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Chapter 4

Spectral Manipulation and
Introduction to Multivariate
Analysis

G.D. Chryssikos and W.P. Gates

4.1 INTRODUCTION

The vibrational spectrum of any clay mineral is complicated for a number of

reasons. First, it represents a complex and polyatomic unit cell with both

covalent (layer) and ionic (interlayer) features. In addition, many clay miner-

als of interest are formally defined over a range of compositions with variable

type and degree of chemical substitutions: The species montmorillonite, for

example, cannot be associated with a unique infrared (IR) spectrum. Further,

a smectite-enriched sample, such as bentonite, may contain many clay mineral

phases (e.g. montmorillonite, beidellite, illite and kaolinite) and variable

amounts of accessory minerals (e.g. quartz, carbonates and sulphates). All

these factors of chemical and mineralogical complexity are convoluted in

the spectrum of a single sample and need to be distinguished prior to or during

analysis (e.g. Balan et al., 2001; Madejová et al., 2002).

Another form of complexity related to modern IR and Raman spectral anal-

ysis comes from the spatial distribution of minerals or other species within

samples which may have been collected to represent the larger object of study.

Modern IR and Raman instrumentation offers the possibility of collecting

hundreds or thousands of spatially resolved spectra efficiently and often nonin-

vasively (see Chapter 3). Spatial complexity, for example, in thin sections

studied in reflectance by mid-IR (MIR) microscopy, or in a set of drill cores

from the exploration of a deposit studied by near-IR (NIR) spectroscopy,

is recorded in large databases. These are called hyperspectral because they

contain a (two- or, often, multiple–dimensional) grid of sampling points

expressed in spatial coordinates and an extra dimension of a full spectrum
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for each point. As expected, hyperspectral data contain large amounts of

information that can be difficult to handle, much less interpret. But they

can be analysed to yield the key spectral components that describe the vari-

ance of the system of interest, as well as the spatial distribution of these

components within the macrosample. This leads to applications like hier-

archical classification schemes and identification algorithms for the impro-

ved understanding of complex mineralogy. The same spectral databases

can also be correlated with independent chemical, mineralogical and physi-

cal parameters of the sample, and trained to provide quantitative predictions

on unknown samples. The development and application of such qualitative

and quantitative prediction using multivariate analysis and chemometric

tools can reduce drastically the time, cost and environmental footprint asso-

ciated with the analysis of a large number of individual samples by conven-

tional methods.

The terms multivariate analysis and chemometrics are often used inter-

changeably in the literature, but they are not equivalent. Multivariate analysis

is a method for revealing underlying latent descriptors in a dataset and can be

called chemometric only when calibrated to predict properties quantitatively.

Multivariate analysis can be done independently of chemometric methods, but

the opposite is not true. For example, principal component analysis (PCA)

(see Section 4.4.1) is often used purely as a data exploration tool. Multivariate

analysis and chemometric methods are not limited to vibrational techniques

and clay minerals, and can be applied to any large datasets obtained by any

technique that can provide an information-rich output regarding the materials

of interest and their properties. Among vibrational techniques, multivariate

analysis and chemometric methods have been historically based first on

NIR spectra, primarily because these were the first that could be col-

lected noninvasively and with sufficiently high signal-to-noise ratio, but also

because NIR features were too complicated to assign and analyse using a sim-

ple Beer–Lambert approach. Chemometric analysis of MIR data came only

after the advent of diffuse and attenuated total reflectance (ATR) techniques.

Vibrational chemometric tools are widely applied in diverse fields including

food science (e.g. González-Martı́n et al., 2002; Jie et al., 2013), biology

and medicine (e.g. Grootveld, 2015), pharmaceutics (e.g. Reich, 2005), soil

science (e.g. Tauler et al., 1996; Viscarra Rossel et al., 2006; Samuels

et al., 2006; Reeves and Smith, 2009; Waruru et al., 2014) and mineralogy

and ore processing (e.g. Andr�es and Bona, 2005). The application of multivar-

iate or chemometric methods to the processing of vibrational (mostly NIR

and MIR) datasets has proven to be highly effective in extracting useful infor-

mation, and this chapter is an attempt to introduce the reader to the

salient aspects of these methods. As a prerequisite to multivariate analysis,

but also as an independent part of spectral analysis, the following section

covers the most common methods used in the mathematical treatment of
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vibrational spectra to enable their semiquantitative (identification) and quan-

titative analysis.

4.2 OVERVIEW OF POSTCOLLECTION SPECTRAL
PROCESSING

The use of any spectroscopic technique based on resonance absorption is

underpinned by an understanding of the Beer–Lambert Law, namely:

A¼� log Tð Þ¼� log I=Ioð Þ¼ E � b � c (4.1)

where A is the absorbance expressed as the negative logarithm of the trans-

mittance (T¼ I/Io) of light through a sample (I) to the initial light intensity

(Io), E is the wavelength-dependent molar absorptivity (also known as

the absorption or extinction coefficient), b is the path length of light through

the sample and c is the molar concentration. The Beer–Lambert law

describes the experimentally observed exponential attenuation of electro-

magnetic radiation through a homogeneous absorbing (and nonscattering)

medium as a function of both distance and concentration (Griffiths, 2002).

As such, the Beer–Lambert law is applicable to IR absorption but not to

Raman scattering. In IR spectroscopy, the absorbing medium can be a mol-

ecule (e.g. interlayer H2O), a polyatomic ion (e.g. CO3
2� or NH4

+) or a

functional group (e.g. structural OH bonded to different octahedral cations

in montmorillonite) or, collectively, a crystalline or amorphous network of

covalent bonds. The exact energy and intensity profile of IR absorption,

expressed by the wavenumber-dependent coefficient E, is a useful finger-

print property specific to the vibrating species involved and depends on

the dipole moment changes associated with its symmetry-dependent vibra-

tional transitions (selection rules), as well as its local and crystal symmetry

(see Chapter 2).

The Beer–Lambert law applies to multicomponent systems provided that

there are no chemical interactions or matrix effects. In the ideal case where

the sample is of known thickness and the observed vibrational transitions

are well separated from each other by a zero baseline, the law allows for both

the identification and the quantification of the absorbing species via their

unique wavenumber dependence of E. If E is not known, it can be obtained

from a series of standards of variable concentration c, or estimated by theoret-

ical analysis (e.g. Balan et al., 2009).

The Beer–Lambert relation typically behaves linearly over the range

0.2<A <1, and for many oscillators of interest in clay science (such as the

OdH or SidO bonds) this range may impose unrealistic constraints on con-

centration and/or sample thickness. Depending on the sample, these con-

straints may be critical in determining the proper IR measuring technique

(see Chapter 3). Additional reasons causing nonlinearity, such as light
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scattering, electronic absorption, reflection phenomena and associated optical

dispersion effects, may be difficult to be explicitly accounted and call for

determining the linearity regime of the law, prior to its application.

The ideal spectrum that can be fully assigned and quantified as described

in the previous paragraph is rarely encountered, even less so in clay minerals.

In addition to the chemical and mineralogical complexity that yields spectra

with many strongly overlapping features, noise and broadly varying non zero

baselines are common features of these spectra. In fact, this situation applies

to both IR and Raman spectroscopies. As a result, the analysis of the vibra-

tional spectra requires mathematical pretreatments to reduce or eliminate

non vibrational features, as well as to identify and assign discrete vibrational

bands, prior to extracting quantitative (or semiquantitative) information.

Unless otherwise indicated, these pretreatments apply to the analysis of both,

single spectra and large spectral datasets.

4.2.1 Smoothing

Smoothing aims at reducing the noise level in a spectrum without reducing the

number of spectroscopically significant variables. Usually smoothing is

applied in cases where noise reduction by increasing acquisition time is

impractical (as is the case in high-throughput measurements) or not possible.

Application of smoothing is based on the assumption that noise peaks are

much sharper than the vibrational bands of interest, and smoothing thus serves

as a low-pass filter. Smoothing routines use different equation forms where

the values of the points on either side of a datum may be ‘averaged’ or applied

algorithmically to estimate the central value in some way, and this average

then replaces the original central datum. The most common smoothing rou-

tines used in spectroscopy are based on the Savitzky–Golay filter (Savitzky

and Golay, 1964), which is also used in conjunction with differentiation

(see Section 4.3.2). The filter employs polynomial functions, fit to either side

of each successive individual datum point within a spectrum. The functions are

calculated from a regression fit of each successive polynomial to a moving

window of user-chosen filter-width (e.g. n¼1, 2, 3 or more) points on either

side of each successive datum in the spectrum, to project calculated intensities

for each datum in turn. The user should ensure that the filter width (i.e. the

total number of points used in the smoothing, 2n+1, multiplied by the spacing

of the data, Dn, in cm�1) and the order of the polynomial are chosen carefully.

