionality of the equi - biaxial fracture strain

from the fact that A becomes unity particularly when the material

is subjected to the equi - biaxial stress state under the plane stress

condition as discussed in Section 2.2 . In addition, the model pa-

rameter C 3 ( θ S ) in Eq. (20) still has the same meaning of ε̄ b 
f 

as be-

fore. In the viewpoint of the fracture prediction over a wide range

of stress state, the fracture predictability of the fracture criterion

proposed strongly depends on whether the non - directionality of

the equi - biaxial strain holds. In general, the parameters of the fac-

ture criterion for advanced metals are calibrated by the quantities

from typical loading states of the pure shear, the uniaxial tension,

and the plane strain tension: those loading states play a signifi-

cant role in determining the overall shape of the FFLD as well as

a three - dimensional fracture envelope. If the non - directionality of

the equi - biaxial fracture strain is considered in the calibration of

the model parameters by eliminating the directional dependence

of the parameter C 3 ( θ S ) through P 3 = Q 3 = R 3 = ε̄ b 
f 
, there may arise

potential loss of the model predictability on the fracture strains for

other loading states due to the inflexibility forced to the parameter

 3 ( θS ) = ε̄ b 
f 

= C 3 . In an effort to overcome this drawback, a weight

function is considered with Eq. (21) : 

w ( ̃  x ) 

(
1 

A 

)C 1 ( θS ) 
(〈

ηA + 

3 −L P 
6 A 

+ C O 

1 + C O 

〉)C 2 ( θS ) 

ε̄ p 
f 

= C 3 ( θS ) (21)
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here ˜ x stands for the state variable vector. The weight function

 ( ̃ x ) is initially defined by the Cauchy stress tensor σ so as to

eal with the general stress states. Since the Cauchy stress tensor

s directly related to the anisotropic stress triaxiality, the Lode pa-

ameter, and the maximum principal stress direction, an equivalent

orm of the weight function can be expressed as w ( ηA , L P , θ S ). For

he non - directionality of the equi - biaxial fracture strain, a value of

he weight function is necessary to become unity under the equi -

iaxial stress state. The weight function is thus simply proposed to

ave a form of: 

 = 

(
1 

η2 
A 

+ 

5 
9 

)C 4 ( θS ) 

where ηA = 

σm 

σ̄A 

(22)

ith the adoption of the weight function, the final form of the

ncoupled anisotropic ductile fracture criterion can be rewritten

ith the postulate of the plane stress condition for sheet metal

orming application as follows: 

1 

A 

′ 
)C 1 ( θS ) 

(〈
ηA + 

3 −L P 
6 A ′ + C O 

1 + C O 

〉)C 2 ( θS ) (
1 

η2 
A 

+ 

5 
9 

)C 4 ( θS ) 

ε̄ p 
f 

= C 3 (23)

Note that the proposed formula is valid only for the propor-

ional loading. For the non - proportional loading, the fracture pre-

iction is fulfilled by introducing a damage indicator D as a quan-

itative measure for ductility consumed at a material point. The

ange of the damage indicator traditionally runs from 0 to 1 and

aths of damage growths can vary according to loading conditions

nd material properties. Recently, Cortese et al. (2016) introduced

 non - linear damage accumulation law as: 

 = 

∫ ε̄ p 

0 

m (
ε̄ p 

f 

)q +1 

(
ε̄ p 

ε̄ p 
f 

) m 

( ̄ε p f ) 
q −1 

d ̄ε p ≤ 1 (24)

here q and m are the material parameters which character-

ze the non-linearity in the damage accumulation and ε̄ p 
f 

repre-

ents the equivalent plastic strain at the onset of fracture pre-

icted from the fracture criterion. This non - linear damage accu-

ulation law coincides with the one proposed by Xue (2007) and

apasidero et al. (2015) when q = 0. If m = 1 and q = 0, this ap-

roach reduces to the linear damage accumulation law. In aid of

his damage accumulation law, we can evaluate the onset of frac-

ure under non - proportional loading by performing a structural

nalysis via numerical simulation. Although it is very important to

valuate the performance of the new anisotropic ductile fracture

riterion under the non - proportional loading, it is however not the

cope of the present paper and will be further investigated later.

he performance of the new anisotropic ductile fracture criterion

ill be discussed in Section 4 particularly for the proportional

oading with a methodology to construct the anisotropic FFLD. 

. Prediction of the fracture forming severity of the DP980 1.2t 

teel sheet 

The uncoupled anisotropic ductile fracture criterion proposed

s applied to evaluate the fracture forming severity of the DP980

.2t steel sheet under the proportional loading. In calibrating the

arameters of the fracture criterion, the experimental results ob-

ained by Park et al. (2017) were used, which are given in Table 2 .

n their research, three different types of tensile tests were con-

ucted using various specimen geometries for a pure shear, a uni-

xial tension, and a plane strain tension as shown in Fig. 5 to in-

uce a certain deformation state at the material point where the

nset of fracture is expected. Each specimen was fabricated along

he loading directions of RD, DD, and TD so as to investigate the

ffect of material anisotropy on the fracture strain. The grayscale

igital images were captured by the FASTCAM SA4 motion analysis
 limit diagram considering non-directionality of the equi-biaxial 
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Table 2 

Equivalent plastic strains at the onset of fracture according to the three loading 

direction (after Park et al., 2017 ). 

