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Nitrite (NO2

�) causes vasodilation in mammals due to the formation of
(nitric oxide) NO by endogenous NO2

� reduction in the vascular wall.
In this study, we determined if a similar mechanism operates in
amphibians. Dual-wire myography of the iliac artery from Rhinella
marina showed that applied NO2

� caused a concentration-dependent
vasodilation in normoxia (21% O2; EC50: 438 �M). Hypoxia (0.63%
O2) significantly increased the maximal dilation to NO2

� by 5% (P �
0.0398). The addition of oxyhemoglobin significantly increased the
EC50 (P � 0.0144; EC50: 2,236 �M) but did not affect the maximal
vasodilation. In contrast, partially deoxygenated hemoglobin (90%
desaturation) did not affect the EC50 (P � 0.1189) but significantly
(P � 0.0012) increased the maximal dilation to NO2

� by 11%. The
soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]qui-
noxalin-1-one (ODQ) completely abolished the response to NO2

� (P �
0.0001), and of the nitric oxide synthase inhibitors, only N5-(1-imino-
3-butenyl)-L-ornithine (vinyl-L-NIO; P � 0.0028) significantly re-
duced the NO2

� vasodilation. The xanthine oxidoreductase inhibitor
allopurinol (P � 0.927), the nitric oxide-scavenger 2-(4-carboxyphe-
nyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide
(C-PTIO; P � 0.478), and disruption of the endothelium (P � 0.094)
did not affect the NO2

� vasodilation. Incubation of iliac arteries with
1 mM NO2

� did not a cause a change in the cGMP concentration (P �
0.407). Plasma NO2

� was found to be 0.86 � 0.20 �mol/l, while
nitrate (NO3

�) was 19.55 � 2.55 �mol/l. Both cygb and ngb mRNAs
were expressed in the iliac artery, and it is possible that these globins
facilitate NO2

� reduction in hypoxia. In addition, NO2
� intracellular

disproportionation processes could be important in the generation of
NO from NO2

�.
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INTRODUCTION

Nitric oxide (NO) is produced from L-arginine and oxygen
by nitric oxide synthase (NOS) enzymes, of which there are
three isoforms; NOS1, NOS2, and NOS3 (15). NOS1 is struc-
turally and functionally very similar to NOS3 in a range of
vertebrates, while NOS2 has some distinctive characteristics
(15). In mammals, the production of NO from NOS3 in
endothelial cells, in addition to a range of other vasodilators
and vasoconstrictors (11), is an important mechanism for
regulating vascular tone, particularly in larger conduit vessels

(30). Nitric oxide diffuses into the adjacent vascular smooth
muscle cells and binds to soluble guanylyl cyclase (sGC),
which gives rise to an increase in cGMP and activation of
protein kinase G leading to smooth muscle relaxation (30). In
addition to the actions mediated by sGC, NO can also act
directly on potassium channels to cause hyperpolarizing-in-
duced vasodilation, interact with heme-iron containing pro-
teins, and modulate protein function through posttranslational
modification by S-nitrosylation, S-glutathionylation, tyrosine
nitration, or S-guanylation (10). In nonmammalian vertebrates,
it has been suggested that similar mechanisms for NO signaling
can occur, although there have been few studies to demonstrate
this (13).

NO is highly labile as it is a one electron radical and is
rapidly oxidized to nitrite (NO2

�) and nitrate (NO3
�) (29). In

humans, the NO2
� concentration in the blood is ~0.05–0.3 �M,

with the concentration of NO3
� ~100- to 1,000-fold greater than

NO2
� (29). Previously thought to be inactive by-products of NO

metabolism, it is now clear that these nitrogenous species can
be reduced back to NO and, therefore, act as an endocrine
reservoir of NO in the plasma (38). In particular, there is
evidence in mammalian blood vessels that the bioavailability
of NO from NO2

� and NO3
� reduction is upregulated in hypoxic

(14) and acidotic (48, 49) states, when the oxygen-dependent
generation of NO from NOS is compromised. However, it is
also clear that NO2

� reduction to NO to facilitate vasodilation
can occur in normoxia (29).

The mechanism of translocation of NO2
� across cell mem-

branes is not yet completely resolved. There is evidence that
anion exchanger 1 (AE1) is involved in mediating the process
in cells such as erythrocytes (24). Nitrite can also enter cells as
HNO2 by diffusing through the cell membrane (37). Regard-
less of the mechanism of transport, NO2

� can be reduced to NO
in cells by a range of intracellular processes including 1)
reduction by enzymes such as xanthine oxidoreductase (XOR)
(19), hemoglobin (particularly deoxyhemoglobin; Ref. 29),
myoglobin (33), cytoglobin (25), neuroglobin (33), and NOS3
(29); and 2) nonenzymatic acidic disproportionation processes
(29). Nitrite can also be formed indirectly through dietary NO3

�

reduction to NO2
� by facultative microbes in the oral cavity,

followed by protonation in the gastrointestinal tract (12).
In nonmammalian vertebrates, our understanding of NO2

�

reductase activity and its role in vascular regulation is rudi-
mentary. There is some evidence for an involvement of NO
generated from reduced plasma NO2