The filter should be of the same or smaller width than the nominal width of

non noise features present in the spectrum, and the polynomial order should

be adjusted to remove only noise. The larger the filter width and the lower

the polynomial order chosen, the greater will be the resulting smoothing effect.

Smoothing results in decreasing spectral resolution and can affect the posi-

tion, width and intensity of vibrational bands, as well as the ability to resolve

components of vibrational envelopes. Therefore smoothing should be applied
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only if needed, and with the appropriate adaptation of its parameters to the

specific spectrum and its acquisition conditions. Any reference to the number

of smoothing points employed should be accompanied by the frequency

spacing, Dn, of the data, which is not necessarily identical to the spectral res-

olution setting of the experiment.

4.2.2 Baseline Corrections

The baseline of IR and Raman spectra are often excessively non zero in some

regions that may make the detection of weak vibrational bands difficult.

Baseline correction is used to minimise the presence of non informative

background in the measurements, thereby enhancing the spectral features of

interest. A strongly sloping background is very common in diffuse reflec-

tance spectra due to variations in light scattering from irregularities in the

sample: non uniform particle size, shape, sample packing or irregular surface

texture (Martens et al., 2003), but also in the case of NIR, from the high-

frequency tails of strong MIR bands. Similar effects are common in Raman

spectra due to luminescence (fluorescence). Consistent data acquisition can

minimise some of these effects, but it is usually not possible to remove all

baseline issues. Such unwanted baseline effects can propagate in the spectra

during subsequent treatment (e.g. normalisation, see the following) unless

they are properly compensated for.

The simplest baseline correction is an offset correction applied to bring

relatively flat (non sloping) baselines to zero. Similarly, a sloping baseline

can be corrected by subtracting a suitable straight-line segment from the

experimental spectrum over the wavenumber range of interest. More typical

is the situation where the features of interest are located on a curved baseline,

usually the tail of a broad and strong band of vibrational or electronic origin.

This is, for example, the case of the OH deformation modes of smectites that

appear on the low-frequency side of the strong SidO stretching envelope

(e.g. Vantelon et al., 2001; Gates, 2005), or the corresponding, NIR-active,

OH combination modes (Post and Noble, 1993), which are observed on the

high-frequency side of the strong, MIR-active, OdH stretching envelope

(e.g. Madejová et al., 1994; Bishop et al., 1999; Gates et al., 2002; Zviagina

et al., 2004; Petit et al., 2015). This unwanted contribution from the broad

overlapping features is typically removed by subtracting background Gaussian

functions from one or both sides of the wavenumber range of interest (e.g.

Fig. 4.1). Obviously, this type of correction is critical in estimating the occu-

pancy of octahedral sites in clay minerals from their IR spectra (e.g. Petit

et al., 2015). Another common approach to baseline correction has been the

simple subtraction of an artificial baseline ‘spectrum’ created to simulate

the wavenumber dependence of the baseline over the spectral range or ranges

of interest (e.g. Petit et al., 2015). Whereas these baseline correction
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approaches tend to be somewhat empirical and subjective, they have served

sufficiently for most applications, as long as they have been employed consis-

tently across a spectral dataset and documented in detail.

4.2.3 Atmospheric Compensation

Compensation for the residual spectra of atmospheric gases is a special

form of baseline correction in IR spectroscopy. Unless specifically removed,

air within the optical path of an experiment often contains enough H2O

vapour to produce a very rich vibrational-rotational spectrum consisting

of a series of sharp bands at �1900–1300 cm�1 (d), 4000–3400 cm�1 (n),
5600–5100 cm�1 (n+d) and 7400–7000 cm�1 (2n). Similarly, residual atmo-

spheric CO2 yields a characteristic doublet at 2360, 2340 cm�1 and a sharp

bending mode at 668 cm�1. The latter features are usually of a lesser concern,

except perhaps in the case of deuteration studies or in the detailed analysis of

the OH bending and lattice deformation modes of smectites. The bands of

atmospheric gasses are very prominent in the single-beam IR spectra and

should ideally cancel out when intensity ratios of the sample and background

spectra are calculated. In many cases, however, this cancellation is incom-

plete, either because the optical path is open or, more seriously, because pro-

cess monitoring measurements need to be performed over long times and

cannot be interrupted for updating the background single-beam measurement

420043004400450046004700
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Original spectrum
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Tail components

FIG. 4.1 Baseline correction by removing Gaussian-shaped tails from the raw NIR spectrum of

a synthetic smectite. Such correction enables least squares quantitative decomposition analysis of

bands of interest. Spectral treatment applied by the authors to the IR spectrum of smectite synthe-

sised and characterised by Andrieux and Petit (2010).
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(Li et al., 2000). Despite overlap with the vibrational features of structural OH

and H2O in clay minerals, the positive or negative residual rotational-

vibrational bands of H2O vapour are easily discerned in high-resolution (e.g.

1 cm�1 or higher) spectra because they are much sharper than the vibrational

features of the sample and often can be corrected by application of an appro-

priate smoothing filter. Under more routine resolution settings (e.g. 4 cm�1 or

lower), however, the bands of H2O vapour appear broader and may therefore

be confused with the sharpest bands of the sample (e.g. the structural Mg3OH

stretch of talc) and as such, should not be remedied with smoothing. Unfortu-

nately, the incorrect assignment of H2O vapour bands to all sorts of fictitious

chemical species in the sample is not at all rare in the literature.

Modern commercial spectroscopic software offers general-purpose atmo-

spheric compensation options that can be satisfactory for the routine presenta-

tion of absorbance and reflectance spectra, but are unsuitable for subsequent

derivative analysis. The best practise to avoid interference from H2O vapour

is to isolate the optical path as much as possible from the atmosphere (which

is more easily achieved in ATR spectroscopy) and to equilibrate by desiccants

and/or purging with dry CO2-free air or N2. Any remaining positive or nega-

tive changes of H2O vapour within the instrument itself are best compensated

by measuring a second background spectrum after the completion of the

experiment and using it to remove by subtraction any residual contribution

for the vapour (e.g. Bukas et al., 2013). This procedure essentially interpolates

two reference background spectra collected before and after sample measure-

ment to compensate in full the individual spectra of a series of successive

measurements. The only requirement for the successful vapour band removal

by subtraction is that temperature remains constant during measurement to

avoid shifting the H2O vapour spectrum.

All of this described here refers to IR spectroscopy. Raman spectroscopy

with excitation in the visible spectrum is generally immune to such atmo-

spheric effects because the absolute frequency of the measurement is well

away from the vibrational spectrum of H2O (see Chapter 3). FT-Raman

spectra, however, collected with 1064-nm excitation (�9400 cm�1) can

exhibit atmospheric interference, for example, in the Dn¼2400–2000 cm�1

range from the 2n vibrations of H2O. Such interference is in the form of

negative peaks on a nonzero, sample-dependent background (due to lumi-

nescence or blackbody radiation, for example), and its compensation is

difficult.

4.2.4 Normalisation

Normalisation is used to adjust the intensity of a spectrum to the same scale as

other spectra in a dataset in order to assist visual comparisons or quantitative

analysis. Normalisation helps to remove non systematic effects, for example
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when sample concentrations may differ in dilutions, or when the path length

of a transmission cell may differ between experiments, and serves to give

all sample spectra equal impact for comparison. Another important use of nor-

malising spectra is when the signal is a function of source power rather than

sample concentration, as may occur in some instances in synchrotron-based

IR or Raman spectroscopy or when a comparison between data obtained by

different techniques over the same energy range is required (e.g. IR and

Raman). Several procedures exist for the normalisation of IR spectra, the most

common of which are area normalisation, vector normalisation and multipli-

cative scatter correction (e.g. Randolph, 2006). Other normalisation proce-

dures exist, but are less commonly used in the vibrational spectroscopy of

clay minerals and will not be discussed here. Normalisation can be performed

on a specific band, or envelope of bands, even the entire spectral range,

depending on needs. It can be applied to spectra in all forms, including absor-

bance, transmittance, derivatives, and others.

Most normalisation procedures transform the spectral features within a set

of spectra to represent the same number of oscillators distributed over two or

more component bands within the frequency range of interest. This is approxi-

mated by converting the spectra to the same integrated intensity (area) over

the range of interest and explains why this should be done on baseline-

corrected spectra. The critical assumption underlying this approximation

when normalised data are used for quantitative analysis is that the absorptiv-

ity, Ei, of the component bands (scattering cross-sections in Raman experi-

ments) are identical or, at least, similar to each other.

Area and intensity normalisation. Area normalisation transforms the

observed data so that the area under the baseline-corrected spectrum in the

frequency range of interest is the same for all samples. Intensity normalisation

on the same band (usually the maximum of the strongest) within the region of

interest can be applied instead of area normalisation, provided that the band

position and width remain fixed across a series of spectra. This is the typical

normalisation applied in cases where the sample is spiked with a suitable non-

interacting, IR- or Raman-active admixture that serves as an internal standard.