Loading direction Uniaxial 

tension case 

Pure shear case Plane strain 

tension case 

0 °(RD) Test # 1 0.509 0.934 0.279 

Test # 2 0.545 0.962 0.313 

Test # 3 0.527 0.941 0.294 

45 °(DD) Test # 1 0.640 0.783 0.255 

Test # 2 0.691 0.822 0.269 

Test # 3 0.672 0.806 0.262 

90 °(TD) Test # 1 0.565 0.847 0.215 

Test # 2 0.603 0.887 0.246 

Test # 3 0.592 0.877 0.234 

Table 3 

Test conditions and results of the hydraulic bulge test of the DP980 1.2t steel sheet. 

Specimen size 

[mm] 

Punch speed 

[mm/s] 

Clamping force 

[kN] 

Equivalent plastic strain 

at the onset of fracture 

200 × 200 10 800 Test #1 0.616 

Test #2 0.723 

Test #3 0.669 

Table 4 

Yield stresses and r -values of the DP980 1.2t steel sheet. 

Loading direction Yield stress a [MPa] r - value 

0 °(RD) 704 0.835 

45 °(DD) 690 1.101 

90 °(TD) 697 0.962 

Equi-biaxial 702 1.041 b 

a 0.2% offset. 
b r b = ε yy / ε xx . 
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Fig. 5. Drawings of test specimens: (a) Pure shear specimen; (b) Dog-bone speci- 

men; (c) Flat grooved specimen [mm] (after Park et al., 2017 ). 

Table 5 

Anisotropic characteristic parameters of the Hill’s 48 criterion determined by the 

normalized yield stresses. 

F G H L M N 

0.5100 0.4900 0.5044 1.5 1.5 1.5702 
amera as a preparation for measuring the strain distribution on

he surface of a specimen by means of the two - dimensional Digi-

al Image Correlation (DIC) method using the commercial software

f ARAMIS v6.3.0. The spatial resolution and frame rate used were

round 0.02 mm/pixel and 20 frame/s, respectively. Experimental

esults showed that the strain path was maintained almost con-

tantly during each test except for the uniaxial tension case: the

train path during the uniaxial tension test slightly changed after

he necking as shown in Fig. 6 . Since the change of strain paths

as not severe during the tests, we simply assumed that the mate-

ial is under the proportional loading condition before the fracture

nitiates. In this viewpoint, the equivalent plastic strain to fracture

valuated from the test can be regarded as the fracture strain cor-

esponding the targeted loading condition induced by the speci-

en geometry, which can make possible to quantitatively evalu-

te the model performance in predicting the onset of fracture by

omparing the fracture strains obtained from the tests with the

nes predicted from the fracture criterion. In the present paper, hy-

raulic bulge tests were additionally carried out to obtain the equi -

iaxial fracture strain with the three - dimensional DIC method. In

he experiments, the equi - biaxial fracture strain was evaluated at

he material point showing the maximum equivalent plastic strain

ust before the fracture initiation as shown in Fig. 7 . Test condi-

ions and results of the hydraulic bulge tests are listed in Table 3 .

he material properties of DP980 1.2t steel sheet and the param-

ters of the Hill’s 48 criterion are briefly summarized in Tables 4

nd 5 , respectively. 

.1. Fracture envelope and fracture locus 

The equivalent plastic strain to fracture obtained by Park et al.

2017) was evaluated by using the definition of the Hill’s 48 equiv-

lent plastic strain as a measure of the equivalent value. The equiv-
Please cite this article as: N. Park et al., Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial 
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Fig. 6. Representative strain paths of the DP980 1.2t steel sheet according to the 

three sheet metal orientations (RD, DD, TD) and loading conditions (after Park et al., 

2017 ). 