� in regulating blood-flow
redistribution during anoxia in the turtle Trachemys scripta, as
indicated by increased concentrations of Fe-nitrosyl and N-
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nitroso compounds in the blood (23). In the rainbow trout
Oncorhynchus mykiss, infusion of 1 mM NO2

� caused only
minimal decreases in blood pressure (1), and there are no
reports of the vasoactive effects of NO2

� in amphibians. There-
fore, the aim of the current study was to investigate whether
arteries of the amphibian Rhinella marina possess the intrinsic
ability to reduce NO2

� to NO to facilitate vasodilation. Rhinella
marina aortas express NOS3 in the endothelium (4) but do not
display the classical endothelial NO signaling system, as ap-
plied acetylcholine mediated a NO vasodilation that is not
significantly affected by removal of the endothelium and was
attributed to activation of NOS1 expressed in perivascular,
nitrergic nerves (2, 3). In summary, this study provides the first
systematic report that NO2

� is reduced to NO to facilitate
vasodilation in arteries of a nonmammalian vertebrate.

MATERIALS AND METHODS

Animals. Rhinella marina of either sex were purchased from a
commercial supplier (P. Douch, Mareeba, Australia) and maintained
in custom housing in the Deakin University Animal House. The
housing contained a water bath and a dry area that was fitted with a
rainmaker and was maintained at 26°C; the animals had ad libitum
access to the water. The water in the holding tanks was changed every
2 days. Lighting was set on 12:12-h light-dark cycle, and animals
were fed once daily with crickets. Before experimentation, R. marina
were anesthetized by immersion in 1% tricaine methanesulfonate
(MS222) buffered to pH 7.5 until the animals were unresponsive to
toe pinch stimuli and corneal stimulation. Animals were then hu-
manely killed by removal of the heart; in some animals, blood was
withdrawn by cardiac puncture before removal of the heart. All animal
procedures were approved by the Deakin University Animal Ethics
Committee (B15-2012).

Dual-wire myography. Both left and right branches of the iliac
artery were carefully dissected and freed of connective tissue and
placed into chilled physiological saline (mM: 115 NaCl, 3.2 KCl, 2.5
CaCl2, 1.4 MgSO4, 7 NaOH, 10 HEPES, and 17 glucose, pH 7.4). The
iliac artery was used for experiments as it is an intermediate-sized
vessel that has been shown to exhibit endothelial-independent NO
signaling in the same manner as other toad blood vessels (4). Isolated
iliac arteries were carefully cut into 3-mm lengths and mounted in a
dual-wire myograph (420A; Danish Myo Technology, Aarhus, Den-
mark), which was connected to a Myo-Interface (DMT) linked to a
PowerLab data recorder (ADInstruments, Bella Vista, NSW, Austra-
lia). Data were recorded using LabChart 7 (ADInstruments). The
myography chambers were filled with 5 ml of physiological saline
maintained at room temperature (~20°C) and aerated. The vessels
were allowed to equilibrate for 15 min before a nominal tension of 2
mN was applied. The optimal length-tension relationship was empir-
ically determined by incrementally lengthening and then constricting
the vessels using osmotically balanced 60 mM KCl physiological
saline. The optimal length was assumed when active-force plateaued.
Before pharmacological treatment, vessels were preconstricted using
the prostaglandin H2-analogue and the thromboxane A2 mimic
U-46619 (Cayman Chemicals, Ann Arbor, MI). Experiments were
conducted in a pairwise fashion with a matched control from the
opposite iliac artery from the same animal. If required, the endothe-
lium of the iliac artery was disrupted by rubbing the luminal surface
several times with a 24-gauge needle.

Preliminary experiments revealed that preconstricted iliac arteries
vasodilated in response to exogenously applied 1 mM sodium nitrite
(NaNO2). As the sodium ion dissociates from the NO2

� moiety in
solution, the nomenclature of NO2

� will be used throughout this
article. Following preliminary experimentation, concentration-re-
sponse experiments were performed by the sequential addition of

exogenous NO2
� to produce concentrations in the myography chamber

between 1 �M and 10 mM. Subsequent additions were made only
after a vasodilatory plateau was reached after the previous application.
To investigate the nature of the in vitro vasodilatory response, two
experimental series were conducted. The first series was designed to
examine the effects of normoxia [n � 9; atmospheric oxygen partial
pressure (PO2) 20.85 � 0.06% O2 ~155 mmHg] and hypoxia (n � 9;
PO2 0.63 � 0.08% O2; ~4.7 mmHg). The above experiments were
then repeated in the presence of exogenous bovine hemoglobin (200
�M). Hypoxia was induced by aerating the myography chamber with
N2 gas and monitoring the PO2 with an SI130 O2 electrode and SI929
meter (Strathkelvin Instruments, North Lanarkshire, Scotland). Under
these experimental conditions, bovine hemoglobin is ~10% saturated
with O2 (46). However, for simplicity we have referred to 90%
desaturated hemoglobin as deoxyHb throughout this article; it would
be expected that 90% desaturated hemoglobin would have significant
reductase activity compared with oxyHb.