Maximum-weighted normalisation divides each spectrum by the maximum

intensity observed, and therefore all spectra have vector norms that are scaled

by their maximum values.

Vector normalisation refers to a group of normalisation methods that are

based on linear algebra rather than empirical as is often the case for intensity

or area normalisations. These normalisations attempt to give each spectrum

equal impact on any model subsequently developed, and also assist with

visualisation. Vector normalisation is based on the vectorial definition and

properties of a spectrum x, where x is a 1�k matrix row vector described by:

x¼ x1,x2,…xn½ � (4.2)
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where xi is the measured intensity and n is the number of points over the

wavenumber range of interest. The method transforms spectrum x so that its

vector norm becomes equal to 1. This is done by subtracting first the aver-

age spectral intensity from the spectrum, leading to a new spectrum,

x0 ¼ x01,x
0
2,…x0n

� �
, with both positive and negative intensities so that Sx0 ¼0.

The sum of the squares of the intensities S(x02) is then calculated and the

spectrum x0 is normalised by the square root of this sum. Similarly, standard

normal variate (SNV) normalisation scales x0 to the standard deviation of the

data points in the spectrum (Barnes et al., 1989; Rinnan et al., 2009). Abso-

lute value vector normalisation divides each spectrum by the sum of the

absolute value of all intensities, jxijj, in the spectrum. This returns a vector

norm with a unit area, wi, under the spectrum equal to 1. An example is given

in Fig. 4.2, where spectra (Fig. 4.2A) have been vector normalised

(Fig. 4.2B).

Multiplicative scattering correction. Within the general frame of normal-

isation transformations, multiplicative scatter correction (MSC) is a special

type of compensation for variable individual baseline contributions within a

set of spectral data. As discussed earlier, baseline variability within the dataset

can be caused by particle size, sample packing and density variations, inho-

mogeneous particle distribution as a function of depth of sample or sample

surface roughness, and is particularly common in diffuse reflectance spectros-

copy (Afseth and Kohler, 2012). All these poorly controlled factors influence

the optical path length, b (Eq. 4.1), and create additive or multiplicative

effects on the spectral baseline (Rinnan et al., 2009; Huang et al., 2010). Some

of these effects can be taken into account by application of the Kubelka–
Munk theory (Yang and Kruse, 2004), but further normalisation within the

spectral dataset is frequently needed. MSC cannot be applied to individual

spectra and is mostly relevant to the analysis of large spectral datasets by,

for example, PCA (see Section 4.4.4). MSC operates on the mean of the entire

dataset, and it scales a group of spectra to an equalised reflectance for quan-

titative comparison. In its simplest form MSC relies on the assumption

that any measured IR or Raman spectrum can be successfully approximated

by the sum of a baseline offset and a variably amplified ‘chemical’

Beer–Lambert absorbance. Mathematically, this is expressed (Huang et al.,

2010) as:

xij MSCð Þ¼ aij + bijxij (4.3a)

where xij is the absorbance value of the spectrum i at wavelength j; aij is the
corresponding baseline offset; bij is the reference absorbance value for i
at each wavelength j (Rinnan et al., 2009) and accounts for signal amplifica-

tion effects due to variations in optical pathlength; and xij(MSC) is then the

absorbance associated with the sample chemistry. Extended-MSC (EMSC)

allows for further compensation of effects like sample mass differences
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FIG. 4.2 (A) MIR spectra of 32 dioctahedral smectites (neat air-dried, Ca2+ form). (B) The same

dataset after unit vector normalisation and offset correction. Absorbance values are the Kubelka–
Munk transformations of diffuse reflectance (DRiFT) spectra.
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and wavelength-dependent spectral effects (e.g. interference and path length

variations) in order to remove their variance from the spectral information

of interest (Martens et al., 2003). In EMSC a spectrum is expressed

linearly as:

xij EMSCð Þ¼ aij + bijxij + dijl+ eijl
2 (4.3b)

where additional dij and eij terms, calculated from the dataset, are introduced

to describe wavelength-dependent, l, variations.
Both MSC and EMSC methods regress each individual spectrum, i, of a

set of spectra against a reference, bi, typically the average spectrum of the

set, and it is important to realise that the (E)MSC corrected output depends

on the set of spectra where this reference spectrum belongs (Maleki et al.,

2007). In mathematical terms, correction has the form:

xijMSCcor ¼ xij�aijð Þ.
bi

(4.4a)

xij EMSCcor ¼ xij�aij�dil�eil
2ð Þ.

bi
(4.4b)

In both expressions, xi(E)MSCcor returns the frequency-dependent absor-

bance of the spectrum containing the chemical information of interest

with minimal interference from nonchemical sources of variability (Li-

Chan et al., 2011). The corrections are most commonly performed using

a first-order polynomial (Rinnan et al., 2009). Since each spectrum is trea-

ted as such, direct intensity (area) comparisons become fully quantita-

tive. Examples of both MCS and EMSC corrected spectra are shown in

Fig. 4.3.

4.3 IDENTIFICATION AND SEPARATION OF OVERLAPPING
VIBRATIONAL TRANSITIONS

In most cases, the mere identification, much less quantification, of the mineral

components in a sample by vibrational spectroscopic techniques cannot gener-

ally be separated from the consideration of the chemical (compositional)

variability of these components and its effect on the spectra. In fact, the com-

plex mineralogy and crystal chemistry of the clay minerals call for the sepa-

ration of overlapping vibrational bands, as a prerequisite to their assignment

(identification) and subsequent quantification. Solution of the problem

involves ideally the precise and reproducible determination of the exact num-

ber of component bands underlying a complex vibrational envelope, as well as

the position, width and intensity of each component band. This determination

is usually based on band decomposition and/or derivative procedures. The two

approaches, each with its own advantages and deficiencies, will be outlined in

the following sections.
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FIG. 4.3 The (A) MSC-corrected and (B) EMSC-corrected Kubelka–Munk transformed MIR

DRiFT spectra shown in Fig. 4.2A. Note the differences from vector normalisation (Fig. 4.2B).
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4.3.1 Decomposition of Overlapping Bands

The compositional and structural variations inherent in smectites and other

clay minerals result in band broadening and overlap, which negates the appli-

cability of a simple intensity measurement for quantification. Instead, the

broadened absorption envelopes can be analysed by separating into a number

of overlapping components, where each component is made up of a distribu-

tion of intensities over a discrete frequency range. This process, called spec-

tral band decomposition fitting, or simply decomposition analysis, provides

a means to quantify spectra if the resulting component integrated intensities

associated with each particular transition are summed. The goal in decompo-

sition analysis is to simulate the experimental spectrum (typically in absor-

bance and after correction for baseline effects) over the frequency range of

interest with a number of component bands (Fig. 4.4).

Decomposition analysis is an iterative curve-fitting problem, solved by

minimising the least squares difference between the simulated (sum of com-

ponents) and experimental spectra. Most available software allows for choos-

ing the minimisation algorithm (e.g. damped or local least squares) and the

least squares threshold for terminating the iteration. Many researchers have

performed decompositions using spreadsheet formulations (e.g. Gates et al.,

2002; Petit et al., 2015, 2016). Most fitting routines require initial ‘guesses’

about the number, shape (typically Lorentz, Gauss or Voigt), position, width

and intensity of the component bands to produce an initial ‘calculated’
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FIG. 4.4 Representative decompositions of the IR spectra of smectites. (A) Decomposition of the

OH combination (n+d) bands of NG-1 nontronite as shown in Gates et al. (2002) following baseline
correction as presented in Fig. 4.1. (B) Decomposition of the complex OH stretch (n) bands of a
montmorillonite following the procedure outlined by Madejová et al. (2002a). In (A) baseline cor-

rection by removing the tail on the low frequency side of the region of interest had little impact on

the sensitivity of the fit and quantification of the two strongest bands. In (B), however, the fitting

uncertainty of the 3572 cm�1 component (which is not evident in the absorbance spectrum) can

have a significant effect on the parameters of the 3422 cm�1 component.
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spectrum. The calculated spectrum is then least-squares fit to approximate the

experimental spectrum by iterative changes of these initial parameters.

Each component is defined by three parameters (position, width and inten-

sity) to be fitted (four in the case a Voigt function having variable Lorentz

character), leading to a multidimensional global minimisation problem. In

such problems, defining the single global minimum, rather than one among

several possible local minima, is not straightforward and may require several

optimisation runs starting from different initial conditions. Often it is also

necessary for the operator to fix individual parameters in a controlled iterative

fashion to ensure that the calculated minimum produces a realistic model of

the experimental spectrum. Some programmes enable setting limits, or bound-

ary conditions, to the parameters to minimise the opportunity for the fits

to fall into ‘false minima.’ Obviously, for large spectral datasets, spectral

decomposition fitting can become quite cumbersome even with modern soft-

ware packages.