Table 6 

Parameters of the anisotropic ductile fracture criterion proposed. 

i P i Q i R i C O 

1 2.901 4.616 4.857 1/3 

2 2.898 2.542 3.098 

3 0.669 0.669 0.669 

4 0.553 0.262 0.425 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Hydraulic bulge test result: (a) Fractured specimen; (b) Equivalent plastic 

strain distribution just before the fracture initiation. 
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alent quantities were obtained directly from the experiments by

measuring the major and minor strain increments through the DIC

analysis. As discussed in Section 2.1 , the von Mises and the Hill’s

48 criterion are the special cases of Yld91. Since the experimental

results by Park et al. (2017) was used for the calibration of the pa-

rameters in the proposed fracture criterion, we adopted a reduced

form of the proposed fracture criterion using the Hill’s 48 criterion

so as to achieve the consistency in the strain measurement, which

also lies in a fact that the tested material obeys the Hill’s 48 crite-

rion. A special case of the proposed fracture criterion including the

weight function can be expressed as follows: 

(
1 √ 

T ′ 

)C 1 ( θS ) 
( 〈 

ηH + 

3 −L P 
6 
√ 

T ′ + C O 

1 + C O 

〉 ) C 2 ( θS ) (
1 

η2 
H 

+ 

5 
9 

)C 4 ( θS ) 

ε̄ p 
f 

= C 3 

(25)

It is worth to note that the proposed fracture criterion and its

reduced one defined by the Hill’s 48 criterion exhibit the same per-

formance in predicting the fracture strains used in the calibration

of the model parameters due to its empirical characteristic result-

ing from the present form of each formula. It is, therefore, cru-

cial to employ the measure of equivalent plastic strain which ade-

quately demonstrates the deformation behavior of the tested mate-

rial. It is also important to use its corresponding anisotropic stress

triaxiality definition for the reliable fracture prediction, which

should be further investigated more in detail via numerical anal-

ysis. The parameters of the above fracture criterion are optimized

using the Nelder–Mead algorithm built in the MATLAB program

with the use of the fracture strains averaged at each loading condi-

tion. The identified parameters are summarized in Table 6 . As can

be seen in Fig. 8 , the fracture criterion proposed shows not only

the characteristic of non - directionality of the equi - biaxial fracture

strain but also the fracture predictability with great accuracy over

a wide range of stress states according to the loading direction. 
Please cite this article as: N. Park et al., Anisotropic fracture forming

fracture strain, International Journal of Solids and Structures (2018), ht
For the confirmation of the model performance on the fracture

rediction, fracture loci from the proposed fracture criterion are

epresented together with those from the anisotropic ductile frac-

ure criterion without the weight function as shown in Fig. 9 . 

In this comparison, it is simply confirmed that the fracture pre-

ictability is significantly enhanced especially for the uniaxial ten-

ion condition including various loading states. This enhancement

n the fracture predictability is closely associated with an increase

n the number of the model parameters as well as an adequate de-

cription of the dependence of both the Lode parameter and the

nisotropic stress triaxiality. The increase in the number of the

odel parameters, however, does not always ensure the enhance-

ent of the model performance when the model has a high non -

inearity between a set of input variables and its corresponding

utput values. Meanwhile, the form of the fracture criterion pro-

osed shows a clear linearity when it is reviewed in a logarithmic
 limit diagram considering non-directionality of the equi-biaxial 
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Fig. 8. Strain-based 3D fracture envelopes according to the three loading directions: 

(a) 0 °; (b) 45 °; (c) 90 °. 
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Fig. 9. Fracture loci of the DP980 1.2t steel sheet according to the loading direction: 

(a) Prediction from the anisotropic ductile fracture criterion without the weight 

function; (b) Prediction from a new anisotropic ductile fracture criterion with the 

weight function. 
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W  
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m∫
orm as follows: 

 1 ( θS ) ln 

(
1 √ 

T ′ 

)
+ C 2 ( θS ) ln 

( 〈 

ηH + 

3 −L P 
6 
√ 

T ′ + C O 

1 + C O 

〉 ) 

+ C 4 ( θS ) ln 

(
1 

η2 
H 

+ 

5 
9 

)
+ ln ε̄ p 

f 
= ln C 3 (26) 

It is thus without a doubt that the enhancement of the model

erformance can be ensured in the present form of the fracture

riterion proposed with the increase in the number of the model

arameters. 

.2. Anisotropic fracture forming limit diagram 

A theoretical transformation process is necessary to construct

he FFLD from the uncoupled ductile fracture criterion. In general,
Please cite this article as: N. Park et al., Anisotropic fracture forming

fracture strain, International Journal of Solids and Structures (2018), ht
 transformation law is explicitly derived from the correspond-

ng work - conjugate of the equivalent stress under the proportional

oading. It is, however, not allowed to make an explicit form of the

orresponding work - conjugate for non - quadratic yield criteria. As

n alternative way to construct the FFLD, the explicit relation be-

ween the major and minor strains is rigorously derived in terms of

he strain and stress paths based on the plastic work equivalence.

t is worth to note that both methods to construct the FFLD are,

n fact, equivalent from each other because those methods have

he same base of the plastic work equivalence in their way of con-

truction. The plastic work equivalence is defined as: 

˙ 
 = σi j ˙ ε 

p 
i j 

= σi ˙ ε 
p 
i 

= σ1 ˙ ε 
p 
1 

+ σ2 ˙ ε 
p 
2 

+ σ3 ˙ ε 
p 
3 

= σ̄A 
˙ ε̄ p (27)

Assuming the plane stress condition ( σ 3 = 0) yields: 