The second series of experiments involved the application of
specific pharmacological inhibitors to the myography chamber before
the addition of exogenous NO2

�. These experiments were completed
in normoxia and in the absence of hemoglobin. The pharmacological
agents, the concentrations used, and targets were as follows: 1H-
[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 �M; sGC); N�-
nitro -L-arginine methyl ester (L-NAME; 100 �M; all NOS); N�-nitro-
L-arginine (L-NNA; 100 �M; all NOS); N5-(1-imino-3-butenyl)-L-
ornithine (vinyl-L-NIO; 100 �M; NOS1); 1H-pyrazolo[3,4-d]
pyrimidin-4(2H)-one (allopurinol; 100 �M; XOR); and 2-(4-
carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-
oxy-3-oxide (C-PTIO; 200 �M; NO scavenger). All pharmacological
agents were sourced from Cayman Chemicals.

Serum NO2
�/NO3

� assays. During surgery, blood was withdrawn via
cardiac puncture and allowed to clot on ice for ~30 min (n � 8). Blood
was centrifuged at 10,000 g for 5 min, and the serum was removed,
snap frozen in liquid N2, and stored at �80°C. Thawed samples were
centrifuged at 10,000 g for 30 min at 4°C in a disposable centrifuge
tube, and passed through a disposable 10-kDa MWCO polyethersul-
fone filter (Vivaspin20, Sigma Aldrich). Twenty microliters of the
filtrate were assayed for NO2

� and NO3
� (NOx) using NO2

� reductase
and 2,3-diaminonaphthalene chemistry (Nitrite/Nitrate Fluorometric
Assay Kit; Cayman Chemicals), according to the manufacturer’s
instructions. Data were read on a FLUOstar Omega fluorimeter (BMG
LABTECH, Mornington, VIC, Australia).

cGMP assay. To generate sufficient material to extract for the
assay, cGMP production was determined in pooled dorsal aorta and
iliac artery samples that were dissected as a single unit (n � 7). We
have shown that the iliac artery, which bifurcates from the dorsal
aorta, has a very similar profile for the regulation of vasodilation by
NO (4). Therefore, it is reasonable to combine both vessels in the
cGMP assay to markedly reduce the number of animals that would
have needed to be used if the iliac artery was assayed in isolation. The
vessels were freed of connective tissue and gently flushed with
physiological saline to remove all visible traces of blood, and stored
in saline for 1–2 h at 4°C. Vessels were incubated in physiological
saline under normoxic conditions with either 0.5 mM 1-methyl-3-(2-
methylpropyl)-7H-purine-2,6-dione (IBMX; nonspecific phosphodi-
esterase inhibitor) alone or 0.5 mM IBMX and 1 mM NO2

� for 20 min
at 20.5 � 0.1°C with constant gentle agitation. Vessels were blotted,
snap frozen in liquid N2, and stored at �80°C. Vessels were then
ground into a fine powder under liquid N2 using a mortar and pestle,
extracted in 10 vol of 0.1 N HCl with the aid of silica-zirconium beads
and a TissueLyser II (Qiagen, Venlo, The Netherlands) and centri-
fuged at 10,000 g for 10 min. The supernatant was assayed for cGMP
using colorimetric competitive immunoassay (Direct cGMP ELISA
Kit; ENZO Life Sciences, Farmingdale, NY) according to the manu-
facturer’s instructions and read on a FlexStation II spectrophotometer
(Molecular Devices).
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Hemoglobin preparation and spectral properties. Ferrous bovine
oxyhemoglobin was prepared from methemoglobin (Sigma, Castle
Hill, Australia) by equilibrating a 25 � 2.5 cm Sephadex G-25
column (GE Life Sciences) with 20 mM phosphate buffer, 1 mM
EDTA (pH 7.0), and 10% wt/vol sodium dithionite (Sigma). The
hemoglobin eluate was dialysed overnight to remove the dithionite,
then O2 saturated by aeration, and stored at �80°C. Oxyhemoglobin
concentration was measured at 280 nm using a Nanodrop 1000
(Thermo Fisher) and referenced to BSA standards. As NO2

� is a
known oxidant of hemoglobin, the oxidation state was assessed in a
200 �M solution of hemoglobin after sequential additions of NO2

�

(data not shown). All samples were scanned immediately in sealed
N2-flushed quartz cuvettes. Wavelength scans were performed on a
Cary Eclipse fluorescence spectrophotometer (Agilent Technologies).
At each concentration of NO2

� from 1 �M onwards, significant
methemoglobin formation was observed reaching ~100% of total
hemoglobin at 10 mM (data not shown).

