MANUSCRIPT PREPARATION FOR IEEE ACCESS

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

System Design Perspective for Human-Level Agents
Using Deep Reinforcement Learning: A Survey

Ngoc Duy Nguyen, Thanh Nguyen, Saeid Nahavandi, Senior Member, IEEE

Abstract—Reinforcement learning (RL) has distinguished itself
as a prominent learning method to augment the efficacy of
autonomous systems. Recent advances in deep learning studies
have complemented existing RL methods and led to a crucial
breakthrough in the effort of applying RL to automation and
robotics. Artificial agents based on deep RL can take selective and
intelligent actions comparable to those of a human to maximize
the feedback reward from the interactive environment. In this
paper, we survey recent developments in the literature regarding
deep RL methods for building human-level agents. As a result,
prominent studies that involve modeling every aspect of a human-
level agent will be examined. We also provide an overview of
constructing a framework for prospective autonomous systems.
Moreover, various toolkits and frameworks are suggested to
facilitate the development of deep RL methods. Finally, we open
a discussion that potentially raises a range of future research
directions in deep RL.

Index Terms—deep learning, human-level agents, reinforce-
ment learning, robotics, survey, system design.

I. INTRODUCTION

Y mimicking human behaviors, researchers have adopted

a learning method that has a high impact on foundations
of artificial intelligence study. This approach, called reinforce-
ment learning (RL), focuses on examining actions that gain a
maximal value of long-term reward from the environment [1].
Additionally, RL utilizes a trial-and-error learning process to
achieve its goals. This unique feature has been confirmed to be
an advanced approach to building a human-level agent [2]. For
instance, in 1992, Mahadevan and Connell built a robot based
on RL named OBELIX that learned how to push boxes [3].
In 1996, the Sarcos humanoid DB was constructed by Schaal
to learn the pole-balancing task [4]. Lin et al. proposed an
RL method to control dynamic walking of a robot without
prior knowledge of the environment [5]. Recently, Miielling
et al. employed RL to train a robot to play table tennis [6]
and Riedmiller et al. applied a batch RL to prepare crucial
skills for a soccer-playing robot [7].

Fig. 1 illustrates a traditional RL problem, a pole-balancing
task. The goal of this task is to exert a reasonable amount
of force to the cart along the track so that it balances the
pole from falling. Each state of the system involves dynamics
information such as the position, velocity of the cart as well
as angle and angular velocity of the pole. For every micro
time-step #, there are two possible actions impacting the cart:

Ngoc Duy Nguyen, Thanh Nguyen, and Saeid Nahavandi are
with the Institute for Intelligent Systems Research and Innovation,
Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia (e-
mails: duy.nguyen@deakin.edu.au, thanh.nguyen@deakin.edu.au, and
saeid.nahavandi @deakin.edu.au).

A
Fig. 1. A pole-balancing task based on RL.

moving to the right and moving to the left. At the same time,
we may give —1 as a reward if the pole falls and O in the
other cases.

Previous applications of RL can be categorized into three
independent research fields until the reconciliation to modern
RL in the late 1980s [1]. The first research area was rooted
in the psychology and neuroscience of animal learning by
conducting a series of trial-and-error experiences [8], [9]. The
second study focused on the optimal control problem. Richard
Bellman proposed a method to solve this issue by introducing
the Bellman equation and the discrete model of optimal control
problem, named the Markovian Decision Processes (MDPs)
[10]. At that time, dynamic programming identified itself as
the only way to solve the curse of dimensionality, where com-
putations increase dramatically with the number of variables.
Last but not least, the third study concerns temporal-difference
learning, which originated the well-known Q-learning method.
This method has a great impact on establishing a standard
approach towards RL. In summary, all of these concepts
together contributed to building the fundamental elements
of contemporary RL. Although RL has become a common
method for building an autonomous agent, the shortcomings
of traditional learning approaches restrain it from dealing
with complex problems. Recent integrations of deep learning
methods with RL have improved the performance of existing
RL methods considerably.

Deep learning is a subset of machine learning that effec-
tively employs neural networks to learn on multiple levels,
each corresponding with different levels of abstraction [11].
The recent success of various applications shows that deep
learning outperforms traditional approaches in terms of accu-
racy and efficiency. This feat involves the first-time usage of
deep learning and Convolutional Neural Network (CNN) in the
ImageNet competition that ultimately beat the record of tradi-

2169-3536 () 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MANUSCRIPT PREPARATION FOR IEEE ACCESS

Deep learning timeline 1943 1969 1990s 2000s

Deep reinforcement learning
Deep learning

Convolutional neural networks
Recurrent neural networks

Perceptrons

Artificial neural networks
Actor-critic architecture, Q-learning
Temporal-difference learning

Optimal control, dynamic programming
Bellman equation, MDPs

First concept of reinforcement learning

Trial-and-error learning

Reinforcement learning timeline 1911 1950s 1960s 1980s 2015

Fig. 2. Milestones of deep reinforcement learning.

tional approaches in computer vision [12], [13]. Lately, deep
learning has been applied widely to various research fields
including image recognition, video classification, audiograms,
language processing, video games, and robotics [14]-[18].

Fig. 2 summarizes the milestones of deep RL. Before
the advent of deep learning, Monte Carlo and Q-learning
were two fundamental methods used in RL [19]. However,
these methods restrict RL to solving complex problems due
to the inherent constraints of computer memory space. By
addressing an approximate approach, deep learning solves
these intractable problems effectively. In fact, Mnih et al.
incorporated deep learning with RL to create a human-level
agent that is virtually unbeatable in a series of 49 video Atari
games [20], [21]. To extend the success of deep RL, Google’s
DeepMind subsidiary created AlphaGo, a program that beat
one of the best professional Go players of all time, South
Korea’s Lee Sadol, in 2016 [22]. At the time of this paper,
AlphaGo even leads 2-0 against the highest-ranking Go player,
Ke Jie from China. Additionally, Google, Uber, and Tesla
are hastening the research on deep RL to design the next
generation of intelligent self-driving cars.

In summary, this research focuses on examining deep RL
approaches that have a significant impact on building dis-
tinct aspects of human-level agents. Our work brings up the
following key contributions. First, we provide an overview
of state-of-the-art deep RL achievements in recent years.
Under the system design perspective, we present not only the
general of RL methodology but also a concise explanation of
modern deep RL and its applications. Second, we separate
contemporary deep RL studies into different categories that
affect various aspects of modeling a human-level agent. The
latest toolkits and framework libraries that can be used to
develop deep RL approaches are introduced. Third, we design
a high-level system architecture to describe the usage of recent
breakthroughs in constructing a human-level agent. Finally, we
open a discussion related to deep RL and then inherently raise
different directions of future studies.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

II. PRELIMINARY

Interactive learning attracts considerable attention because
of its analogy to human learning behaviors. As a result, inter-
active RL establishes a comprehensive learning framework for
the advance of human-level agents and autonomous systems.
Before examining key breakthroughs of contemporary RL, we
review fundamental concepts of RL as well as the related
learning schemes. Specifically, subsection II-A summarizes
the concept of RL and its target problem domain, i.e., MDP.
Subsection II-B describes the Bellman equation, which is the
core of all derivations in RL. Finally, subsection II-C and
subsection II-D outline two fundamental learning methods in
RL.