1 ˙ ε 
p 
1 

(
1 + 

σ2 

σ1 

˙ ε p 
2 

˙ ε p 
1 

)
= σ̄A 

˙ ε̄ p → ˙ ε p 
1 

= 

σ̄A 

σ1 

˙ ε̄ 
p 

1 + αβ

where α = 

˙ ε p 
2 

˙ ε p 
1 

, β = 

σ2 

σ1 

(28) 

here α and β stand for the strain and stress paths. Under the

roportional loading, the explicit relation between the major and

inor strains can be derived as: 
 t f 

0 

˙ ε p 
1 

d t = 

∫ t f 

0 

σ̄A 

σ1 

˙ ε̄ 
p 

1 + αβ
d t ⇒ ε p 

1 
= 

σ̄A 

σ1 

ε̄ p 
f 

1 + αβ
, 

ε p 
2 

= αε p 
1 

= 

∂ Q ( σ) /∂ σ2 

∂ Q ( σ) /∂ σ1 

ε p 
1 

(29) 
 limit diagram considering non-directionality of the equi-biaxial 
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Fig. 10. Influence of the exponent m of the Yld91 criterion on the yield locus and 

the fracture forming limit: (a) Yield locus; (b) Fracture locus; (c) Fracture Forming 

Limit Diagram (FFLD). 
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where t f , ε̄ 
p 

f 
, and Q ( σ) represent time to fracture, the equivalent

plastic strain at the onset of fracture predicted from the fracture

criterion and a plastic potential, respectively. An explicit expres-

sion of σ̄A / σi ( i = 1 , 2 , 3 ) can be obtained from Eq. (11) in terms

of the anisotropic stress triaxiality and the Lode parameter. If the

plane stress is assumed ( σ i = 0, with i = 1, 2, 3) for sheet metal

application, the relation between the anisotropic stress triaxiality

and the Lode parameter is uniquely defined. This makes possible

to explicitly express σ̄A / σi ( i = 1 , 2 , 3 ) and the anisotropic duc-

tile fracture criterion ε̄ p 
f 

as a function of the Lode parameter only.

Since the Lode parameter can be expressed by the stress ratio of

the minor stress to the major stress under the plane stress condi-

tion, we can define the terms in Eq. (29) by the stress ratio except

for α. Note that the strain ratio can be described by the stress ratio

by associated flow rule. Following the transformation procedure in-

troduced, an explicit relation between the major and minor strains

is obtained in consideration of the general principal stress states as

follows: 

For intermediate stress triaxiality region (From the uniaxial ten-

sion to the equi - biaxial tension) 

( σ1 > 0 , σ2 > 0 , σ3 = 0 ) 

ε 1 = ε̄ p 
f 

σ̄A 

σ1 

1 

1 + βα
= ε̄ p 

f 
A 

′ 1 

1 + βα
, ε 2 = αε p 

1 

where β = 

σ2 

σ1 

= 

1 + L P 
2 

(30)

For low and negative stress triaxiality region (From the uniaxial

compression to the uniaxial tension) 

( σ1 > 0 , σ2 = 0 , σ3 < 0 ) 

ε 1 = ε̄ p 
f 

σ̄A 

σ1 

1 

1 + βα
= ε̄ p 

f 

(
2 A 

′ 
1 − L P 

)
1 

1 + βα
, ε 2 = αε p 

1 

where β = 

σ3 

σ1 

= −1 + L P 
1 − L P 

(31)

For negative stress triaxiality region (From the equi - biaxial

compression to the uniaxial compression) 

( σ1 = 0 , σ2 < 0 , σ3 < 0 ) 

ε 1 = ε̄ p 
f 

σ̄A 

σ2 

1 

1 + βα
= ε̄ p 

f 

(
2 A 

′ 
−1 + L P 

)
1 

1 + βα
, ε 2 = αε p 

1 

where β = 

σ3 

σ2 

= 

2 

1 − L P 
(32)

Consequently, the anisotropic FFLD can be constructed accord-

ing to the loading direction when non - quadratic yield criterion is

employed. Note that the overall shapes of the anisotropic FFLD as

well as the fracture locus are strongly dependent on the exponent

m which determines the curvature of non - quadratic yield function

(Yld91). The change of yield surface curvature affects the value of

anisotropic stress triaxiality, which eventually varies the shape of

the fracture forming limit. Fig. 10 represents the influence of the

exponent m on the yield surface and the fracture forming limits

for the loading direction of 0 °. Here, the parameters c i of the Yld91

criterion are set to the values in Table 1 . 