Molecular biology. Primers based on Xenopus laevis and Xenopus
tropicalis globin mRNAs (National Center for Biotechnology Infor-
mation Accession No.: cytoglobin cygb: NP_001087751.1, neuroglo-
bin ngb: NM_001030351.1, and globin Y gby: BC128970.1) were
used to amplify cygb, ngb, and gby mRNAs, respectively, in R.
marina. Total RNA was extracted from the R. marina brain by
homogenizing the tissue in TRIzol reagent (Invitrogen) with silica-
zirconium beads using a Fastprep 20 benchtop homogenizer (MPBio).
Total RNA was treated with DNAseI (Invitrogen) before reverse
transcription into cDNA with Superscript II (Invitrogen), using both
random primers (Promega) and oligo dT15–18. Specific globin cDNAs
were amplified using GoTaq G2 Green Mastermix (Promega) and a
series of overlapping gene-specific primers. To amplify the 3=-un-
translated region of cygb and gby, 3=-rapid amplification of cDNA
ends (3=-RACE) PCR was performed (Invitrogen). Amplified PCR
products were ligated into pGEM-T easy (Promega) plasmids and
transformed into highly competent Escherichia coli (J109; Promega)
cells. Colonies were selected for positive inserts using 	-galactosidase
chromogenic detection with IPTG and X-gal (Adipogen). Positive
insert colonies were grown overnight in Luria-Bertani broth, and the
plasmid DNA was harvested (PureYield Miniprep Kit; Promega).
Plasmids were sequenced using M13 forward (5=-CGCCAGG-
GTTTTCCCAGTCACGAC-3=) and reverse (5=-TCACACAG-
GAAACAGCTATGAC-3=) primers and BigDye v3.1 chemistry (Ap-
plied Biosystems). Sequences were read at the Ramaciotti Centre for
Genomics (University of New South Wales) using a 3500 series
Genetic Analyzer (Applied Biosystems), and were identified by com-
parison to X. laevis and X. tropicalis nucleotide sequences (https://
blast.ncbi.nlm.nih.gov/Blast.cgi). Contigs were constructed in CAP3
(http://doua.prabi.fr/software/cap3) using eight individually obtained
sequences for each cDNA. From the cloned sequences, homologous
primers for R. marina cygb, ngb, and gby were designed using

National Center for Biotechnology Information primer blast (https://
www.ncbi.nlm.nih.gov/). As a control, a partial 	-actin mRNA was
amplified using primers based on X. tropicalis (43). The primer se-
quences, melting temperatures, and product sizes are listed in Table 1.

To obtain sufficient total RNA from R. marina iliac arteries, a
single sample represented vessels pooled from two animals; we used
six animals to make three independent cDNAs. Total RNA was
extracted as above, with the exception that the pooled iliac arteries
were first ground into a fine powder with a mortar and pestle under
liquid N2. Complementary DNA synthesis and PCR were performed
as described above using the melting temperatures listed in Table 1.
As a control, the homologous R. marina primers were used in parallel
with the sequence verified R. marina globin plasmids constructed
above.

Statistics. Sigmoidal (logistic) concentration-response curves were
fitted to log10 NO2

� values for each paired control and associated
pharmacological or PO2 treatment. The fitted curves were used to
estimate 1) whether fitted models differed from each other between
groups (“model”), 2) effective concentration to 50% of responses
(EC50), and 3) maximal dilation (% of U46619). Differences in the
above parameters were assessed by extra sum of squares F-tests.

Box and whisker plots were created from the NOx values, and a
Student’s t-test was used to determine whether there were differences
in cGMP concentration between the control and NO2

�-treated groups.
P � 0.05 was considered statistically significant throughout. A Sha-
piro-Wilk normality test was used to confirm that data followed a
Gaussian distribution. Data are shown as means � SE unless other-
wise stated. Statistical analysis was completed in Prism 6 (GraphPad
Software).

RESULTS

Dual-wire myography. Exogenously applied NO2
� caused a

concentration-dependent vasodilation of the iliac artery to 49%
of the U-46619 preconstriction (Figs. 1–4), which was com-
pletely abolished by the application of ODQ (model, EC50, and
maximum vasodilation all P � 0.0001; Fig. 1. B and C). The
NO2

�-induced vasodilation was significantly more sensitive
under hypoxia (model P � 0.0165; Fig. 2A); the EC50 was
marginally left shifted from 438 to 345 �M (EC50 P �
0.3266), and the maximal dilation was 5% greater than nor-
moxia (vasodilation P � 0.0398). The addition of oxyhemo-
globin significantly affected the response (model P � 0.0144),
causing a right shift in the data from an EC50 of 438 �M to
2.24 mM (EC50 P � 0.0144). However, the maximal vasodi-
lation was not affected (dilation P � 0.8906; Fig. 2B). In
contrast, deoxyHb significantly (model P � 0.0087) altered

Table 1. Primers, reaction melting temperatures, amplicon sizes, and accession numbers for the globin expression
experiment

Gene/Primer Sequence (5=–3=) Melting Temperatures Size, bp Accession No.

cygb
Forward CAACTGTGAGGATGTTGGAGT 57 369 KU598827
Reverse TATATGAGACTCCGAAGTTTGTTCC

ngb
Forward GTCTGGACTGCCTTTCTTCC 58 203 KU598828
Reverse GCTCATGGACTGTACCACAC

gby
Forward AATATACGCGAATCCAGAGGAA 57 396 KU598829
Reverse TTGTGTAACAGCTGCCCAAG

	-act
Forward CATGGACTCAGGTGATGGTG 55 468 BC082343.1
Reverse CCAGGGTACATTGTGGTTCC
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maximum vasodilation (vasodilation P � 0.0012) but not the
EC50 (EC50 P � 0.1198; Fig. 2C). Comparison of the oxyhe-
moglobin and deoxyHb curves revealed a significantly (model
P � 0.0006) greater sensitivity to NO2