A. Reinforcement learning and Markov decision process

RL is a tabula rasa learning, interacting with the stochastic
environment to earn the best long-term reward, i.e., RL seeks
an optimal policy 7* that is a mapping function I';~ from each
possible state s of the agent to its selective action a so as to
maximize accrued long-term reward r. Intuitively, I'; is a set
of probabilities from every transition s to s’ by following a
under the policy 7 as below:

I, ={Pr(s == s" | 7): Va € A (s)}, (1)

where A (s) is the action space of s under the policy .

The agent often interacts with the environment in a discrete
time-step manner. For example, in each time-step ¢ (t =
0,1,2,...), the agent observes a state s; of the environment
and selects an action a; from its action space A(s;). The agent
then obtains the reward r,4; from the environment. Finally,
the current state of the environment turns to s;y;. As a result,
RL produces the sequence of states, actions, and rewards, re-
spectively: Sg, Go, 71,51, A1, 72, -y Sty Gty Ti41, St41, ---- 1f the
number of time steps is finite, like a play of a game, we
call the RL problem an episodic task. Fig. 3 summarizes
the relationships between these measures. Mathematically, the
goal of RL is to maximize the discounted return R, at each
time-step t, as described in [1]:

R = Z'VirtJrilea)
i=0

where v denotes the discounted rate and 0 < v < 1.

A state signal has a Markov property if every next state s;;
and next reward ;41 depends only on the current state s; and
its accompanying action a,, regardless of the history. An RL
problem is an MDP if its state signal has the Markov property.
For example, the pole-balancing task introduced in section I is
an MDP because the state of the task, including position and
velocity of the cart as well as the angle and angular velocity
of the pole, is sufficient to foretell the future operations of the
system. In summary, MDP is the crucial problem domain in
RL.

B. The Bellman equation

To describe the RL problem in a mathematical way, we
review the concept of value function. Value function is a

2169-3536 () 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MANUSCRIPT PREPARATION FOR IEEE ACCESS

Environment
Agent
. 2. Action a,
Action space > S, > St
1. State s,
Lo 4. State S;4q
Learning K
—— < 3. Reward 7,

Fig. 3. The relationship between the agent and the environment in RL.

function of state that is used to evaluate a state or a specific
action from a state. From (2), we have the state-value function
under the policy 7 as follows:

Vi(s)=Ee Zwirﬂiﬂ S =8,Tp, 3)
i=0
where Ee terms an expected function. Similar to (3), the

action-value function expresses the expected return from a
state s by following an action a under the policy 7 as below:

o0

Qr(s,a)=Ee ny"’rtﬂﬂ sg=s,a;=a,mp. (4)
i=0

Based on (1), (3), and (4), we can infer the relationship
between the current state s with its next state s’ as described
in the following equations:

Va(s) = Y Pr(s = ' [m) (Rl +9Va(s)))

Qr(s,a) = ZPr(s 5" | a,) (ﬁzsl +’yVﬂ(s')) , (6)

where R, indicates the expected reward from s to s’ by
following a. Equations (5) and (6) denote Bellman equations
for V. and @, respectively. Therefore, the RL problem
becomes finding an optimal policy 7* such that:

Vs (8) = max V. (s)
Qr+(s,a) = max Qr(s,a),

for every state s and action a. Therefore, the Bellman equa-
tions for V' and @ under the optimal policy 7* are rewritten
as below [1]:

V*(s) = mngPr(s s 5') (EZS, + vV*(s')) ,

Q*(s,a) = ZPr(s ') (RZS/ + 7y max Q* (s, a’)) 7

In summary, Bellman equation is the core component of
derivative learning methods in RL. In the two subsequent
subsections, we review two fundamental learning methods in
RL: Monte Carlo and Q-learning.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

C. Monte Carlo Method

Monte Carlo (MC) method is learning by rolling out expe-
riences (samples) of the task and averaging the returns from
these samples to approximate the value functions. Asymptoti-
cally, these average values converge to the value function and
therefore can determine the optimal policy for the task. For
instance, to approximate the value of a state s under the policy
7, Vz(s), we roll out a series of episodes passing through
s: eq,e2,e€3,.... This action yields a series of corresponding
return values from s: rq, 72,73, By averaging all the return
values, we can approximate the state-value function Vy(s).
The benefit of using MC learning is that it does not require
a complete knowledge of the environment’s dynamics and
therefore can be used in both on-line and off-line learning
efficiently. On-line learning is learning by interacting directly
with the environment whereas off-line learning is learning
in the simulated environment. Similarly, we can use the MC
method to estimate the action-value function Q, (s, a).

To find the optimal policy 7*, it is necessary to process
through a policy iteration that involves two interleaved pro-
cesses: policy evaluation (PE) and policy improvement (PI).
PE is the process of estimating the value function, while PI is
the process of seeking the optimal policy. For instance, given
a policy 7y, we use the MC method to estimate (),. We then
find a policy 7, which yields @), so that @), is better than
Qry (Qr, > Qr,)- This process is iterative until we find the
optimal solution 77* and Q*:

(o <X Qry) = (M1 X Qp,) — ... = (7" =< Q).

One of the naive approaches to achieving the PI is the usage
of exploration. To yield a better policy «’ from m, we select
an arbitrary state s in 7 and “explore” an action o’ from s so
that a’ € A, (s), we then estimate (s, a’) and compare it to
Q(s,a). If Q(s,a’) > Q(s,a), we form the new policy 7’ by
adding o’ into 7. Conceptually, the process of integrating the
exploration in the learning policy is called on-policy control.
One of the common on-policy approaches used in PI is e-
greedy. The probability of selecting an action a from a state
s in e-greedy is calculated using the following formula:

Pr(als) = Poetma o= S Q) (8)
< otherwise

AG)D
where |A(s)| denotes number of possible actions from s and
0<e<Ll.

As opposed to on-policy control, off-policy control separates
the exploration from the learning policy by using a different
policy, called behavior policy. Behavior policy 7’ is used to
generate samples and explore the action space while the learn-
ing policy is free to select a greedy action in a deterministic
manner. However, to ensure the convergence of the algorithm,
7’ is selected so that every action taken in 7 must occur at
least once in 7’. Off-policy MC method inspired the well-
known artificial computer program, AlphaGo, which shall be
discussed in section III. Fig. 4 summarizes the differences
between on-policy control and off-policy control in the MC
method.