One pitfall to the method is that the introduction of more component bands

into the model spectrum produces better fits without improving necessarily

the physical meaning of the outcome (Gates, 2005). To achieve meaningful

results, intuition and experience are important for deciding what parameters

to constrain, fix, or allow to evolve freely during the fitting routine, as well

as when to do so (e.g. Zviagina et al., 2004; Petit et al., 2015). It probably

cannot be stressed strongly enough that a consistent approach is key to mean-

ingful application of decomposition fitting.

Despite the difficulties in controlling peak fitting algorithms, seve-

ral authors have utilised the method effectively to the study of clay miner-

als. Among the first successful applications of this method to smectites

was an adaptation by Muller et al. (1991) of the breakthrough approach of

Slonimskayá et al. (1986) on micas. Since then, peak fitting for spectral

decomposition has been applied to the study of a variety of smectite samples

for various purposes (e.g. Madejová et al., 1994, 2002a; Yan et al., 1996a;

Besson and Drits, 1997a,b; Petit et al., 1999b, 2015; Frost et al., 2001b;

Vantelon et al., 2001; Gates et al., 2002; Zviagina et al., 2004, 2015;

Bishop et al., 2011). The popularity of spectral decomposition analysis

stems from the fact that the relative integrated intensities (areas) of resolved

components with common origin (e.g. structural OH) can be fed to a Beer–
Lorentz-type quantification. Converting relative intensities to relative con-

centrations is based on the assumption that the absorptivity coefficients, Ei,
of the resolved component IR bands (or the scattering cross sections of

Raman components) are identical. The validity of this assumption should

always be tested against independent analytical data (e.g. Gates, 2005;

Petit et al., 2016). An overview on the applications of band decomposition

analysis to the structural characterisation of dioctahedral clay minerals is

discussed in greater detail in Chapter 7.
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Spectral decomposition by least squares peak fitting approaches reaches its

limits in cases where the experimental spectral envelope to be fitted contains

both sharp and broad overlapping bands, especially in cases where the relative

integrated intensity of the former is weak. Examples of such cases are encoun-

tered in the OdH stretching and overtone regions of the IR spectra of smec-

tites, due to the complex overlap of the sharper bands of structural OH with

the broader (and possibly variable) bands of H2O, or to the coexistence of

dioctahedral and trioctahedral clay minerals. In these cases a small acceptable

error in the optimised solution of the strong broad components can induce

large and unacceptable errors in resolving the weak sharp components. This

is because fitting is usually done on spectra with fixed frequency intervals,

Dn. Thus sharp features are represented by fewer experimental points than

broad ones and have less influence on the minimisation criterion. For this rea-

son, some software routines offer the option to use different frequency inter-

vals within segments of the range of interest, but this option remains scarcely

explored in the field.

4.3.2 Derivative Analysis

Some of the drawbacks of band decomposition analysis are conveniently

remedied by the use of spectral derivatives, dnA/dnn. Derivatization is a mul-

tifunctional mathematical tool that can be used simultaneously for enhancing

spectral resolution and filtering out broad spectral features, including slo-

ping and curved baselines. This explains why derivative analysis has become

very popular among NIR spectroscopists, although its use on other vibra-

tional techniques is equally important. A deeper insight about the properties

of derivatives and their use in spectroscopy can be found in Mark and

Workman (2003).

For Lorentzian band shapes the amplitude of the nth derivative decreases

with n, but also varies inversely as the nth power of the bandwidth. The depen-
dence of Gaussian band shape amplitudes on the order of the derivative is

weaker, but still very significant (Maddams and Mead, 1982a; Maddams

and Southon, 1982b). This behaviour is the basis for the high discriminating

power of derivative spectra for weak sharp peaks superimposed on intense

broad peaks or background (Fig. 4.5), which increases sharply with derivative

order. The main drawback of using higher-order derivatives is that the deriv-

ative amplitude of any random high-frequency noise decreases with increas-

ing order of the derivative at a slower rate than the corresponding amplitude

of the broader vibrational bands of interest. As a result, the existing noise in

the spectrum becomes more pronounced, and the signal-to-noise ratio dete-

riorates significantly with increasing derivative order. The compromise

between desired resolution and signal-to-noise ratio sets a practical limit

on the maximum order of the derivative, which is usually the second deriva-

tive. In comparison to second derivatives, first derivatives have a better
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signal-to-noise ratio, but a smaller resolving power and a band shape that can

be difficult to interpret (zero-crossings at peak maxima).

Derivatives can be computed in various ways, for example, as simple dif-

ferences of adjacent raw data points, or over fixed-gap distances. Spectral

derivatives are usually computed over a finite differentiation interval using

an algorithm such as that parametrised by Savitzky and Golay (1964) and cor-

rected by Steinier et al. (1972). This algorithm is applicable on spectra with

equidistant data points, Dn, and computes derivatives at any point of the spec-

trum (except a few points at either end) on the basis of a range of n points on

each side of the central point, that is, over a spectral range of (2n+1)�
Dn cm�1, similarly to smoothing routines described previously. Both n and

Dn need to be selected judiciously because, although the increase of their

product results in an increase of the signal-to-noise ratio, it also results in loss

of spectral detail.

In practical terms, the aforementioned considerations regarding the proper-

ties of the derivative and their computation imply that all the spurious sharp

features in a spectrum (noise, spikes, spectrum of atmospheric gases) must

be eliminated prior to differentiation. Smoothing should not be used prior

to differentiation because, as has been described, it is embedded in the

Savitzky–Golay derivative algorithm. Similarly, offset, sloping or broadband
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FIG. 4.5 DRIFT MIR spectrum (2 cm�1 resolution with Dn¼0.96 cm�1) of the OH stretching

region of a smectite sample detailing how absorbance features within complex bands of experi-

mental spectra can be better viewed after derivatization. Application of first derivative with

Savitzky–Golay function over 2n+1¼11 points (50�); Application of second derivative

2n+1¼15 points (500�).
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backgrounds will be eliminated or damped significantly by differentiation, so

these corrections prior to performing derivatives are unnecessary. For a given

experimental frequency spacing Dn (which is typically controlled by the spec-

tral resolution setting and any zero-filling factor employed), the smallest num-

ber of Savitzky–Golay points, (2n+1), that can resolve the spectral bands of

interest with satisfactory signal-to-noise ratio should be employed (Fig. 4.6).

If the spectrum of interest contains peaks with different bandwidths, more

than one value of (2n+1) can be chosen for analysing different parts of the

spectrum. At the expense of effort to acquire high-quality spectra, this proce-

dure can yield a very clean picture of the sharper vibrational features of inter-

est, with high discriminating power and free of interference from broader

features, either spurious or intrinsic (e.g. bands of variable intensity due to

physisorbed H2O) (Fig. 4.7). Properly applied derivatization has been shown

to be highly suitable for the qualitative assessment of the mineralogical or

chemical composition of clay mineral samples and can be applied quickly

on large sets of relevant spectra (Gionis et al., 2006, 2007). In contrast to band

decomposition, derivatives can be applied to preprocess large sets of spectra

in multivariate analysis where they assist in removing nonvibrational effects

to create robust training sets (see Section 4.4.2).

On the other hand, the direct exploitation of derivatives for quantitative

determinations on clay minerals is rare, because of the resulting lower

signal-to-noise ratio of the derivative spectrum. Nevertheless, such quantita-

tive analysis applications have been demonstrated on the basis of second

derivative amplitudes as an extension to Beer–Lambert’s law (Gionis et al.,

2007; Chryssikos et al., 2009), or on the basis of the position of sharp H2O

stretching bands (Kuligiewicz et al., 2015a,b).
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FIG. 4.6 Vector-normalised NIR absorbance and second derivative spectra of a palygorskite

sample demonstrating the excellent resolving power and baseline compensation of a properly

tuned second derivative. The spectrum was collected by averaging 100 scans at 4 cm�1 resolution

(Dn¼2 cm�1), and the derivative was computed by application of a Savitzky–Golay, 2n+1¼13

function.
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4.4 MULTIVARIATE ANALYSIS AND CHEMOMETRIC
QUANTIFICATION

Multivariate analysis and chemometrics are a group of methods that provide

a statistically meaningful basis for describing complex multiparametric

phenomena (Kramer, 1998). When applied to large sets of vibrational spectra

(e.g. Fig. 4.2), multivariate analysis enables the extraction of qualitative

information that would otherwise be too complex to obtain by other means.

Similarly, chemometric techniques allow for quantitative predictions in cases

where the straightforward application of Beer–Lambert law would be impos-

sible. These methodologies for qualitative and quantitative analysis rely on

good-quality spectral data (the independent variables in the multivariate anal-

ysis) as well as good quality chemical or physical data (the dependent
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FIG. 4.7 Experimental NIR absorbance data (upper spectrum) of a palygorskite specimen with

mixed dioctahedral–trioctahedral character in its natural H2O form, and after exchange with D2O

to remove the broad and complex spectrum of H2O. The corresponding second derivative spectra

(lower panel) are nearly identical to each other indicating that the accurate identification of struc-

tural OH modes can be obtained directly from the H2O form, without the need for deuteration.