For the reduced case of the anisotropic fracture criterion pro-

posed as in Eq. (25) , A 

′ in Eqs. (30) –(32) reduces to 
√ 

T ′ and the

relation between the strain and stress ratios is defined as follows: 

α = 

(
2 F cos 2 θS 

)
Q 1 + 

(
2 G sin 

2 θS 

)
Q 2 − Q 3 − Q 4 (

2 G cos 2 θS 

)
Q 2 + 

(
2 F sin 

2 θS 

)
Q 1 + Q 3 + Q 4 

where 

Q 1 = βcos 2 θS + sin 

2 θS , Q 2 = cos 2 θS + βsin 

2 θS , 

Q 3 = H ( 1 − β) ( cos 4 θS + 1 ) , Q 4 = N sin 

2 
2 θS ( 1 − β) (33)
Please cite this article as: N. Park et al., Anisotropic fracture forming
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The anisotropic FFLDs of the DP980 1.2t steel sheet are con-

tructed through the transformation procedure from the frac-

ure criterion and compared with those constructed from the

nisotropic ductile fracture criterion without the weight func-

ion as shown in Fig. 11 . It can be simply confirmed that the

nisotropic FFLD constructed from the fracture criterion proposed

hows a good performance in predicting the forming limit over

 wide range of stress states. The strain paths, as shown in

ig. 9 , represent the corresponding deformation modes consider-

ng the material anisotropy, which are theoretically predicted from

q. (33) when the sheet metal is subjected to typical stress states

ith respect to the loading direction. A fracture forming limit en-

elope constructed is represented in Fig. 12 . 
 limit diagram considering non-directionality of the equi-biaxial 
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Fig. 11. Fracture Forming Limit Diagram (FFLD) of the DP980 1.2t steel sheet ac- 

cording to the loading direction: (a) Predicted from the anisotropic ductile fracture 

criterion without the weight function; (b) Predicted from a new anisotropic fracture 

criterion with the weight function. 

Fig. 12. Fracture forming limit envelope of the DP980 1.2t steel sheet. 
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Fig. 13. Comparison of the fracture strains of the DP980 1.2t steel sheet obtained 

from the experiments with the ones predicted from the proposed fracture criterion: 

(a) Pure shear; (b) Uniaxial tension; (c) Plane strain tension. 
. Discussion 

.1. Fracture predictability at different loading directions 

The improvement of the model performance on the fracture

rediction was confirmed in Section 3 by comparing the fracture

orming limit predicted from the proposed fracture criterion. This

s quite promising because the parameters of the fracture crite-

ion were calibrated directly from the experimental results. That is,

ore weight in the fracture prediction will be given to the stress

tates and the loading directions involved in the calibration of the

odel parameters. It is thus necessary to validate the predictability
Please cite this article as: N. Park et al., Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial 
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Table 7 

Equivalent plastic strains at the onset of fracture at loading directions of 22.5 ° and 

67.5 °. 

Loading direction Uniaxial 

tension case 

Pure shear case Plane strain 

tension case 

22.5 ° Test # 1 0.601 0.863 0.272 

Test # 2 0.570 0.897 0.279 

Test # 3 0.620 0.889 0.283 

67.5 ° Test # 1 0.602 0.847 0.249 

Test # 2 0.637 0.826 0.244 

Test # 3 0.623 0.863 0.231 
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of the fracture criterion with the experimental data not involved in

the calibration of the model parameters. Additional experiments of

the DP980 1.2t steel sheet were carried out accordingly with speci-

mens fabricated along 22.5 ° and 67.5 ° to the rolling direction using

the same material and the test conditions used for the experiments

by Park et al. (2017) . Three different types of specimen geometries

were considered to induce typical stress states of the pure shear,

the uniaxial tension, and the plane strain tension. Note that those

specimen geometries were designed to have the same dimensions

for each type considered in the previous experiments so as to dis-

regard the possible influence of specimen geometry changes on

the experimental data for the reliable comparison with the pre-

vious ones. Tensile tests were conducted three times to confirm

the reproducibility from each test. With the Digital Image Correla-

tion (DIC) method, equivalent plastic strains at the onset of frac-

ture were measured at the material point showing the maximum

equivalent plastic strain just before the onset of fracture. The ob-

tained results are summarized in Table 7 . It is clearly confirmed

that the fracture criterion proposed is capable of predicting the on-

set of fracture over a wide range of stress state with great accuracy

in comparison of the data evaluated from the experiments and it

is also shown in Fig. 13 . 

5. Conclusions 

A new uncoupled ductile fracture criterion is developed to pro-

vide a phenomenological model for considering non - directionality

of the equi - biaxial fracture strain as well as the effect of anisotropy

at the macroscopic level particularly for sheet metal forming appli-

cation. After setting up anisotropic space through the anisotropic

stress triaxiality based on the Yld91 criterion, a weight function is

devised with the aim of enhancing the fracture predictability over

a wide range of stress states in various loading directions. Since the

Yld91 criterion can reduce to various yield criteria including the

Hill’s 48, Hosford, von Mises, and Tresca criteria, the generalized

anisotropic stress triaxiality is capable of demonstrating the defor-

mation behavior of various materials. This implies that the pro-

posed fracture criterion has a considerable potential to deal with

fracture behavior of various materials in the same explicit form

in addition to the characteristic of non - directionality of the equi -

biaxial fracture strain. In general, there exists the constitutive law

to describe the yielding of material, which has influence on the

shape of the fracture forming limit diagram. It is, therefore, neces-

sary to have an in - depth understanding about which yield criterion

is suitable for adequately demonstrating the material behavior dur-

ing the sheet metal forming process. After figuring out one of the

most suitable constitutive laws for the targeted material, it should

be also applied to the fracture criterion by the anisotropic stress

triaxiality defined by the constitutive law in consideration of the

consistency in modeling of both fracture and yield criteria. 