2169-3536 () 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MANUSCRIPT PREPARATION FOR IEEE ACCESS

Monte Carlo learning ——————»

On-policy /\ Off-policy

Initialize Initialize
* Q(s,a)forallsanda e Q(s,a)forall s and a
« Assign m any policy using e-greedy « Assign m any policy
« Select ' satisfied convergent condition

! I

Loop until T =~ 7*

Loop until T ~ 7*

Generate an episode e Generate an episode eusing
using the policy ™ the policy 7’

! !

For each (s,a) ine

— —>

For each (s, a) in e such that
« Obtain return value of (s, @) 3s":Pr (s Ss 7'[) >0
* Update Q(s, a) by averaging « Obtain return value of (s, a)
returns of (s, a) « Update Q(s,a) by averaging
l returns of (s, a)

v

Update 7 from Q-value using a

Update 7 using €-greedy from
Q-value asin (8) deterministic strategy

I I

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

TD leaning ————»

Sarsa /¢\ Q-learning

I I

Initialize Initialize
¢ Q(s,a)forall sand a * Q(s,a)forallsand a
« Assign any policy using e-greedy * Assign any policy
l » Select ' any policy using e-greedy

For each episode e For each episode e

« Assign starting state s
* Select a from s using ™

v v

For each step in e For each stepin e
« Obtain return value of (s, a) + Select a from s using 7', obtain
« Move to s’, select a’ from s’ return value of (s, a)

—> —>» Assign starting state s

using ™ + Movetos’
« Update Q(s, a) using (10) » Update Q(s, @) using (11)
e s=s',a=ad e s=5¢'
Loop until the end of e Loop until the end of e
v v

Update 7 using €-greedy from Update m from @-value using a
Q-value as in (8) deterministic strategy

Loop until T =~ *

Loop until T ~ "

] }

Fig. 4. An example of using on-policy versus off-policy control in MC
learning.

D. Q-learning

Before discussing the concept of Q-learning, we briefly
summarize the broader set of learning, femporal-difference
(TD) learning. Like MC method, TD learning does not require
a complete knowledge of the environment but rather derives
its information from experiences. However, while MC needs
to wait to finish the episode before updating, TD waits only
until the next time-step ¢ + 1 to update the estimated value
function of current time ¢. The following equation illustrates
an update rule for the simplest case of TD (originated from
5)):

V(st) © aV(s) + Blrisr + 7V (se41)], ©)

where « and 3 are parameters such that 0 < o, 5 < 1, 8 # 0,
and o + f = 1; © denotes the update rule for V(s;). The
update rule (9) is used to approximate the value function V'(s).

Similar to the MC method, two control approaches are used
to obtain the optimal policy: on-policy TD control known
as Sarsa and off-policy TD control known as Q-learning. In
Sarsa, instead of estimating the state-value function as in (9),
we estimate the action-value function by using the following
rule:

Q(st,at) © aQ(s¢, ar) + Blrivr +vQ(St41,ae41)]. (10)

Sarsa uses (10) to estimate the Q-value function (PE) and uses
e-greedy to improve the policy (PI).

As opposed to Sarsa, Q-learning uses the optimal Bellman
equation (7) to approximate Q* directly. This approach dra-
matically shortens the convergence time of the algorithm to

} I

Fig. 5. An example of using Sarsa versus Q-learning in TD learning.

find the optimal solution. In summary, Q-learning leverages
the following update rule to approximate Q*:

Q(s¢,a:) © aQ(st,at) + Blrig1 + VmaaXQ(Swh a)l. (11)

Fig. 5 illustrates the differences between Sarsa and Q-learning
in the TD learning method.

The last subset method of the TD approaches reviewed in
this section is the actor-critic (AC) method [23]. AC separates
the policy m from the value function by constructing two
independent memory structures. One structure (actor) selects
actions from 7 and feeds them into another structure (critic)
for evaluation. The critic uses the following error measurement
formula to decide the frequency of using an action a;:

A = (5[7”t+1 + ’YV(SH-I)} - 5/V(St)
Ay >0 — [Pr(s; 5 si401) ®A]
Ay <0 — [Pr(s; v si41) © |A]

where 0 and ¢’ are adjustment parameters; a & b denotes
adding to a a quantity that is proportional to b; and a & b
denotes subtracting from a a quantity that is proportional to
b. The benefit of using AC structure is the ability to deal with
continuous problem domains that allow to learn a task in an
asynchronous manner. In summary, the concept of RL and its
core element, Bellman equation, have been reviewed as well
as two fundamental learning approaches in RL. In the next
section, a survey of recent breakthroughs will be carried out,
which describe how to combine deep learning with traditional
RL methods such as MC or Q-learning to create an agent with
human-level skills.

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MANUSCRIPT PREPARATION FOR IEEE ACCESS

III. LITERATURE REVIEW

Although RL has a significant impact on building a general
framework for autonomous systems, traditional RL methods
still have shortcomings that need to be mitigated [20], [24].

First, RL methods only work efficiently on discrete and
finite MDPs where the number of states is limited, i.e., it
is infeasible to implement RL in practical systems that deal
with a mix of complicated tasks and chaotic environments.
These practical problems are usually non-Markov, continuous,
and have an unbounded action space. Second, RL requires
a comprehensive knowledge of the observed environment in
order to analyze the reward signal function. This collected
information directly concerns the learning process of the RL
regarding agility and efficiency. Finally, RL is known to be
unstable when using a nonlinear approximator to estimate the
value functions. One of the main reasons for this instability
is the correlation between the updates of the value function
using the Bellman equation. As a result, a minor update of
the value function may enormously impact the output policy
and thus make the RL problem divergent.

A. Deep reinforcement learning

In 2015, Mnih et al. [20] from Google’s Deepmind ad-
vanced modern RL by introducing the concept of Deep Q-
Network (DQN). DQN connects the dots between deep neural
networks with RL by subduing the intractable problems in
traditional RL methods. Particularly, DQN leverages CNNs to
analyze input images and use these CNNs to approximate Q-
value function. In other words, the goal of DQN is to minimize
the loss function of a CNN as below:

target 2

"+ ymaxQ(s',d'|0) — Q(s, alf)
a’ N——

output

L(9) = Ee 12)

where 6 and 60’ represent the parameters of the current
estimation Q-network and the target network, respectively.
The target network is used to estimate the Q-value in the
next state to reduce the correlations between Q-value updates
and thus make the Q-network output’s distribution stationary.
To make the Q-learning further stable, the authors introduce
the concept of experience replay, i.e., all experiences in the
form e = (s,a,r,s’) are stored in the memory and sampled
uniformly in a random manner. The loss function (12) has a
similar form to the Q-learning update rule (10) and thus can be
used to estimate directly Q* as well as the optimal policy 7*.
As aresult, DQN creates a human-level agent that outperforms
the best RL method so far in the test series of 49 classic Atari
games [21], [25]. Fig. 6 summarizes the system architecture
used in DQN.