� in the deoxyHb
treatment, which was a result of a greater degree of vasodila-
tion (vasodilation P � 0.0061), rather than EC50 (EC50 P �
0.2146; Fig. 2D). Neither L-NAME (Fig. 3A; all P � 0.3267)
nor L-NNA (Fig. 3B; all P � 0.6409) significantly affected the
NO2

�-induced vasodilation. However, vinyl-L-NIO (Fig. 3C)
significantly (model P � 0.0028) decreased the maximum
vasodilation from 21 to 42% of U-46619 preconstriction (va-
sodilation P � 0.0473). C-PTIO (Fig. 4A, model P � 0.4787),
allopurinol (Fig. 4B; model P � 0.9279), and disruption of the
endothelium (Fig. 4C; model P � 0.094) did not alter the
NO2

�-induced vasodilation. A summary of the nonlinear re-
gression statistics is shown in Table 2.

Nitrite and cGMP assays. In the serum, the mean concen-
trations of NO2

� and NO3
� were 0.86 � 0.20 and 19.55 � 2.55

�mol/l, respectively. Total NOx (NO2
� 
 NO3

�) was 20.4 �
2.62 �mol/l (Fig. 5), and, therefore, NO3

� constituted the
majority of NOx at 96%. The mean cGMP concentrations of
the control and 1 mM NO2

�-treated iliac arteries were 101.9 �
6.16 and 91.82 � 11.23 pmol/g, respectively, which were not
significantly different from each other (P � 0.400).

Globin gene cloning and expression. Two full-length globin
cDNAs were cloned from the brain of R. marina as follows:
cygb 540 bp with an open reading frame of 179 amino acids
(GenBank Accession No.: KU598827); gby 471 bp with an
open reading frame of 156 amino acids (KU598829). In addi-
tion, a partial ngb cDNA sequence was obtained (211 bp, 70
amino acids, KU598828). The identity of globins was con-
firmed by comparison with the respective Xenopus sequences;
each had over 90% identity with both X. tropicalis and X.
laevis, Cygb (Fig. 6A), and ngb (Fig. 6B) mRNAs were
expressed in the iliac arteries of R. marina, but gby mRNA was
not expressed in the iliac artery (Fig. 6C).

DISCUSSION

NO2
� is vasoactive in R. marina iliac arteries. In mammals,

reduction of NO2
� in the blood provides a mechanism for NO

production and vasodilation, particularly during hypoxia when
the oxygen-dependent generation of NO from NOS is compro-
mised (29). The mechanisms of NO2

� reduction have been well
characterized in mammalian blood vessels, and it is clear that
although reduction can occur in normoxia, it is substantially
upregulated in hypoxia to promote vasodilation and tissue
perfusion to restore tissue oxygenation and ameliorate acidosis
(44). This process is facilitated, in part, by proteins that only
act as NO2

� reductases in hypoxia and acidosis (29).
In this study, we show for the first time in amphibians that

applied NO2
� is a vasodilator of the iliac arteries of R. marina

and that the response is abolished by the sGC inhibitor ODQ as
it is in mammals (33). Previously, we have shown that the NO
donor SNP is a potent vasodilator of blood vessels from R.
marina and that the response was abolished by ODQ (2, 3).
Taken together, it is reasonable to conclude that NO2

� is being
translocated into the vascular smooth muscle cells of the iliac
artery of R. marina, where it is reduced by an endogenous
mechanism to NO, which then mediates vasodilation via sGC.

The concentration range of NO2
� that facilitates vasodilation

in the iliac arteries of R. marina is similar to values obtained in
in vitro myography studies using normoxic rodent aortas (8,
21, 32). For example, the EC50 values obtained in this study for
NO2

� in normoxic iliac arteries (438 �M) are in the range of
some EC50 values reported in rodent aortas: 60 �M (21), 200
�M (31), and 686 �M (8). After the experiments in normoxia,
we then demonstrated a small but significant effect of hypoxia
on NO2

� -induced vasodilation, which decreased the EC50 from
438 to 345 �M NO2

� without hemoglobin (0.27-fold decrease)
and 2.2 to 1.1 mM with hemoglobin (0.47-fold decrease).
However, the left shift in the concentration-response curve
during hypoxia in R. marina is substantially smaller in mag-
nitude than that reported in rodents (8, 21, 26). For example,
Dalsgaard et al. (8) showed a large increase in NO2

� sensitivity
from an EC50 of 686 �M (95% O2) to 12 �M (1% O2),
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Fig. 1. Representative tension recordings from isolated Renilla marina iliac
arteries showing concentration-dependent NO2

�-mediated vasodilation. Ves-
sels were preconstricted with U-46619 (10�6 M) until stable. The values for
NO2

� are indicated by arrows and shown as log10 M. A: NO2
�-mediated

vasodilation under normoxic (~21% O2) conditions. B: total abolition of the
NO2

�-mediated vasodilation in the presence of the soluble guanylyl cyclase
(sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10�5 M).
C: concentration-dependent vasodilation of isolated R. marina iliac arteries in
response to NO2

� vs. the complete abolition of the response following appli-
cation of ODQ. Sigmoidal concentration-response curves are fitted to the data.
P values indicate that the fitted curves differ significantly as determined by an
F-test. Data in C are means � SE n � 8.
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representing a 57-fold decrease in the EC50. Similarly, Isbell et
al. (21) reported a sixfold reduction in EC50 values from 60
�M to �10 �M for aortas at 2% O2, 1% O2, and anoxia,
respectively. The small effect of hypoxia on vascular NO2

�

reduction in R. marina might be due to the fact that amphibian
blood vessels do not show classic hypoxic vasodilation (34),
potentially involving NO.