Sample drying was in this case out of the question because it affects the structure of the layers.

This is a case where peak fitting the envelope of the H2O form (as exemplified in Fig. 4.4B)

would introduce serious uncertainty, especially in cases of variable relative humidity. For more

examples and technical details, see Bukas et al. (2013).

Spectral Manipulation and Multiple Regression Chapter 4 81



variables in chemometric analysis). Application of such methods to NIR and

MIR spectra of materials has proven to be an inexpensive method for rapidly

identifying the mineral and chemical components in soils and rocks (Karstang

et al., 1991; Sudduth and Hummel, 1993; Chang et al., 2001; Viscarra Rossel

et al., 2006; Reeves, 2010; Reeves et al., 2010) as well as establishing

predictive correlations against mineralogical, physical and chemical datasets

associated with the same materials (Reich, 2005; Viscarra Rossel et al.,

2006; Bona and Andr�es, 2007; Gomez et al., 2008; Reeves and Smith,

2009; Mouazen et al., 2010; Kerr et al., 2011; Filgueiras et al., 2014). Recent

advances in specialised commercial software packages enable rapid incor-

poration into the spectroscopy laboratory.

A brief introduction to matrix or vector approaches which form the basis

for multivariate analysis is presented. This introduction is intended to provide

a starting point for researchers interested in utilising the chemometric

approach to the study of clays and clay minerals. For greater detail the reader

is referred to many specialised literature sources including Mardia et al.

(1979), Naes and Martens (1988), Naes et al. (2002) and Schlens (2014).

4.4.1 Introduction to PCA and PLS

Given the specificity and sensitivity of vibrational spectroscopy to chemical

composition and structure, any large sample set can be measured and repre-

sented by a hyperspectral database (e.g. absorbance spectra) that is very rich

in information content. The database can be represented as an N�K matrix,

X, where K is the number of discrete frequency points (independent para-

meters) in each spectrum, and each of the N rows represents a spectrum as

a point in a K-dimensional space (see Section 4.2.4 on vector normalisation).

This matrix is usually called training or calibration set in the context of mul-

tivariate analysis and chemometrics, respectively.

X

K

N

In the typical case of interest, the number of spectra, N, is much larger than

the number of chemical or mineral components that can possibly be present

in the sample set, n. There also is sufficient variability between the spectra

(rows of the matrix) at most frequencies (columns). Each individual spectrum

is considered to represent a different (for simplicity, linear) combination of

this limited number of chemical components (i.e. the spectra are highly corre-

lated). Of course, each spectrum also contains errors from random noise and,

possibly, instrumental artefacts.
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For the simplest analysis of a multivariate set of data, one should apply

a classical least squares approach in order to express the matrix X as a lin-

ear combination of a finite number n≪N of reference spectra (row vectors

rn), one for each of the chemical components of interest, such that the resi-

duals, E, are small and contain only error. In this way, every spectrum of

the training set can be mapped on a predefined n-dimensional space formed

by the reference vectors rn. This would be a supervised solution (the refer-

ence spectra rn are chosen by the user) expressed in the form:

X E= + ++
•••

N

K

t1 t2 tn

N

r1 r2 rn

K

N

K

N

K

N

K

ð4:5Þ

Eq. (4.5) contains both the qualitative (spectra rn) and quantitative (coeffi-

cients tn) information that fully describes database X. Nonlinear variations to
Eq. (4.5) also occur. It was already argued (see Section 4.3) that this approach

can be problematic because of the lack of properly defined reference mineral

spectra and the uncertainty surrounding how many spectra would be necessary

to describe a database. The problem, therefore, calls for a multivariate analy-
sis solution to identify and extract the main features underlying the dataset X
in an unsupervised manner, without any input of the user. There are several

methods available to perform this extraction based on multivariate statistics

and linear algebra, and one of the most popular for decoding spectroscopic

data is Principal Component Analysis (PCA) (e.g. Cowe and McNicol,

1985; Geladi and Kowalski, 1986; Bro and Smilde, 2014; Schlens, 2014).

PCA expresses the training matrix X (or rather, its mean-centred version)

as a linear combination of calculated independent one-dimensional (rank 1)

variables, called loadings, components, or more specifically principal compo-
nents, pn, weighted by appropriate coefficients called scores, cn. The principal
components represent calculated, latent, reference spectra and the scores rep-

resent their intensity changes within X. The original set of spectra containing,
for example, absorbance versus wavenumber data is now expressed into an

equivalent set of scores on principal components.

X E= + ++
•••

N

K

c1 c2 cn

N

p1 p2 pn

K

N

K

N

K

N

K

ð4:6Þ
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PCA differs from the supervised modelling that was previously based on

spectra of reference compounds, rn (Eq. 4.5), in that the linear terms in the

series are not preselected by the user. The linear terms are computed from

the data in decreasing order of importance for explaining the variability in

X. The elements of pn, are linear combinations of the independent variables

in X, and the vectors pn are the new, latent, independent variables. They are

computed to be fully uncorrelated from each other, and they constitute the

eigenvectors of the covariance in X. As such they form an orthonormal vecto-

rial basis suitable for the projection of any spectrum within X. The scores, cn,
are the corresponding eigenvalues, and they are scaled so that the sum of their

weight coefficients squared is unity.

The PCA calculation starts by mean-centring the spectra in X, through
subtraction of the means across all dimensions of the data:

x0ij ¼ xij� xij
� �

(4.7)

where x0ij is the mean-centred result and xij is the mean value. This operation

centres the variability along each of the original K dimensions (frequency

points) at zero. The first principal component, p1, is determined as the

(eigen)vector along which X shows the highest covariance. The second prin-

cipal component, p2, accounts for most of the remaining variability that is

orthogonal (independent) to the first. The iteration continues, always main-

taining orthogonality, until the variability that remains unexplained after the

calculation of pn approaches the size of the measurement error. The eigenva-

lues of the principal component eigenvectors constitute the covariance matrix.

The successful application and usability of PCA relies on the extent to

which the dimensionality of the original matrix X can be reduced. In other

words it depends on the rank of the solution, which is the minimum number

of principal components in Eq. (4.6) that explain most of the variance in the

original data (without explaining noise). As the principal components are

computed in order of decreasing explained variance, the cumulative explained

variance approaches 100% asymptotically at n¼N (Fig. 4.8). Fortunately, this

convergence usually occurs at a number of ranks that is significantly smaller

than the original number of spectra in X, n≪N. In contrast to Eq. (4.5), where

the rank is predefined (and limited) by the number of reference minerals used

or available, in unsupervised PCA, a decision must be made about truncating

the terms of Eq. (4.6). This decision depends in part on the contents of the

training set, the amount and type of information that needs to be explained,

and the identification of the principal component(s) along which this informa-

tion can be retrieved most clearly. General guidelines regarding these aspects

and specific examples on the development and application of PCA will be

provided in subsequent sections.

Any spectrum within X can be uniquely located in the n-dimensional space

of the principal components by its scoring on each component. The location
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of several spectra can be projected on any plane defined by two principal

components and be used for the unsupervised discrimination among groups

of spectra, should the latter internal structure exist in the set. By the same

means, unknown spectra that are relevant to the spectra in X can be identified

as members of these groups. Although the common names of the groups may

be coming from other techniques (X-ray diffraction or chemical analysis), the

multivariate analysis of vibrational spectroscopic data from clay minerals and

related materials is a powerful, independent and self-consistent data explora-

tion tool for discrimination and identification applications.
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FIG. 4.8 True-fit correlation coefficient R2 of a case-study PLS calibration and three different

internal validations for predicting a property of bentonite based on the NIR spectra of a set of

150 samples. All methods have been optimised in terms of the same spectral pretreatment and fre-

quency ranges. Opposite to the trivial behaviour of calibration, all validations exhibit maxima

with position (rank) and performance (R2) that depend on the validation method. Leave-one-out

cross-validation is clearly optimistic (overfitting), and the recommended number of ranks (�12)

is high in comparison to the relatively small size of the dataset. On the other hand, a test set vali-

dation based on 50 spectra (1/3 of the dataset) affords a significantly smaller calibration set and

may be underfitting at 7 ranks.
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Besides identification, there is often additional or independent need for

quantitative predictions, as multidimensional extensions of the Beer–Lambert

law. Such quantitative multivariate tools are commonly called chemometric

due to their relevance in analytical chemistry, but they are important in many

fields, even outside the physical sciences. The basic operating principles of

two of the most popular chemometric methods will be presented here: the

Principal Component Regression (PCR) which builds on the results of PCA

(e.g. Naes and Martens, 1988), and PLS (standing for Projection to Latent

Structures but commonly referred to as Partial Least Squares) which is wholly

independent of PCA (e.g. Geladi and Kowalski, 1986; Wold et al., 2001).