A transformation procedure is introduced to construct the

anisotropic FFLD from the anisotropic fracture criterion with a non -

quadratic yield criterion. The fracture criterion proposed is suc-

cessfully applied to predict the forming severity of the DP980 1.2t
Please cite this article as: N. Park et al., Anisotropic fracture forming

fracture strain, International Journal of Solids and Structures (2018), ht
teel sheet using experimental results by Park et al. (2017) and

he hydraulic bulge test results conducted in the present work.

omparison of the experimental results with the ones predicted

rom the fracture criterion clearly reveals that the fracture crite-

ion proposed has a considerable potential in describing the equiv-

lent plastic strain at the onset of fracture over a wide range of

tress states in consideration of the material anisotropy as well as

on - directionality of the equi - biaxial fracture strain. 

ppendix A. Generalization of anisotropic stress triaxiality 

ased on the Yld2004-18p criterion 

Barlat et al. (2005) proposed a generalization of the Hosford

riterion for a pressure - independent material under general stress

tates with two linear transformations: 

(
s αβ

)
= φ

(
˜ S ′ i , ̃  S ′′ j 

)
= 

1 , 3 ∑ 

i, j 

∣∣ ˜ S ′ i − ˜ S ′′ j 

∣∣m = 4 ̄σ m 

A (A.1)

here m is a constant coefficient mainly associated with the crys-

al structure and the subscripts α and β stand for x, y , and z . Here,

 reference frame ( x, y, z ) is assumed to be attached to the mate-

ial symmetry axes as shown in Fig. 1 . ˜ S ′ 
i 

and 

˜ S 
′′ 
j 

are the principal

alues of the two transformed stress deviator ˜ s ′ and ˜ s 
′′ 

which can

e written in a matrix form of 

˜  = Cs = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

˜ s xx 

˜ s yy 

˜ s zz 

˜ s yz 

˜ s xz 

˜ s xy 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 −c 12 −c 13 0 0 0 

−c 21 0 −c 23 0 0 0 

−c 31 −c 32 0 0 0 0 

0 0 0 c 44 0 0 

0 0 0 0 c 55 0 

0 0 0 0 0 c 66 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

s xx 

s yy 

s zz 

s yz 

s xz 

s xy 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(A.2)

ith the relevant symbols (prime and double prime) for each

ransformation: i.e., c ′ 
i j 

for ˜ s ′ and c 
′′ 
i j 

for ˜ s 
′′ 

, respectively. The trans-

ormation tensor can also apply on the principal stress tensor of

he Cauchy stress state as: 

˜  = Cs = CT ̃  σ = L ̃  σ ⇒ ̃  s = L ̃  σ = L T 

∗ ˜ σ p = L ∗ ˜ σ p (A.3)

ith 

 = 

1 

3 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

2 −1 −1 0 0 0 

−1 2 −1 0 0 0 

−1 −1 2 0 0 0 

0 0 0 3 0 0 

0 0 0 0 3 0 

0 0 0 0 0 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

 

∗ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
t x 2 + c 

)2 
( txy + sz ) 

2 
( txz − sy ) 

2 

( txy − sz ) 
2 

(
t y 2 + c 

)2 
( tyz + sx ) 

2 

( txz + sy ) 
2 

( tyz − sx ) 
2 

(
t z 2 + c 

)2 

( txy − sz ) ( txz + sy ) 
(
t y 2 + c 

)
( tyz − sx ) ( tyz + sx ) 

(
t z 2 + c 

)(
t x 2 + c 

)
( txz + sy ) ( txy + sz ) ( tyz − sx ) ( txz − sy ) 

(
t z 2 + c 

)(
t x 2 + c 

)
( txy − sz ) ( txy + sz ) 

(
t y 2 + c 

)
( txz − sy ) ( tyz + sx ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A.4)

here ˜ σ p = { σ1 σ2 σ3 } T , t =1 − cos θr , c = cos θr , s = sin θr , ˆ u = x ̂ i + y ̂j 

 z ̂ k is the unit vector for the rotation axis and θr is the rotation 

ngle as shown in Fig . 1 . 