NO2
� reduction in R. marina iliac arteries. The iliac arteries

of R. marina clearly possess endogenous NO2
� reductase ca-

pacity, but, unlike mammals, hypoxia only had a small effect
on the NO2

� -mediated vasodilation. This suggests that the
mammalian paradigm for the vascular role of NO2

� in hypoxia
utilizing hypoxia-sensitive NO2

� reductases may not be appli-
cable in amphibians. In this study, the mechanisms of NO2

�

reduction were not definitively demonstrated but a number of
pathways were investigated.

Given the novelty of this study in amphibians, we tested the
effect of the inhibition of XOR and NOS in normoxia to
determine if these enzymes might function differently in am-
phibians compared with mammals and play a role in normoxia.
There was no evidence for the involvement of XOR in the
reduction of NO2

� to NO in the iliac arteries of R. marina, since
application of allopurinol did not affect the NO2

�-mediated
vasodilation. In mammals, there is evidence for and against the
involvement of XOR in vascular NO2

� responses (8, 39), and
where implicated, the NO2

�-reducing activity of XOR is only
observed in hypoxia. The nonspecific NOS inhibitors L-NAME
and L-NNA did not affect the NO2

� -mediated vasodilation, but
curiously, the NOS1-specific inhibitor vinyl-L-NIO did signif-
icantly reduce the vasodilatory response to NO2

�. It is not clear
why there would be a difference between the NOS inhibitors.
The large and intermediate-sized arteries of R. marina express

NOS1 in the perivascular, nitrergic nerves (2, 3) and NOS3 in
the endothelium (5). Thus it is possible that NOS1 may
contribute to NO2

� reduction in iliac arteries, at least in part.
Interestingly, Webb et al. (45) found that NOS3 inhibition with
L-NAME had no significant effect on vascular NO2

� reductase
activity in rat aortic supernatants, but it did significantly inhibit
NOS3 NO2

�reductase activity in red blood cell preparations.
Therefore, there appears to be an anomaly about the function of
NOS as a NO2

� reductase in mammalian blood vessels.
Myoglobin has been identified as a key NO2

� reductase in
mammalian blood vessels (7, 18, 28, 41, 42, 44). Specifically,
studies using homozygous myoglobin knockout (myg�/�) mice
have shown decreased endogenous NO production and cGMP
content in aortas and blunted NO2

�-induced vasodilation rela-
tive to wild-type mice (myg
/
) (18, 32, 42). Interestingly,
amphibians do not possess the mygb gene but do contain the
cytoglobin gene (cygb), and it has been proposed that cytoglo-
bin functionally replaces myoglobin in this vertebrate class
(16). In this study, we cloned mRNAs for cygb, ngb, and gby
and demonstrated that cygb and ngb mRNAs were expressed in
the iliac arteries of R. marina, which provides evidence that
there are globins expressed in the iliac arteries that could act as
endogenous NO2

� reductases. However, the functionality of
cytoglobin is similar to myoglobin in that the NO2

�-reducing
properties of the protein are only observed in hypoxia or anoxia
(25, 44). Therefore, it is unlikely that cytoglobin and/or neu-
roglobin are contributing to the NO2

�-mediated vasodilation of
the iliac arteries of R. marina in normoxia. The globins, in
addition to XOR and NOS, could play a role in the small left
shift of the NO2

� concentration-response curve observed in
hypoxia.
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Fig. 2. Concentration-dependent vasodilation
of isolated R. marina iliac arteries in re-
sponse to the application of NO2

�. A: nor-
moxia vs. hypoxia (0.63% O2), n � 9. B:
effect of 200 �M oxyhemoglobin (OxyHb)
on NO2

�-mediated vasodilation, n � 9. C:
effects of 200 �M partially deoxyhemoglobin
(DeoxyHb) n � 8. D: OxyHb vs. DeoxyHb,
n � 9. Data are shown as a percentage of net
U-46619 preconstriction force. Sigmoidal con-
centration-response curves are fitted to the
data. P values indicate if the fitted sigmoidal
curves differ significantly as determined by
an F-test. Data are means � SE.
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An alternative pathway for NO formation from NO2
� that

does not involve an enzyme is through the process of NO2
�

disproportionation, as described by Zweier et al. (48). In this
scenario, the acidic intracellular environment of cells permits
NO2

� to be in equilibrium with HNO2, which can enter a
reaction pathway leading to NO formation (48). This mecha-
nism has been demonstrated in rat cardiomyocytes during
acidosis and is suggested as an alternative route for NO

formation from NO2
� (49). It is reasonable to consider that

NO2
� disproportionation may occur in the iliac artery vascular

smooth muscle cells of R. marina leading to NO formation and
vasodilation. This mechanism could also explain the relatively
high NO2