The second feat of deep RL is noteworthy by the historic
triumph of AlphaGo versus the best professional Go player,
China’s Ke Jie, in May 2017. Prior to AlphaGo’s victory, Deep
Blue developed by IBM was the only computer program to
defeat Garry Kasparov in the World Chess Champion in 1997.
The underlying algorithm behind Deep Blue is based on a
traditional search tree and a robust evaluation function [26].
However, Go is more complex than Chess because Go’s search

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

Generate an episode in emulator
Using L(6) to train Q-network

e = {St,ar, ¢, Se41}

{ew €z, .., er}

Q-network Q(6)

Experience replay memory Output action layer

Fully-connected layer
Update

Q<Q

every C steps

Target network Q'(8")

Convolutional layers

Preprocessed image

Fig. 6. The system architecture used in DQN.

tree space is multiple times that of Chess. Therefore, traversing
all possible cases of Go’s search tree to find the best play is
infeasible. The mechanism underlying AlphaGo’s success was
initially a trade secret.

In 2016, Google Deepmind decided to reveal the secret
recipe behind AlphaGo [22]. AlphaGo employs the Monte
Carlo Tree Search algorithm (MCTS) [27]-[29] and deep
learning with a CNN to estimate the best move. MCTS
simulates an immense number of episodes to estimate the
optimal value of each node in the game search tree. The
training process of AlphaGo involves two separate policy
networks p,, ps and a value network vg. At first, the MC
method generates the fast policy p,. Then, the second network
ps 1s trained under the supervision of professional human
players. Afterward, ps plays itself to improve the performance
and is used to train vg. Finally, the entire algorithm is based
on a combination of MCTSs, with the value function of the
leaf node s; being as follows [22]:

V(s1) = Avg(s1) + (1 = Nz (s1),

where A denotes weight parameter and z, (s;) is the simulation
output using p, from s;.

The idea of play-self originates from the success of TD-
Gammon created by IBM in 1992 [30], [31]. TD-Gammon at
that time was the only program that was skilled enough to play
backgammon. However, by applying deep learning with RL,
AlphaGo achieves superhuman level in the Al game challenge.

B. Multitask deep reinforcement learning

One of the common defects of a neural network is that it is
able to learn at most one task at a time. This problem, known
as catastrophic forgetting, especially concerns continual learn-
ing of neural networks and RL [32], [33]. Particularly, this
phenomenon occurs in the continuing learning process when
task B is trained after task A. The knowledge of task A is
instantly erased to acquire new information from task B.

A direct solution for this problem is to select a smart
configuration of the neural network with a regularization

2169-3536 () 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MANUSCRIPT PREPARATION FOR IEEE ACCESS

Phase 1 Phase 2

Learning module for Task A Learning module for Task A and Task B

- ~
.
e
e .
- .
g "~

——
e,
\

Task A Task A Task B

Trivial factor
of Task A

Critical factor
of Task A

Trivial factor of Task A is
trained to learn Task B

Fig. 7. Training a network to learn multitask using EWC idea.

strategy [34]-[36] or increase “progressively” the capacity of
the network so as to learn multiple tasks at once [37], [38].
Howeyver, these methods limit the number of tasks the network
can learn at the same time.

Another solution is using a process of policy distillation or
knowledge transfer [39]-[41]. This strategy learns each prob-
lem domain individually and afterward transfers all the knowl-
edge to a single multitask network. However, this solution
encounters a side effect known as negative transfer. Negative
transfer is the phenomenon when the network performs well
in each problem domain but fails to operate in the multitask
scenario. In 2017, Yin and Pan [41] designed a multitask pol-
icy architecture, Hierarchical Prioritized Experience Replay
(HPER), which utilizes high-level features of a task to subdue
the effect of negative transfer. To reduce the enormous data
when attaining knowledge from each problem domain, HPER
selects only important information from the experience replay
memory.

To further learn more tasks with minimal computations
and without changing the network configuration, Google’s
Deepmind [42] again proposed the algorithm, Elastic Weight
Consolidation (EWC), which emulates the concept of synaptic
consolidation in neuroscience [43]. EWC utilizes the property
of a neural network that: given a task A, there is always a set
of configurations of the network, p, which can yield the same
output performance [44]. Therefore, there exists a solution of
task B, p}, which is close to the solution of task A, p.
When learning task B, the goal is to restrict the important
parameters of task A inside the low error region of task A,
centered by p%. This fact turns out to minimize the following
loss function [42]:

(1]

_ p \
(1) =Ep () + D 5Fi(ui —)",

where p expresses the importance between task A and task
B, Zp(u) is the loss function for task B only, ¢ denotes
each parameter, and F; is a Fisher information matrix that
selectively finds important parameters in task A. By using
DQN, EWC succeeds in training an agent to learn multiple

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

6

Atari games in the RL context. Fig. 7 summarizes the basic
idea of EWC.

C. Multiagent deep reinforcement learning

Deep RL has a clear value in an extensive array of mul-
tiagent systems (MASs) such as a soccer team of robots,
multiplayer online games, cooperative robots in the production
chain, and autonomous military systems like unmanned aerial
vehicles, surveillance, and spacecraft [7], [45], [46].

In MASs, each agent not only learns to operate indepen-
dently but also cooperates with others to achieve the best
joint reward. The direct strategy is to apply independent Q-
learning in each agent and consider other agents as a part of the
environment [47]. However, this approach limits the number of
agents because it is computationally expensive to train every
agent in the system. In 2016, Kraemer and Banerjee [48]
proposed a centralized approach, where a group of agents can
be guided at the same time by using a centralized algorithm
via an open communication channel. After the training, the
agents are allowed to communicate over a limited bandwidth
channel (to preserve energy), and thus can operate freely
in a decentralized manner. Afterward, Foerster et al. [49]
extended the centralized approach by developing two novel
control schemes for an MAS. Instead of using an independent
Q-learning, each agent needs to learn two RL problems at
the same time: a goal-directed problem and a communication
problem. In the goal-directed task, agents are required to
select an action that may yield a high potential of long-
term reward in the partially observed environment. At the
same time, they must decide upon a suitable communication
action to cooperate with each other in the MAS. However, this
approach, known as Reinforced Inter-Agent Learning (RIAL),
only shares parameters among agents to utilize centralized
training. An improved version of RIAL, Differentiable Inter-
Agent Learning (DIAL), enables the feedback from a com-
munication channel by sending nonverbal cues to indicate the
level of interest. In this way, DIAL ultimately trains the MAS
in a centralized way. However, RIAL and DIAL only work in
a discrete communication channel.