ith the sub - functions of f, g, h, l, m , and n given in Eq. (2) whose

orms are rigorously derived by the tensor transformation of the

auchy stress tensor in aid of the Rodrigues’ rotation formula,
 limit diagram considering non-directionality of the equi-biaxial 

tps://doi.org/10.1016/j.ijsolstr.2018.01.009 

https://doi.org/10.1016/j.ijsolstr.2018.01.009


N. Park et al. / International Journal of Solids and Structures 0 0 0 (2018) 1–14 13 

ARTICLE IN PRESS 

JID: SAS [m5G; January 17, 2018;20:30 ] 

E⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P  

w  

fi

I

I

I

 

v{

w

Q  

S

I

I

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

I

 

c 31 −c 3

 c 32 ( − f

 

s

θ

w  

t  

L  

p  

p  

i  

t

φ

w  

t  

o  

d  

v  

t  

i  

s

η

′ cos

 

1  

1  

r  

i  

i  

a  

a  

s{

w

q. (A.2) can be rewritten as: 
 

 

 

 

 

 

 

 

 

 

 

˜ s xx 

˜ s yy 

˜ s zz 

˜ s yz 

˜ s xz 

˜ s xy 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

= 

σ1 − σ3 

3 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

c 12 h + ( c 13 − c 12 ) f + c 13 ( −g ) 
c 21 ( −h ) + ( c 21 − c 23 ) g + c 23 f 

( c 32 − c 31 ) h + c 31 g + c 32 ( − f ) 
3 c 44 l 
3 c 55 m 

3 c 66 n 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(A.5) 

The characteristic equation for ˜ s is defined as: 

 ( ̃  S k ) = 

˜ S 3 k − I 1 ̃  S 2 k − I 2 ̃  S k − I 3 = 0 (A.6)

here I 1 , I 2 , and I 3 are the first, second and third invariants de-

ned as: 

 1 = 

˜ s kk = 

˜ s xx + 

˜ s yy + 

˜ s zz 

3 

 2 = 

˜ s i j ̃  s ji 

2 

= 

1 

3 

I 2 1 − I 2 = 

˜ s xx ̃  s yy + 

˜ s yy ̃  s zz + 

˜ s zz ̃  s xx − ˜ s 2 xy − ˜ s 2 yz − ˜ s 2 zx 

 3 = 

˜ s i j ̃  s jk ̃  s kl 

3 

= 

2 

27 

I 3 1 −
1 

3 

I 1 I 2 + I 3 = 

˜ s xx ̃  s yy ̃  s zz + 2 ̃

 s xy ̃  s yz ̃  s zx − ˜ s xx ̃  s 2 yz 

− ˜ s yy ̃  s 2 zx − ˜ s zz ̃  s 2 xy (A.7) 

Solving the above characteristic equation gives the principal

alues of ˜ s in terms of its invariants: 

 

˜ S 1 
˜ S 2 
˜ S 3 

} 

= 

I 1 
3 

{ 

1 

1 

1 

} 

+ 2 

√ 

−Q 

⎧ ⎨ 

⎩ 

cos 
(

θA 

3 

)
cos 

(
θA −2 π

3 

)
cos 

(
θA +2 π

3 

)
⎫ ⎬ 

⎭ 

here 

 = 

3 I 2 − I 2 1 

9 

, R = 

2 I 3 1 − 9 I 1 I 2 + 27 I 3 

54 

, θA = cos −1 

( 

R √ 

−Q 

3 

) 

(A.8)

Because 0 ≤ θA ≤ π , the principal values are ordered, ˜ S 1 ≥ ˜ S 2 ≥
˜ 
 3 . Substituting (A.5) into (A.7) yields: 

 1 = 

σ1 − σ3 

3 

[
c 12 h + ( c 13 −c 12 ) f + c 13 ( −g ) + c 21 ( −h ) + ( c 21 −c 23 ) g 

+ c 23 f + c 31 g + ( c 31 − c 32 ) ( −h ) + c 32 ( − f ) 

]
(A.9) 

 2 = ( σ1 − σ3 ) 
2 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

[
c 12 h + ( c 13 −c 12 ) f+ c 13 ( −g ) 

3 

][
c 21 ( −h ) + ( c 21 −c 23 ) g+ c 13 f 

3 

]
+ 

[
c 21 ( −h ) + ( c 21 −c 23 ) g+ c 13 f 

3 

][
c 31 g+ ( c 31 −c 32 ) ( −h ) + c 32 ( − f ) 

3 

]
+ 

[
c 31 g+ ( c 31 −c 32 ) ( −h ) + c 32 ( − f ) 

3 

][
c 12 h + ( c 13 −c 12 ) f+ c 13 ( −g ) 

3 

]
− c 2 66 n 

2 − c 2 44 l 
2 − c 2 55 m 

2 

(A.10) 

 3 = ( σ1 − σ3 ) 
3 

⎧ ⎨ 

⎩ 

[
c 12 h + ( c 13 −c 12 ) f+ c 13 ( −g ) 