A detailed presentation of the two methods with common examples and nota-

tion can be found in Hasegawa (2006).

Training (more specifically, calibrating) a method to provide quan-

titative predictions for the sample set represented by the spectra within

X, requires that a set of independent, accurate property measurements Y
is available for exactly the same sample set by other techniques (see

Section 4.4.2).

Y

N

1

PCR is based on calculating the correlations between the scores of each prin-

cipal component derived by PCA and the property Y. The user can then con-

struct a predictive algorithm including only those principal components that

correlate with the property and excluding all others as irrelevant. This

approach is conceptually identical to testing how the absorbance values in a

set of spectra at each individual wavenumber correlate with the property of

interest and selecting the region of interest for a predictive model, but it is

performed on an orthogonal vectorial basis with reduced dimensionality.

Although the predictive principal components of a PCR method are by defini-

tion identical to those derived by PCA, they are not necessarily employed in

the same order. This is because the principal components of PCA were deter-

mined by order of explaining the overall latent structure of the spectra, and

not the subset of this structure that may specifically be related to any property

Y. One would ideally prefer that the Y-predictive principal components are

also among those that explain a large part of the overall spectral variability

(meaning that they have a rather strong spectral signature), but this may not

always be the case.

In the PLS method, however, the stage is set from the beginning for pre-

dicting Y:
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X B + EY =

N

1

N

1 1

N

K

K

ð4:8Þ

where a vector B is sought such that, when applied to X, yields a prediction of

Y with minimum error E (Geladi and Kowalski, 1986). In this sense, PLS is a

method of dimensional reduction which is a priori supervised by the property

data Y. The computation of B involves the usual expression of X as a linear

series of scores on loadings (Eqs. 4.5 and 4.6), but the loadings are now dif-

ferent than the principal components of PCA, because they are specifically

calibrated to describe the variability in Y and obtained in order of decreasing

ability to describe this variability. Further, the PLS loadings are not forced to

be orthogonal, but their scores are. Similar to PCA, an important decision

must be made about the minimum number of terms (dimensions) that are

needed to fit the property without fitting the error (overfitting).

4.4.2 Training (Calibration) and Property datasets

As elegantly stated by DiFoggio (2000), the fundamental assumption behind

any multivariate regression or chemometric method is that the (training or cal-

ibration) set of spectra X must contain all the information that is sought by the

method. This assumption sets specific requirements about both the contents of

the spectral matrix X, and the kind of properties, Y, that can be reasonably

extracted. These requirements will be discussed in this section.

The training set X can be selected from a larger set of spectra (the usual

case) or be developed wholly separately from reference materials and then

applied to the analysis of another dataset. The quality of the training set con-

trols to a large degree the performance of any multivariate or chemometric

application. The number of spectra to be included in X is rarely an issue

because matrices of very large size can now be manipulated with commonly

available computing power. The number of spectra chosen for the training

set, however, must be much larger than the number of anticipated latent vari-

ables N≫n usually by a factor of 10–100. Ideally, every spectrum in X should

be a linear combination of many, if not all, anticipated latent variables: The

spectra in X must be correlated. In fact, the whole normal distribution of each

anticipated variable should be ideally represented in X, and this is the main

reason behind the need for large sample datasets. A design of experiments
approach is frequently useful in selecting spectra for X that meet these

requirements among even larger groups of available data (Kjeldhal and

Bro, 2010).
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As a general rule, it is inadvisable to include the spectrum of a pure refer-

ence compound in X, if the latter is meant to represent a population of real-

world mixtures that are too different from this reference. In such a case, the

reference compound would be singled out as the first principal component

in PCA (because it would be explaining a very large part of the variance in

the whole set), but would be too different (distant, in the geometrical sense)

from the rest of the samples and hence of little value in describing the finer

details of their latent structure. In fact, including the spectra of all anticipated

reference compounds in X would reduce the problem to the supervised

approach expressed in Eq. (4.5). The same situation is encountered if the var-

iance of nonvibrational features in the spectra (e.g. strong and variable sloping

baselines or atmospheric gas signatures) dominates the overall variance in X.
These features would be promoted to the early principal component ranks,

despite the fact that they are completely irrelevant to the chemical structure

or mineralogical composition of the samples. This explains why the removal

of such non vibrational sources of variance by appropriate mathematical pre-

treatments (see Section 4.2) is of paramount importance in multiple regression

applications.

In practise, the statistics of the scores of each loading do reveal whether

the representation of this loading in X is close to the desirable normal distri-

bution or, instead, is mostly determined by a small isolated minority of spec-

tra. If a particular loading is lacking such statistically distributed scores, one

should decide whether this loading represents an outlier (that should be

rejected prior to redoing the analysis), a spurious effect in the spectra (that

should be corrected by an appropriate pretreatment), or a real chemical com-

ponent which is rarely (but truly) present in the spectra of X. In this latter

case, one may decide to exclude the minority of spectra that represent the sus-

pect component in X, or enrich the spectral set with additional spectra bridg-

ing the compositional (or property) gap between the majority and minority

populations. The decision depends on the anticipated significance of the

chemical component with respect to the problem of interest. Tuning the con-

tents of the spectral set X and deciding on the necessary mathematical pre-

treatment of the spectra that removes spurious effects and provides a

satisfactory compromise between spectral resolution and signal quality typi-

cally requires a few trial analyses.

As an additional general rule, the spectra to be included in X should be of

the same quality as those that are anticipated for future analysis. Methods

based on high-quality laboratory data often lose their robustness when applied

to field measurements. This is because the latter may introduce additional

sources of spectral variability that are not encountered in the former and have

not been considered by the model. In cases where this situation cannot be

avoided, a desensitisation approach can be adopted, involving the a posteriori
addition of the missing variability in the calibration spectra (DiFoggio, 2000).
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These guidelines are sufficient for exploring the latent structure of spectral

sets by multivariate analysis, but additional considerations are needed for

chemometric (quantitative) applications. For example, what are the properties,

Y, that can be considered for chemometric analysis based on the spectra of a

set of mineral samples, X? In principle, Y can be any property that can be

related fundamentally or empirically to the composition and local chemical

structure (bonding and symmetry) of the samples; that is, to the latent features

normally found in vibrational spectra. The elements of the matrix Y must

come from independent measurements, and these measurements must be as

accurate and precise as possible, because their quality characteristics will be

transferred at large to the chemometric prediction tool (DiFoggio, 2000).

In practise, chemometrics serve to substitute for the routine measurement

of properties that would otherwise be determined by time-consuming, expen-

sive or environmentally problematic standardised measurement protocols

(Viscarra Rossel et al., 2006; Waruru et al., 2014). In many cases, chemo-

metrics are called to be based on (and eventually substitute for) existing qual-

ity control schemes. These may include mineralogical (e.g. % quartz in

bentonite), chemical (e.g. moisture content, cation exchange capacity

[CEC], or methylene blue [MB] adsorption, Al occupancy in the tetrahedral

sheet, total organic carbon), physical (e.g. refractive index, viscosity of a dis-

persion) or engineering (e.g. swelling capacity, Atterberg limit) properties.

One must be fully aware of the limitations and assumptions inherent to

the measurement protocols that are used to produce Y. One should also make

sure that these protocols are applied exactly to the same samples that

produced the spectra in X, are conducted in the exact fashion for all samples

and preferably to the same type of samples, and in the same fashion, antici-

pated for future analysis. In cases where field, rather than laboratory, applica-

tions are sought, the requirement for matching data in X and Y can set major

difficulties in assembling these matrices. For example, in designing a

chemometric application for the field measurement of moisture in soil, one

must make sure that the natural moisture of the calibration samples is fully

preserved until both spectroscopic and thermogravimetric measurements are

completed.

One must also be aware that a chemometric prediction is based on the cor-

relation between the spectra of a particular set of samples and their properties.

For this reason, chemometric predictions may perform very well, but only

within the domain set by their latent structures. Chemometrics are not direct

measurement techniques and therefore cannot be used to predict the properties

of any set of samples that lie outside that range of properties of the set they

have been calibrated against. Two subtle issues regarding the information

content of the spectra in X may be added at this point:

Can the quality of the chemometric predictions surpass that of the inde-

pendent measurement? The intuitive answer is ‘no’, but the regression
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mathematics used for establishing the chemometric tool average out ran-

dom error in the reference values and can, in principle, improve the preci-

sion (DiFoggio, 2000). In addition, the study of the same sample set by

two independent experimental methods feeding X and Y often reveals

the presence of outliers (wrong samples, wrong measurements, typograph-

ical errors, etc.) in either or both sets of data. Outliers are samples that are

(1) described badly by X or Y or (2) outside the range of predictive capa-

bility of the method. Elimination of these outliers improves the accuracy

of the measurement.