As opposed to RIAL and DIAL, Sukhbaatar and Fergus [50]
introduced a novel model named Communication Neural Net
(CommNet) that was used to support agents to cooperate via a
continuous communication channel. The authors modeled each
agent as a deep feed-forward neural network, which can access
a shared communication channel C. In operation, each agent
receives a summed transmission data (continuous vector) from
other agents via C. In this way, CommNet becomes a general
framework that can combine with an RL method to train a
set of agents to communicate in a backpropagation manner.
The model is shown to be versatile and can be used with
any number and any kind of agents in the partially observed
environment.

Another notable work regarding multiagent RL was pre-
sented in [51]. In that paper, He et al. approached multiagent
problems from a different perspective. Instead of constructing
a direct communication model like CommNet, the authors
modeled an opponent agent used to compete in the joint

2169-3536 () 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MANUSCRIPT PREPARATION FOR IEEE ACCESS

Environment
Policy Value function
Error
measurement »
Actor Critic
Action State Reward

Fig. 8. The AC architecture for asynchronous training process to reduce DQN
training time.

reward. In this way, the effectiveness of the training agent
can be increased without knowledge of the problem domain.

D. Asynchronous deep reinforcement learning

Another issue of DQN is the lengthy training period. For
instance, training an Atari game may require 14-15 days
using a single GPU with DQN. In 2015, Nair et al. [52]
introduced the General Reinforcement Learning Architecture
(Gorila) framework that enables DQN to operate in a dis-
tributed manner. Specifically, Gorila uses the AC architecture
(Fig. 8) as mentioned in subsection II-D to facilitate the
training process asynchronously. In Gorila, there are two main
components: learning processes and central parameter servers.
In each learning process, an actor operates in its own copy
model of the environment, and a critic uses the experience
replay memory to compute the loss function L(#) (12). The
central parameter server uses distributed gradients L;(6) from
each learning process 7 to update its model replica. Finally, the
learning process receives updated parameters from the central
server in a fixed time interval. The simulation showed that a
6-day training with 100 parallel actors in Gorila surpasses 12—
14 days of training with a single GPU in 41 out of 49 games
in the Atari domain. Although Gorila provides a significant
improvement in the training process, it requires significant
resource allocation.

Recently, Schaul et al. [53] introduced a simple strategy
to improve the learning process. The authors suggested a
prioritized scheme to promote critical transitions from the
experience replay memory, i.e., meaningful experiences are
sampled more frequently than trivial ones. Additionally, Wang
et al. [54] used the prioritized experience replay to propose
a duel network that calculates state and state-action function
in parallel. This scheme has proven to provide better policy
evaluation compared to DQN in the Atari domain.

In 2016, Mnih et al. [55] proposed a lightweight framework
for asynchronous deep RL methods, named Asynchronous
Advantage Actor-Critic (A3C). A3C surpasses the prioritized
experience replay method and the dual network scheme re-
garding reduction of training time. As opposed to Gorila,
A3C scheme allows concurrent learning in a single multi-core
CPU and hence preserves allocated resources. Specifically,
A3C enables agents to work in various environments at the
same time by parallelizing multiple actors-learners in the AC

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

architecture. Finally, A3C expresses a tendency to select an
action via an advantage function that is the error measurement
between the model’s prediction quality of the action taken with
its actual value. A3C also creates the decorrelation between
experiences and eventually makes the learning outcome stable
and convergent. The simulation showed that A3C can train an
agent to learn Atari Breakout in less than 12 hours compared
to 3—4 days of using DQN alone.

E. Other limitations of DON and recent solutions

Non-Markov model — DQN can solve MDP problems under
the assumption that the next state s’ = s;,1 replies solely on
the current state s; and its corresponding action a; regardless
of the history. This assumption restricts the generality of DQN.
Therefore, it is intractable to solve a complex game when the
next state not only depends on the current state but also upon a
history of states, seen in games such as Pong or Double Dunk.
These games are undoubtedly Partially Observable MDPs
(POMDPs). In 2015, Hausknecht and Stone [56] introduced
the Deep Recurrent Q-Network (DRQN) by adding a recurrent
layer to DQN. Although DRQN is running on one frame at
each time step, it can estimate the information requirements
underlying the system states through time. Therefore, DRQN
extends DQN by estimating the number of history frames
needed for POMDP games. More recently, Sorokin et al. [57]
extended DRQN by integrating “attention” mechanisms into
DRQN in order to highlight important parts in the learning
process. This approach is called Deep Attention Recurrent
O-Network (DARQN). DARQN was shown to promote high
performance on the game Seaquest when compared against
results of DQN and DRQN.

Continuous RL problem — DQN cannot be applied to a
problem with continuous action space because it relies chiefly
on the Q-learning mechanism. In 2015, Lillicrap et al. [58]
employed the AC architecture to present an off-policy al-
gorithm that can operate in a continuous action space. This
approach, called Deep Deterministic Policy Gradient (DDPG),
uses a parameterized actor function to map states to actions
deterministically, while keeping DQN learning on the critic
side. The mechanism is applied successfully to a range of
continuous RL problems such as the pole-balancing task,
legged locomotion, skillful manipulation, and car driving.

Overfitting — Overfitting has been shown to occur in DQN.
In 2015, Van Hasselt et al. [59] suggested a double DQN
scheme, which surpassed the performance of DQN in the Atari
domain. Double DQN separates the selection from evaluation,
i.e., it learns two value functions at the same time and hence
results in two sets of parameters (f; and 65), where 6
specifies greedy policy and 05 determines the value function.
In summary, the target function can be formulated as [59]:

Ty = rip1 +7Q(Se41, argmax Q(sey1,a | 01) | 62).

More recently, Mnih et al. [55] introduced the A3C mechanism
(subsection III-D) that even outperforms double DQN in terms
of training time and stability.

Intrinsic motivation — Another challenge in RL is working
with a complicated environment where feedback is sparse.

2169-3536 () 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

MANUSCRIPT PREPARATION FOR IEEE ACCESS

TABLE I

OVERVIEW OF RL FRAMEWORKS

Framework Pros Cons
OpenAl e Python library o Immature library
Gym e Compatible with o Lack of generality
TensorFlow and Theano o Lack of monitoring
e Easy to integrate tools
e Various environments
e Robot simulation
o MAS
Burlap e Java library o Java library
o General purpose o Not support
e Various built-in deep RL directly
RL algorithms o Low-level integration
e Pre-made domains
o RL-Glue interface
o MAS
e Visualization tools
RL-Glue e Language independence o Spotty documentation
e Reuse elements o Small user community
e Multiplatform
ALE e Atari domain o Only for

e Support Python Atari domain

e Multiplatform o Support only 61

e Visualization tools games

This problem leads to poor exploration and causes vulnerable
behaviors of agents. To handle such environments, the RL
problem is divided into hierarchical (tree) subtasks so that the
parent subtask has higher abstraction than the child subtask.
This study was originated from the concept of Hierarchical
Reinforcement Learning [60]-[63]. In hierarchical RL, the
agent needs to learn different levels of temporal abstraction
to explore the environment efficiently. At the same time,
the study on intrinsic motivation [64] focuses on finding a
natural and good intrinsic reward function that encourages self-
motivation when facing with the selection of generic actions.
In 2016, Kulkarni ef al. [65] combined hierarchical deep RL
with intrinsic motivation to aid agents in learning within the
complex environment. This approach can work efficiently in a
sparse and delayed feedback environment like the Atari game
Montezuma’s Revenge.