3 

][
c 21 ( −h ) + ( c 21 −c 23 ) g+ c 13 f 

3 

][
c 31 g+ (

+2 c 2 66 n 

2 c 2 44 l 
2 c 2 55 m 

2 −
[

c 12 h + ( c 13 −c 12 ) f+ c 13 ( −g ) 
3 

]
c 2 44 l 

2 

−
[

c 21 ( −h ) + ( c 21 −c 23 ) g+ c 13 f 
3 

]
c 2 55 m 

2 −
[

c 31 g+ ( c 31 −c 32 ) ( −h ) +
3 

From Eqs. (A .8) –( A .11 ), the sub - quantities of Q, R , and θA can be

imply expressed as follows: 

A = 

σm 

σ̄A 

= 

σ1 + σ2 + σ3 

3 | σ1 − σ3 | 
(

1 
4 

) 1 
m 

{
1 , 3 ∑ 

i, j 

∣∣2 

√ −A 

′ cos 
[

θ ′ 
A +2 π( i −2 ) 

3 

]
− 2 

√ −A 

′
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2 ) ( −h ) + c 32 ( − f ) 
3 

]
 ) 
]
c 2 66 n 

2 

⎫ ⎬ 

⎭ 

(A.11) 

Q = 

3 I 2 − I 2 1 

9 

= ( σ1 − σ3 ) 
2 A 

R = 

2 I 3 1 − 9 I 1 I 2 + 27 I 3 

54 

= ( σ1 − σ3 ) 
3 B 

A = cos −1 

( 

R √ 

−Q 

3 

) 

= cos −1 

[ 

( σ1 − σ3 ) 
3 B √ 

−( σ1 − σ3 ) 
6 A 

3 

] 

= cos −1 

(
B √ −A 

3 

)
(A.12) 

here A and B are the non - dimensional quantities associated with

he normalized components of the rotation axis ˆ u = ( x, y, z ) , the

ode parameter, and the rotation angle θ r . With the transformation

rocedure introduced, the Yld 2004 - 18p criterion, defined by the

rincipal values of the transformed stress deviators of ˜ s ′ and ˜ s ′′ ,
s expressed in terms of the principal stresses of the Cauchy stress

ensor accordingly: 

= | σ1 − σ3 | m 

1 , 3 ∑ 

i, j 

∣∣∣∣2 

√ 

−A 

′ cos 

[
θ ′ 

A + 2 π( i − 2 ) 

3 

]

− 2 

√ 

−A 

′′ cos 

[
θ ′′ 

A + 2 π( j−2 ) 

3 

]
+ 

B 

′ −B 

′′ 
3 

∣∣∣∣
m 

=4 ̄σ m 

A (A.13) 

ith the symbols (prime and double prime) for each transforma-

ion of c ′ 
i j 

and c 
′′ 
i j 

. It is worth to mention that the equivalent stress

f the Yld2004 - 18p criterion is unequivocally associated with a

iameter of the Mohr’s circle. This is sound from the point of

iew that the Yld2004 - 18p criterion starts from a framework of

he maximum shear stress theory. The anisotropic stress triaxial-

ty based on the Yld2004 - 18p criterion is defined by the principal

tresses of the Cauchy stress tensor accordingly: 

 

[
θ ′′ 

A +2 π( j−2 ) 
3 

]
+ 

B ′ −B ′′ 
3 

∣∣m 

} 1 
m 

= 

σ1 + σ2 + σ3 

3 | σ1 − σ3 | A 

(A.14) 

Since the Yld91 criterion is a particular case of the Yld2004 -

8p criterion, the anisotropic stress triaxiality based on Yld2004 -

8p criterion can reduce to the one defined by the Yld91 crite-

ion particularly when the two linear transformations are equal:

.e. C 

′ = C 

′ ′ or L ′ = L ′ ′ . The principal stresses are uniquely defined

n terms of the anisotropic stress triaxiality, the Lode parameter,

nd the equivalent stress based on the Yld2004 - 18p criterion by

pplying the same analogy for the characterization of the stress

tates discussed in Section 2.2 : 
 

σ1 

σ2 

σ3 

} 

= 

{ 

σm 

+ σ ′ 
1 

σm 

+ σ ′ 
2 

σm 

+ σ ′ 
3 

} 

= 

⎧ ⎨ 

⎩ 

ηA + 

3 −L P 
6 A 

ηA + 

2 L P 
6 A 

ηA − 3+ L P 
6 A 

⎫ ⎬ 

⎭ 

σ̄A 

here 
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(
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) 1 
m 

{ 

1 , 3 ∑ 

i, j 

∣∣∣∣2 

√ 

−A 

′ cos 

[
θ ′ 

A + 2 π( i − 2 ) 

3 

]

− 2 

√ 

−A 
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[
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A + 2 π( j − 2 ) 
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]
+ 

B 

′ − B 

′′ 
3 

∣∣∣∣
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} 1 
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