� concentrations needed to generate NO to induce
vasodilation in iliac arteries of R. marina. Previous studies
have found that R. marina is tolerant of hypercapnia in the
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Fig. 4. Concentration-dependent vasodilation of isolated R. marina iliac
arteries in response to the application of NO2

� in the presence of selected
inhibitors and after endothelial removal. A: control vs. 2-(4-carboxyphenyl)-
4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide (C-PTIO), n �
6. B: the control vs. allopurinol, n � 4. C: endothelium intact vs. endothelial
removal, n � 4. Data are shown as a percentage of the U-46619 preconstriction
force. Sigmoidal concentration-response curves are fitted to the data. P values
indicate if the fitted sigmoidal curve differ significantly as determined by an
F-test. A single curve is fitted in cases where no significance was determined.
Data are means � SE.
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Fig. 3. Concentration-dependent vasodilation of isolated R. marina iliac
arteries in response to the application of NO2

�, in the presence of selected
inhibitors. A: control vs. N�-nitro -L-arginine methyl ester (L-NAME; n � 3.)
B: control vs. N�-nitro-L-arginine (L-NNA; n � 4). C: control vs. N5-(1-imino-
3-butenyl)-L-ornithine (vinyl-L-NIO), n � 6. Data are shown as a percentage
of net U-46619 preconstriction force. Sigmoidal concentration-response curves
are fitted to the data. P values indicate if the fitted sigmoidal curves differ
significantly as determined by an F-test. A single curve is fitted in cases where
no significance was determined. Data are means � SE.
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natural environment (40), and toads exposed to hypercapnia
showed a marked decrease in intracellular pH in brain and
skeletal muscle (40). A markedly lower intracellular pH would
enhance NO production via NO2

� disproportionation processes
and potentiate local vasodilation.

In in vitro experiments in mammals, Hb has been success-
fully used to (“mop-up”) any NO formed in NO2

� reduction
experiments, thereby acting as an indicator of NO formation
from NO2

� (21). In normoxia, we observed an approximately
threefold increase in the EC50 in response to NO2

� application,
with the addition of hemoglobin to the vessel chamber. This
provides further evidence that the iliac arteries of R. marina are
able to reduce NO2

� to NO that freely diffuses through the
vessel wall and binds to the heme moiety of Hb, thereby
reducing the availability of NO for vasodilation. We also found
that the response to NO2

� was altered by incubating the iliac
arteries in deoxyHb, potentially due to the protein now acting as
a NO2

� reductase in addition to binding NO. The experiments with
Hb in R. marina show that, in vivo, the oxygenation state of Hb
will be a factor in regulating the bioavailability of NO from
reduced NO2

�, as has been demonstrated in mammals (21).
Plasma nitrite. The mean serum NO2

� value of 0.86 �M in
R. marina was higher than that previously reported for the toad
Bufo woodhousei fowleri and frog Rana pipiens in which the
NO2

� values were found to be in the range 0.1 to 0.2 �M (47).
It is difficult to directly compare the two studies because, and
as discussed by Williams et al. (47), factors such as diet,
anesthesia, and blood sampling regime can affect the values, in
addition to the type of assay used to measure NO2

�. Further-
more, the tube type used to process the samples can contribute
to variability in the NO2

� values (22).
Paradoxically, the EC50 for NO2

� in R. marina is ~500-fold
higher than the resting serum NO2

� value of 0.86 �M. Blood
NO2

� in rodents and humans is also much lower than reported
EC50 values for in vitro studies with values in the literature of
between 0.05 and 0.3 �M NO2

� (29). The disparity between in

vitro EC50 values and serum NO2
� concentrations is reduced in

mammals during hypoxia and acidosis in which the sensitivity
to NO2

� is increased (48, 49). However, the above EC50 values
are calculated from in vitro data, and it is therefore possible
that the theoretical NO2

� concentration used in vitro may not
reflect true intracellular concentrations, which may be due to
diffusion-limitation across the cell membrane as a result of the
relatively poor circulation of fluid in the vessel chamber. This
is in contrast to the intact circulation, which maintains maximal
diffusion gradients to drive movement across the cell mem-
brane. Another point to consider is the fact that red blood cells
are present in vivo and the NO2

� reducing capacity of partially
oxygenated Hb may generate more NO for a given concentra-
tion of plasma NO2

�. Certainly, the relatively lower titer of
NO2

�required to induce significant vasodilation in perfused
human and primate forearm antecubital veins and brachial
arteries suggests that, in vivo, the pharmacokinetics differ from
those observed in vitro (6, 9).

NO2
� vasoctivity and the sGC/cGMP pathway. In the current

study, 1 mM NO2
� did not significantly increase the cGMP

concentration in a pooled tissue sample of iliac arteries and
dorsal aortas, compared with control vessels incubated in
physiological saline alone. This is a curious observation given
that 1 mM NO2

� induced a vasodilation that was blocked by
ODQ, which is indicative of NO signaling via sGC. It is
pertinent that our previous work has assumed that NO-induced
vasodilation in R. marina blood vessels is cGMP dependent (2,
3), but this has not been demonstrated by measurement of
cGMP. Interestingly, previous studies in rodent aortas have
also shown that ODQ significantly attenuated or abolished the
NO2

�-mediated vasodilation without concomitant increases in
cGMP (7, 26, 27). Thus there is a precedent for the observa-
tions of the current study.