F. Reinforcement learning evaluation frameworks

In this subsection, the four latest framework libraries that
can be used to develop deep RL algorithms are reviewed.
Particularly, analysis of the libraries is carried out in different
aspects so as to provide a proper selection of the RL frame-
work when working with a specific problem domain. Table I
summarizes advantages and disadvantages of these libraries.

OpenAl Gym — OpenAl Gym [66] is the most robust toolkit
to monitor and compare RL algorithms. It provides a friendly
Python interface and is compatible with third-party numerical
libraries such as TensorFlow, Theano, Keras, and Scikit-learn
[67]-[70]. Succinctly, OpenAl Gym can compare performance
of RL agents in different environmental simulations. Recently,

Human-level agent
Task Specification Controller

Environment
Specification

Environment
Information

Output i
o Deep Neural Network g Action
Goal Specification (DQN, DRQN, ..)
(Reward Function) ! T
i ificati Trainin
Action Specification [¢] Encoder
Training module Communication
Out
Online/
EWC A3C Interface
Offline Decoder
In
Communication Channel
CommNet

Fig. 9. The proposed high-level system architecture for a human-level agent
(SAHA).

the release of Roboschool (integrated in OpenAl Gym) [71]
provides a new environment for robot simulation in an MAS
context.

The Brown-UMBC Reinforcement Learning and Planning
(Burlap) — Burlap [72] is a Java library used to develop an
RL algorithm for single and multiagent systems. As opposed
to OpenAl Gym, Burlap establishes a general framework so
that users can define a problem domain themselves. It provides
a wide array of built-in RL algorithms, premade domains, and
visualization tools.

RL-Glue — RL-Glue [73] facilitates a common interface that
connects different pieces of RL programs together even if they
are in different programming languages. In this way, agents
can be reused as well as environments that have been written
by other developers in the RL research community.

The Arcade Learning Environment (ALE) — ALE [21]
provides an environment framework for 61 out of 2600 classic
Atari games. ALE can be used to compare the performance of
RL agents in the Atari domain. It supports Python interface
and has a set of visualization tools.

G. System architecture for a human-level agent

Before the conclusion of this review, we propose a high-
level System Architecture for a Human-level Agent (SAHA)
by combining recent breakthroughs in different aspects as
illustrated in Fig. 9. The goal is to build an agent that can
1) communicate with other agents in MASs, 2) learn and
work in multitask scenarios, and 3) only requires a short
period of training. In SAHA, we use the CommNet model
in our communication module to provide generality when
dealing with various types of problem domains. To deal with
different kinds of agents, we add a common interface, as well
as an encoder, and a decoder to interpret transmission data
among agents via a shared communication channel. The core
operation of the system is in the controller, which includes a
multilayer neural network (DQN, DRQN, etc.). The specific
architecture of the network is dependent upon the problem
domain. Inputs of the neural network involve continuous

2169-3536 () 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MANUSCRIPT PREPARATION FOR IEEE ACCESS

TABLE II
SUMMARY OF KEY REVIEWED PAPERS

Problems Deep RL Multitask ~ Multiagent ~ Asynchronous
deep RL deep RL deep RL
Classic Atari [20][59] [38]-[42] [47] [52]-[55]
POMDP Atari [56][57]
Sparse Atari [65]
Go [22]
Switch Riddle [49]
MNIST Games [49]
Lever Pulling [50]
Traffic Junction [50]
Combat Task [50]
Soccer [51]
Quiz Bowl [51]

TORCS Racing [55]
MuJuCo [55]
Labyrinth [55]
Cartpole [58]

Gripper [58]
Cheetah [58]
Discrete SDP* [65]

(*) SDP stands for Stochastic Decision Process

vector data (summed transmission data from other agents)
from the communication module and a task-specific data
from the task specification module. We add EWC and A3C
architecture to enable multitask learning and asynchronous
learning respectively, to reduce training time. Finally, the
online/offline control can be used to change the learning
mode of the agent. In summary, the proposed system design
describes the usage of recent breakthroughs to collectively
establish a practical human-level agent that can adapt with
various kinds of problem domains.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have examined recent representative deep
RL breakthroughs that actively contribute to every aspect
of modeling a human-level agent. Table II summaries key
deep RL studies and their corresponding applications. The
combination of RL and deep learning indeed yields excellent
results and marks the evolution of modern RL in the advances
of prospective autonomous systems. Deep RL capability has
attracted great interests among the research community. Al-
though deep RL and its variants provide a certain level of
success within the field of artificial intelligence, it still has
limitations that we need to discuss and alleviate.

To some extent, deep RL takes part in solving the dilemma
of dimensionality by using deep learning to approximate an RL
problem with high-dimensional input. However, the complete
proof of this dilemma is still an open question. Therefore, to
understand the limitations of deep RL, as well as to find proof
of this problem, we analyze the complexity of the enigma “the
curse of dimensionality.”

In the real world, a human receives an enormous amount of
input data via the five-sense system: seeing, hearing, smelling,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

tasting, and touching. These five-dimensional data then trans-
fer information to the brain in order to analyze and control
the body to react with the environment. The action is se-
lected based on our self-motivation (intrinsic motivation), the
knowledge learned from other experienced sources (knowledge
transfer), self-experience (RL), and critical thinking. Humans
then combine all the information to manage an assigned work
(single or multiple tasks) efficiently. Humans also communi-
cate with each other to finish a task cooperatively (MAS).
Therefore, what is the clue here? Three important factors
that make up a human-level agent that should be discussed:
multitask learning, multiagent system, and critical thinking.

Firstly, recent research on multitask learning using RL is
quite sparse. One characteristic of the neural network is the
ability to learn at most one task at a time. This limitation
restricts the RL method from learning multiple tasks at the
same time. Moreover, the input information from each problem
domain when combined together yields an enormous amount
of data that are unsuitable for current RL methods. Therefore,
it is essential to conduct an extensive research into this
problem.