Can one employ chemometrics to measure concentrations of a species that

are unobserved in spectra? Again, the intuitive answer is ‘no’, and is cor-

rect unless the concentration of the invisible species is (positively or neg-

atively) correlated with that of other constituents that have a pronounced

spectral signature. A typical example is the prediction of % quartz in clay

mineral samples by NIR spectroscopy, despite the fact that quartz is trans-

parent in the NIR. Such predictions are based on the assumption that

quartz is the only NIR-transparent mineral in the samples and that its pres-

ence and concentration can be inferred from the absence of the remaining,

nontransparent components. Such indirect determinations should be used

with great caution.

4.4.3 Validation and Optimum Dimensionality

The single purpose of any multivariate analysis or chemometric methodology

is the satisfactory reduction of the dimensionality (rank) of the problem from

the initial large number of N correlated spectra in X, to a much smaller num-

ber of noncorrelated latent loadings, n≪N. Recall that the linear decomposi-

tion of a matrix X consisting of N spectra can involve asymptotically up to N
linear terms (e.g. Eq. 4.6) and that the information content of these terms is

expected to progressively drift from significance to triviality. The funda-

mental question is how one can decide where to truncate the series, thereby

defining the optimum rank of the method, in order to capture most of the

significant latent structure in X, or the best possible correlation with the

external variable Y, without fitting irrelevant variables and errors.

Some insight about the anticipated dimensionality of the solution can be

obtained from a general knowledge of the sample set under investigation. For

example, the octahedral sheet of palygorskite contains trioctahedral magnesian

and dioctahedral aluminous-ferric components which are manifested in the

OdH stretching spectra by discrete Mg3OH, Al2OH, AlFeOH and Fe2OH

bands (Chryssikos et al., 2009; Stathopoulou et al., 2011). The palygorskite

content and composition is then defined by three independent variables, that

is, the trioctahedral fraction, the FeIII occupancy in the dioctahedral

domains and the extent to which mixed Al-FeIII pairs can form. Indeed, both

a Beer–Lambert approach based on the intensities of the OdH stretching
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overtones and a 3-rank chemometric model yield the same R2¼0.94 perfor-

mance in predicting the palygorskite content in samples containing other clay

and nonclay minerals (Gionis et al., 2007). In the more general case of model-

ling all species in a mixture, the number of significant principal components

would ideally be the same as the number of those mineral components that

can be observed by the spectroscopic technique employed. Similarly, in a pre-

dictive model for CEC, the rank of the solution should be similar to the number

of mineral species with exchangeable cations present, multiplied by the number

of spectroscopically active chemical substitutions that are encountered in each

of these species and may be determining their layer charge. Such considerations

do not take into account the possible presence of other variables or noise that

can be strong enough to obscure some of the anticipated loadings.

For these reasons, the optimum rank as well as the figures of merit of any

multivariate or chemometric methodology at this rank (e.g. the percent

explained variance in PCR, or the root mean square error of prediction

in PLS) should never be derived from data that have been used in the

calibration of this methodology. As with any scientific methodology, multi-

variate analysis and chemometrics should be evaluated on the basis of inde-

pendent, but plausibly similar, data by a process called validation. For

details about the significance of validation, the various validation strategies

and their potential pitfalls, the reader is referred to the specialised literature

(e.g. Shao, 1993; DiFoggio, 2000; Wold et al., 2001; Steyerberg et al.,

2003; K€onig et al., 2007; Esbensen and Geladi, 2010; Westad and

Marini, 2015).

There are many types of validation depending on the way the validation

samples are chosen. The strictest and most conservative approach is external
validation which uses an independent dataset—collected as similarly as possi-

ble to the parent dataset, but different from the training set—to test the statis-

tical significance and predictive capability of a chemometric model. The

external validation set must be representative and large enough to enable a

statistically relevant assessment of the robustness of the method. Depending

on the sources of irrelevant variability that must be accounted for, this inde-

pendent set may arise from different operators, with data obtained over differ-

ent time periods, or even from a (geological) setting that is analogous, but not

identical, to the one used for training or calibration.

Very frequently, the conditions for constructing a true external validation

dataset cannot be met, or the externally validated methodology turns out to

be too conservative for the specific application of interest. In such cases, vali-

dation is based on a subset of data that are removed from the parent dataset

and is called internal validation. As with its external counterpart, the internal

validation dataset must be sufficiently large and well spread over the latent

space, but still constitute a small fraction of the parent dataset so that the

structure of the remaining calibration set is not disrupted. A common scheme

of internal validation, test set validation, involves the selection of 10%–35%
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samples for validation purposes. The method of selecting validation samples

for the test set (random, in blocks, or evenly spaced across X) can be critical

if there are hidden systematics in the numbering of the spectra in X (time

series, blocks provided by different operators or equipment, blocks added to

fill-in gaps in original data, etc). There are many possible permutations of test

set over parent data, and therefore several test set validations of the same

method can be performed to optimise the rank, identify gaps in the calibration

set, remove outliers, etc.

Another popular method of internal validation is cross-validation, also
known as the leave-Nv-out method. The method removes a set of spectra Nv

from the original set of N spectra in X, calibrates on the basis of the remaining

N–Nv spectra and applies this calibration to the excluded Nv spectra for

method evaluation. The process is iterated over all spectra in X. In some

cases, Nv¼1 and the method is called a leave-one-out validation. Cross-

validations tend to be optimistic, especially in their leave-one-out version,

and should be used with caution.

An example about the use of validation in determining the optimum rank

of a chemometric method is shown in Fig. 4.8. The example is taken from the

PLS modelling of a property based on the NIR diffuse reflectance spectra of

�150 bentonite samples in powder form. The true-fit correlation coefficient

R2 is shown as a function of dimensionality (rank) for calibration as well as

three different validation runs. Upon increasing number of ranks, the R2 of

the calibration run tends asymptotically (and trivially) to 100%. There is no

way to define the optimum rank from such data. On the contrary, the R2 of

any one of the three validations first increases with increasing dimensionality

(albeit remaining always inferior to calibration), reaches a maximum and then

decreases, which is a clear sign that the model is now fitting the property on

the basis of irrelevant variables (overfitting). The optimum dimensionality

(and associated performance) of the method can be evaluated from the rank

at maximum R2. The case study in Fig. 4.8, however, indicates that the sug-

gested optimum dimensionality can vary between the optimistic leave-one-

out validation and the conservative test-set validation. If encountered, the

PLS correlation should be repeated after increasing the size of the representa-

tive calibration spectra to support a proper test-set validation or reducing

possible data clustering in the dataset (which can bias leave-one-out

validations).

4.4.4 PCA and PCR Chemometrics in the Study of Clay Minerals

This section illustrates the use of PCA and PCR to extract and explore the

variability present in a dataset consisting of the MIR diffuse reflectance

(DRIFT) IR spectra of 32 dioctahedral smectites. This is a well-studied data-

set (Gates, 2005) with accompanying chemical and crystallographic data and

has been already shown in Figs. 4.2 and 4.3 to demonstrate the effect of
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various mathematical pretreatments. The dataset is very limited in size com-

pared to the anticipated dimensionality of the problem (see Section 4.4.3),

but it does cover most of the chemistry range of the dioctahedral smectites.

As such it will serve to guide the reader through the PCA process from train-

ing to validation and the development of PCR predictions.

PCA calibration. The set of 32 vector-normalised and baseline-offset MIR

data presented in Fig. 4.2A was subjected first to PCA analysis. Employing

the Pearson’s correlation coefficient,

R¼
X

x� xið Þ
X

x� xið Þ2
� �1

2

(4.9)

as a measure of variance, the effect of each calculated component in explain-

ing the total variance of the dataset can be deduced in Fig. 4.9A. As explained

in Section 4.4.1, components are calculated in order of decreasing explained

variance and their incorporation to the fit results in increasing cumulative

explained variance. In the vector-normalised dataset, the first component,

PC1, accounts for �55% of the explained variance in the dataset, PC2

accounts for �45% of the residual variability, and each successive component

describes approximately 33% of the successive residual. The effect of deriva-

tization treatments as well as multiplicative scattering corrections on the

resulting explained variance of the training set is also shown in Fig. 4.9.

Derivatization (Fig. 4.9A) results in an increased contribution by PC1, but

successive components have less influence on the explained variance. Con-

ducting MSC or EMSC corrections on the data prior to derivatization has little

influence on the resulting explained variance (Fig. 4.9B). Two remarks can be

made on the basis of the data in Fig. 4.9: First, as this is a calibration run,
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ponents calculated from PCA on the MIR spectra depicted in Fig. 4.2B. (A) Effect of derivatiza-

tion on vector-normalised data. (B) Effect of multiplicative scattering corrections (pretreatments)
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the explained variance will be based on increasingly trivial information

beyond a certain number of ranks until reaching 100% at 32 principal compo-

nents (cf. Fig. 4.8). Second, this slowly converging solution is typical for an

information-rich system. The description of such systems requires a relatively

large number of independent latent variables and should be based on datasets

that are significantly larger than the one used in the present example.