Alternatively, following NO2
� reduction, the NO signaling

cascade acted via sGC but independently of cGMP utilizing
mechanisms such as nitrosylation of sGC by the addition of a

Table 2. Summary of nonlinear regression statistics from myography experiments

Treatment R2 n P Value (Model) EC50, �M P Value (EC50) Dilation,%max P Value (Dilation)

Normoxia 0.99 9 — 438 — 49 —
Hypoxia 0.99 9 P � 0.0165* 345 P � 0.3266 44 P � 0.0398*
OxyHb 0.82 9 P � 0.0081** 2,236 P � 0.0144* 43 P � 0.8906
DeoxyHb 0.81 9 P � 0.0087* 1,134 P � 0.1198 32 P � 0.0012**

OxyHb 0.82 9 P � 0.0006** 2,236 P � 0.2146 43 P � 0.0061**
DeoxyHb 0.81 9 1,134 32
Control 0.39 8 P � 0.0001*** 1,540 P � 0.0001*** 62 P � 0.0001***
ODQ 0.15 8 1,716 105
Control 0.74 4 P � 0.6409 423 P � 0.6419 18 P � 0.6921
L-NNA 0.69 4 719 25
Control 0.81 3 P � 0.3267 1,600 P � 0.9997 30 P � 0.3240
L-NAME 0.79 3 1,599 47
Control 0.88 6 P � 0.0028** 752 P � 0.5588 21 P � 0.0473*
Vinyl-L-NIO 0.69 6 1,100 42
Control 0.67 4 P � 0.0942 975 P � 0.6770 16 P � 0.4037
Endo -ve 0.70 4 1,550 34
Control 0.71 6 P � 0.4787 5,374 P � 0.7853 68 P � 0.6007
C-PTIO 0.71 6 8,724 49
Control 0.71 4 P � 0.9279 1,550 P � 0.9887 53 P � 0.9361
Allopurinol 0.54 4 1,720 56

ODQ, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; L-NNA, N�-nitro-L-arginine; L-NAME, N�-nitro -L-arginine methyl ester; vinyl-L-NIO, N5-(1-imino-3-
butenyl)-L-ornithine; C-PTIO, 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide. *P � 0.05; **P � 0.01; ***P � 0.001.
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nitrosyl ion (NO�) (36) or NO reacting with a thiol group on
sGC to form S-nitroso (SNO) residues that may go on to
participate in nitrosation reactions (20). We also cannot ex-
clude the possibility that 8-nitro-cGMP was formed from
8-nitro-GTP through the actions of sGC (35), which would not
have been detected in our assay. Certainly 8-nitro-GTP can be
readily derived in vivo from GTP nitration by NO-derived
reactive nitrogen species (17).

Perspectives and Significance

For many years, NO2
� was thought be an inactive by product

of NO metabolism. However, it is now known that the in vitro
application of NO2

� to tissues, including blood vessels, elicits
biological responses that are attributed to NO, due to cells

possessing endogenous NO2
� reductase mechanisms that gen-

erate NO. Accordingly, plasma NO2
� is considered an endo-

crine source of NO, which has been found to be important in
hypoxia where the generation of NO by NOS is compromised
by limited O2 supply. In the cardiovascular system, this is
exemplified by data demonstrating that dietary NOx or infusion
with NOx improved tissue blood flow in various animal models
of hypoxia and ischemia. In this study, we provide the first
evidence that NO2

� is a vasodilator in a nonmammalian verte-
brate (R. marina), most likely by the endogenous reduction of
NO2

� to NO in the vascular smooth muscle. Thus it appears that
the capacity for vascular reduction of NO2

� to NO appeared
early in the tetrapods and preceded the emergence of endothe-
lial NO signaling, which is not a characteristic of amphibian
blood vessels (4, 5). This study also found that hypoxia had
little effect on the NO2

�-induced vasodilation in R. marina,
which is in contrast to the situation in mammals. R. marina use
burrowing and estivation in response to extremes in environ-
mental conditions, which can cause marked acidosis and hyp-
oxia that are physiologically well tolerated (40); this hypoxia
tolerance may explain the absence of hypoxic vasodilation in
amphibians (34).
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Fig. 6. Gel electrophoresis images of PCR products resolved on 1.5% agarose
gels. The expression of mRNA for cytoglobin (cygb) (A) and neuroglobin
(ngb) (B) was present in three separate iliac artery extracts (I-1, I-2, and I-3).
However, globin Y (gby) (C) mRNA was not detected in iliac arteries. �-act
mRNA expression is shown for each cDNA in D. P, amplification of PCR
product from a control plasmid containing the gene of interest; L, molecular
weight marker; NTC, no template control. Irrelevant lanes between the ladder
and samples have been removed as indicated by the white spaces.
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