Secondly, the agent needs to communicate and cooperate
with other agents to finish a common task. The current
approach examines multiagent systems as a single RL problem
by considering partner agents as part of the environment or
constructing a separate communication channel among agents.
These approaches, however, inherently inflate the data space
balloon and makes the multiagent problem intractable.

Finally, the third characteristic of a prospective agent dis-
cussed here is critical thinking. Very few studies have con-
sidered this ability for an AI agent. This problem is difficult
because a large amount of data is required to synthesize in or-
der for the agent to “think” like a human. This ability is critical
because it distinguishes the intelligence of a human. Can we
create an agent that can think and be creative? Recent advances
in hierarchical RL, intrinsic motivation, meta-learning [74]
(ability to adjust itself to adapt with the environment) and
inverse RL [75] (a process of inferring reward function via
demonstrations) are the first steps in the progress of building
a creative agent.

All of these three factors along with deep RL will represent
a complete solution to the curse of dimensionality. These
important factors paint the last layer to complete the RL
picture.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: The MIT Press, 2012.

[2] J.Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238-1274, 2013.

[3] S. Mahadevan and J. Connell, “Automatic programming of behavior-
based robots using reinforcement learning,” Artif. Intell., vol. 55, no. 2-3,
pp. 311-365, 1992.

[4] S. Schaal, “Learning from demonstration,” in Adv. Neural Inf. Process.
Syst., 1997, pp. 1040-1046.

[5] J.-L. Lin, K.-S. Hwang, W.-C. Jiang, and Y.-J. Chen, “Gait balance and
acceleration of a biped robot based on g-learning,” IEEE Access, vol. 4,
pp. 2439-2449, 2016.

[6] K. Miilling, J. Kober, O. Kroemer, and J. Peters, “Learning to select and
generalize striking movements in robot table tennis,” Int. J. Robot. Res.,
vol. 32, no. 3, pp. 263-279, 2013.

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MANUSCRIPT PREPARATION FOR IEEE ACCESS

[71 M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, “Reinforcement
learning for robot soccer,” J. Auton. Robot., vol. 27, no. 1, pp. 55-73,
2009.

[8] E. L. Thorndike, “Animal intelligence: An experimental study of the
associate processes in animals,” Am. Psychol., vol. 53, no. 10, pp. 1125-
1127, 1998.

[9] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of
prediction and reward,” Science, vol. 275, no. 5306, pp. 1593-1599, 1997.

[10] R. Bellman, Dynamic Programming. Princeton: Princeton University
Press, 2010.

[11] L. Deng and D. Yu, “Deep learning: Methods and applications,” Found.
Trends Signal Process., vol. 7, no. 3—4, pp. 197-387, 2014.

[12] L. F-Fei, J. Deng, and K. Li, “ImageNet: Constructing a large-scale
image database,” J. Vis., vol. 9, no. 8, 2009.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Adv. Neural Inf. Process.
Syst., pp. 1097-1105, 2012.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556 [cs], Sep. 2014.

[15] A. Karpathy et al., “Large-scale video classification with convolutional
neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pp. 1725-1732, 2014.

[16] O. A.-Hamid, A. R. Mohamed, H. Jiang, and G. Penn, “Applying
convolutional neural networks concepts to hybrid nn-hmm model for
speech recognition,” in Proc. IEEE Conf. Acoust. Speech Signal Process.,
pp. 4277-4280, Mar. 2012.

[17] T. Luong, M. Kayser, and C. D. Manning, “Deep neural language models
for machine translation,” in Proc. Conf. Comput. Nat. Lang. Learn.,
pp. 305-309, Jul. 2015.

[18] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: A review
of recent research,” Adv. Robot., pp. 1-15, 2017.

[19] C.J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 34,
pp. 279-292, 1992.

[20] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[21] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” J. Artif.
Intell. Res., vol. 47, pp. 253-279, 2013.

[22] D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7578, pp. 484—489, 2016.

[23] V.R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Adv. Neural
Inf. Process. Syst., pp. 1008-1014, 2000.

[24] J. N. Tsitsiklis and B. V. Roy, “Analysis of temporal-diffference learn-
ing with function approximation,” in Adv. Neural Inf. Process. Syst.,
pp. 1075-1081, 1997.

[25] M. G. Bellemare, J. Veness, and M. Bowling, “Investigating contingency
awareness using atari 2600 games,” in Proc. AAAI Conf. Artif. Intell.,
pp. 864-871, Jul. 2012.

[26] M. Campbell, A. J. Hoane, and F. H. Hsu, “Deep blue,” Artif. Intell.,
vol. 134, no. 1-2, pp. 57-83, 2002.

[27] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in Int. Conf. Comput. Games, pp. 72-83, 2006.

[28] C. B. Browne et al., “A survey of monte carlo tree search methods,”
1IEEE Trans. Comput. Intell. Al in Games, vol. 4, no. 1, pp. 1-43, 2012.

[29] L. Kocsis and C. Szepesvdri, “Bandit based monte-carlo planning,” in
Proc. Eur. Conf. Mach. Learn., vol. 6, pp. 282-293, 2006.

[30] G. Tesauro and G. R. Galperin, “On-line policy improvement using
monte-carlo search,” in Adv. Neural Inf. Process. Syst., pp. 1068-1074,
1997.

[31] G. Tesauro, “Temporal difference learning and td-gammon,” Commun.
ACM, vol. 38, no. 3, pp. 58-68, 1995.

[32] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends Cogn. Sci., vol. 3, no. 4, pp. 128-135, 1999.

[33] D. Kumaran, D. Hassabis, and J. L. McClelland, “What learning systems
do intelligent agents need? Complementary learning systems theory
updated,” Trends Cogn. Sci., vol. 20, no. 7, pp. 512-534, 2016.

[34] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

[35] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Comput., vol. 7, no. 2, pp. 219-269, 1995.

[36] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An
empirical investigation of catastrophic forgetting in gradient-based neural
networks,” arXiv:1312.6211 [cs, stat], Dec. 2013.

[37] S. Thrun and L. Pratt, Learning to Learn. Boston, MA: Kluwer Aca-
demic Publishers, 1998.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

10

[38] A. A.Rusu et al., “Progressive neural networks,” arXiv:1606.04671 [cs],
2016.

[39] A. A. Rusu et al, “Policy distillation,” arXiv:1511.06295 [cs],
Nov. 2015.

[40] E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Actor-mimic: Deep
multitask and transfer reinforcement learning,” arXiv:1511.06342 [cs],
2015.

[41] H. Yin and S. J. Pan, “Knowledge transfer for deep reinforcement
learning with hierarchical experience replay,” in Proc. AAAI Conf. Artif.
Intell., pp. 1640-1646, Jan. 2017.

[42] J. Kirkpatrick er al., “Overcoming catastrophic forgetting in neural
networks,” in Proc. Nat. Acad. Sci., pp. 3521-3526, 2017.

[43] C. Clopath, “Synaptic consolidation: An approach to long-term learn-
ing,” Cogn. Neurodynamics, vol. 6, no. 3, pp. 251-257, 2012.

[44] H. J. Sussmann, “Uniqueness of the weights for minimal feedforward
nets with a given input-output map,” J. Neural Netw., vol. 5, no. 4,
pp. 589-593, 1992.

[45] R. O.-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Trans. Autom. Control, vol. 51, no. 3, pp. 401420,
2006.

[46] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Int. Conf. Mach. Learn., pp. 157-163, 1994.
[47] A. Tampuu et al., “Multiagent cooperation and competition with deep

reinforcement learning,” PloS One, vol. 12, no. 4, Apr. 2017.

[48] L. Kraemer and B. Banerjee, “Multi-agent reinforcement learning as a
rehearsal for decentralized planning,” Neurocomputing, pp. 82-94, 2016.

[49] J. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” in Adv.
Neural Inf. Process. Syst., pp. 2137-2145, 2016.

[50] S. Sukhbaatar and R. Fergus, “Learning multiagent communication with
backpropagation,” in Adv. Neural Inf. Process. Syst., pp. 2244-2252, 2016.

[51] H. He, J. B.-Graber, K. Kwok, and H. Daumé III, “Opponent modeling
in deep reinforcement learning,” in Int. Conf. Mach. Learn., pp. 1804—
1813, 2016.

[52] A. Nair et al., “Massively parallel methods for deep reinforcement
learning,” arXiv:1507.04296 [cs], 2015.

[53] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv:1511.05952 [cs], 2015.

[54] Z. Wang et al., “Dueling network architectures for deep reinforcement
learning,” arXiv:1511.06581 [cs], 2015.

[55] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Int. Conf. Mach. Learn., pp. 1928-1937, 2016.

[56] M. Hausknecht and P. Stone, “Deep recurrent g-learning for partially
observable mdps,” in AAAI Symp. Seq. Decis. Mak. Intell. Agents,
Nov. 2015.

[57] 1. Sorokin, A. Seleznev, M. Pavlov, A. Fedorov, and A. Ignateva, “Deep
attention recurrent q-network,” arXiv:1512.01693 [cs], 2015.

[58] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” arXiv:1509.02971 [cs], 2015.

[S9] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning,” in Proc. AAAI Conf. Artif. Intell., pp. 2094—
2100, 2016.

[60] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dyn. Syst., vol. 13, no. 4, pp. 341—
379, 2003.

[61] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,” Artif.
Intell., vol. 112, no. 1-2, pp. 181-211, 1999.

[62] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman, “Efficient solution
algorithms for factored mdps,” J. Artif. Intell. Res., vol. 19, pp. 399468,
2003.

[63] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq
value function decomposition,” J. Artif. Intell. Res., vol. 13, pp. 227-303,
2000.

[64] N. Chentanez, A. G. Barto, and S. P. Singh, “Intrinsically motivated
reinforcement learning,” in Adv. Neural Inf. Process. Syst., pp. 1281—
1288, 2005.

[65] T.D. .Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B. Tenenbaum, “Hi-
erarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” in Adv. Neural Inf. Process. Syst., pp. 3675—
3683, 2016.

[66] G. Brockman et al., “OpenAl gym,” arXiv:1606.01540 [cs], 2016.

[67] M. Abadi et al., “Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems,” arXiv:1603.04467 [cs], 2016.

[68] J. Bergstra et al., “Theano: Deep learning on gpus with python,” in
BigLearn Workshop, NIPS, 2011.

[69] F. Chollet. (2015). Keras. [online]. Available: http://keras.io

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2777827, IEEE Access

MANUSCRIPT PREPARATION FOR IEEE ACCESS 11

[70] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, pp. 2825-2830, 2011.

[71] O. Klimov and J. Schulman. (2017). Roboschool. [online]. Available:
https://blog.openai.com/roboschool/

[72] J. MacGlashan. (2016). Brown-UMBC Reinforcement Learning and
Planning (BURLAP). [online]. Available: http://burlap.cs.brown.edu/
[73] B. Tanner and A. White, “RL-Glue: Language-independent software
for reinforcement-learning experiments,” J. Mach. Learn. Res., vol. 10,

pp. 2133-2136, 2009.

[74] A. Makmal, A. A. Melnikov, V. Dunjko, and H. J. Briegel, “Meta-
learning within projective simulation,” IEEE Access, vol. 4, pp. 2110-
2122, 2016.

[75] P. Abbeel and A. Y. Ng, “Inverse reinforcement learning,” in Encycl.
Mach. Learn., Springer US, 2011, pp. 554-558.

Ngoc Duy Nguyen received the M.S. degree in com-
puter engineering from Sungkyunkwan University,
Suwon, South Korea, in 2011. He is currently pur-
suing a Ph.D. at the Institute for Intelligent Systems
Research and Innovation (IISRI), Deakin University,
Australia.
» From 2011 to 2016, he was a Project Manager
and Researcher at Iritech, Inc., Seoul, South Korea.
4 His work includes research and development of
/3/, world-leading biometrics and recognition systems.
His research interest involves machine learning, op-
timization problems, and system design.
In 2011, Mr. Ngoc Duy Nguyen received the best thesis award funded by the
Department of Information and Communication Engineering, Sungkyunkwan
University, Suwon, South Korea.

Thanh Nguyen received the Ph.D. in Mathematics
and Statistics from Monash University, Australia in
2013. He is currently a Research Fellow at the Insti-
tute for Intelligent Systems Research and Innovation
(IISRI), Deakin University, Australia.

He has published various peer-reviewed papers in
the field of computational and artificial intelligence.
His current research interests include applied statis-
tics and machine learning. Dr. Nguyen was a visiting
scholar with the Computer Science Department at
Stanford University, California, USA in 2015. He is
a recipient of an Alfred Deakin Postdoctoral Research Fellowship in 2016.

Saeid Nahavandi received a Ph.D. from Durham
University, UK. in 1991. He is an Alfred Deakin
Professor, Pro Vice-Chancellor (Defence Technolo-
gies), Chair of Engineering, and the Director for
the Institute for Intelligent Systems Research and
Innovation at Deakin University.

His research interests include modelling of com-
plex systems, robotics and haptics. He has published
over 600 papers in various international journals and
conferences. He is a Fellow of Engineers Australia
(FIEAust), the Institution of Engineering and Tech-
nology (FIET) and Senior member of IEEE (SMIEEE).

He is the Co-Editor-in-Chief of the IEEE Systems Journal, Associate Editor
of the IEEE/ASME Transactions on Mechatronics, Associate Editor of the
IEEE Transactions on Systems, Man and Cybernetics: Systems, and an IEEE
Access Editorial Board member.

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