Nevertheless, the minimum mathematical preprocessing of the vector-

normalised spectral set allows for rationalising the shape of the first principal

components (Fig. 4.10) in terms of smectite chemistry. For example, PC1

(Fig. 4.10A) is dominated by positive correlations with the n(OH) and d(OH)
spectrum of nontronite (e.g. strong positive bands at �3580, 830 cm�1).

A sharp positive feature at 1620 cm�1 also occurs in PC1, associated with inter-

layer H2O. Capturing the largest amount of the remaining variability (20% of

the total), PC2 (Fig. 4.10B) exhibits an opposite response in the n(OH) range
(positive near 3665, negative near 3570 cm�1), as well as a strong negative

response associated with n(SiO) stretch near 1180 and 1060 cm�1. Negative

features associated with bound water near 3350 cm�1 are also present in PC2.
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FIG. 4.10 Spectral loading plots of the first four components (A: PC1; B: PC2; C:PC3 and D:

PC4) computed from vector-normalised MIR spectra of 32 dioctahedral smectites. The plots are

all differently and arbitrarily scaled.
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PC3 (Fig. 4.10C), which captures the next largest proportion (12%) of the

remaining variability, indicates a broader negative feature at 3580 cm�1 than

PC1, as well as strongly negative features at 1620, 1222, and 650 cm�1, and

a strongly positive feature at 1055 cm�1. PC4 (Fig. 4.10D) amounts to only

5% of the captured variability, and appears to convey issues associated with

scattering (broad features centred near 2800 cm�1).

Score plots (Fig. 4.11A) showcase what physical parameters may be

associated with the calculated components. For the 32-sample dataset, nontro-

nites are arrayed negatively with PC1 and both positively and negatively with

PC2, indicating that PC1 captures well the variability in Fe content of the sam-

ples. This relationship extends to the ferrian smectites (dashed circle), which are

positive in PC1 and negative in PC2. Beidellites and montmorillonites are

arrayed positively with PC1, but interspersed with each other and mostly posi-

tively, in PC2. PC2, which only captures 13% of the variability of the dataset,

appears to be associated with the magnesium content of the samples.

The locus of the 32 samples in the score plot of Fig. 4.11A is maintained

with small deviations upon performing a leave-two-out internal validation.

About one-third of the samples deviate slightly along PC2 and of these, most

deviate positively. One sample (circled) is poorly validated along PC2. Such a

sample is a candidate outlier and should be checked thoroughly using, for

example, a Hotelling statistic (Hotelling, 1931).

The percent explained variance of all the components calculated is shown

in Fig. 4.11B, where the validation set returns a lower percentage than
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the calibration set, without showing a maximum at a certain optimum rank

(cf. Fig. 4.8). This indicates that considerable variability remains uncaptured

by PCA.

PCR model validation. Armed with an example description of the system

in terms of its principal components, it is now possible to examine whether

the principal components calculated by PCA regress, by least squares, against

known chemical or physical properties of the samples. Validations will be

presented on the basis of a representative and randomly chosen 8-sample

internal test set, calibrated against the remaining 24 spectra. Both calibration

and validation sets have identically measured property sets and were subject

to the same pretreatments. For the following PCR model development, the

PCA components derived from vector-normalised datasets (Fig. 4.10) were

used without any other corrections, and applied to the octahedral Fe content

given in Gates (2005).

For PCR applied to the octahedral Fe content, PC1 and PC2 component

loadings describe the same features of the dataset as PCA (Fig. 4.12), and thus

indicate that these components remain the most influential in describing octa-

hedral Fe for this particular dataset. However, the first two components are

inverted in importance with respect to PCA (not shown). Among the 24 cali-

bration samples, PC1 accounts for about 11% of the explained variance in the

regression on octahedral Fe whereas PC2 accounts for 83% (Fig. 4.13), result-

ing in a cumulative capture of 94%. Subsequent principal components have no

influence on the resulting regressions. Note also that the 8-sample validation

set tracks very well the 24-sample calibration set, amounting to 94% cumula-

tive explained variance (16% from PC1 and 78% from PC2).
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The internal validation consisted of a randomly selected set of 8 samples from the original

32-sample dataset used.
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A scatter plot for the scores resulting from regression of the first two prin-

cipal components onto octahedral Fe content (Fig. 4.13) reveals that the sam-

ples distribute uniformly along both PC1 and PC2, and do not show the strong

distribution along PC1 that was observed previously in Fig. 4.11A. The differ-

ent clay minerals (nontronite, ferrian (ferruginous) smectite, montmorillonite,

and beidellite) are still largely preserved, but with a different orientation in

comparison to Fig. 4.11A. In fact, the locus of the groups indicates that PC2

captures most of the passage between montmorillonite-beidellite, ferrian smec-

tite and nontronite, that is, most of the variability in octahedral Fe content. The

8-sample validation set, composed of randomly selected nontronites (4), mon-

tmorillonites (2), beidellite (1) and ferrian smectite (1) are well dispersed within

the calibration set, indicating that any predictions resulting for this PCR model

will be robust.

The 24-sample calibration predictions and the 8-sample validation predic-

tions are depicted in Fig. 4.14 for octahedral Fe content. The prediction of

octahedral Fe by PC1 is poor (Fig. 4.14A), which is not surprising given that

it accounts for 11% of the variability. Prediction based solely on PC2 highly

underestimates octahedral Fe (Fig. 4.14B), but correlates well with the data.

The PCR model that combines linearly the orthonormal PC1 and PC2 load-

ings (Fig. 4.14C) significantly improves the prediction of octahedral Fe, again

decreasing significantly the root mean square error (RMSE) and also increas-

ing the resulting coefficient of correlation (R2). As expected, the 8-sample

validation set tracks the calibration in the same fashion.

P
C

2
 (

8
3

%
, 
7

8
%

)

PC1 (11%, 16%)

24-Sample
calibration

8-Sample internal
validation

−0.3 0.3

−0.15

0.15

N

F

M, B

FIG. 4.13 Scatter plots of the first two principal component scores resulting from PCR on octa-

hedral Fe determined on the vector-normalised, 24-sample training set (open symbols). The inter-

nal validation was performed by applying the PCR model to the octahedral Fe contents of eight

randomly selected samples comprising the validation set (filled symbols). Percentage values for

each PC correspond to, respectively, the PCA calibration and the PCR internal validation. Sym-

bols: N , nontronite; F, ferruginous smectite; M, montmorillonite; B, beidellite. The ferruginous

smectite grouping is encircled by a dashed line.

Spectral Manipulation and Multiple Regression Chapter 4 97



−0.5

0.5

1.5

2.5

3.5

4.5

−0.5 0.5

(A)

(B)

(C)

1.5 2.5 3.5 4.5

P
re

d
ic

te
d

 O
c

t 
F

e
  

(p
e

r 
O

2
0
(O

H
4
))

(P
C

1
)

Measured Oct Fe (per O20(OH4))

24-Sample calibration

8-Sample internal validation

RMSE = 1.29
Rc

2 = 0.11
RMSEv = 1.52
Rv

2 = 0.16

−2.5

−1.5

−0.5

0.5

1.5

2.5

24-Sample calibration

8-Sample internal validation

RMSE = 0.58 
Rc

2 = 0.83
RMSEv = 0.75 
Rv

2 = 0.82

−0.5

0.5

1.5

2.5

3.5

4.5

P
re

d
ic

te
d

 O
c

t 
F

e
  
(p

e
r 

O
2

0
(O

H
4
))

(P
C

2
 +

 P
C

1
)

24-Sample calibration

8-Sample internal validation

RMSE = 0.35
Rc

2 = 0.94
RMSEv = 0.41
Rv

2 = 0.94

P
re

d
ic

te
d

 O
c

t 
F

e
  

(p
e

r 
O

2
0
(O

H
4
))

(P
C

2
)

−0.5 0.5 1.5 2.5 3.5 4.5

Measured Oct Fe (per O20(OH4))

−0.5 0.5 1.5 2.5 3.5 4.5

Measured Oct Fe (per O20(OH4))

FIG. 4.14 PCR regression results for (A) PC1, (B) PC2 and (C) a two-component (PC2+PC1) PCR model

to predict octahedral Fe content. Root mean square error (RMSE) correlation coefficient (R2) reported is

reported for the regression on the calibration and internal validation set for each model.



In summary, the PCA and PCR treatment on the MIR spectra of a series of

well-studied dioctahedral smectites indicates the capacity of this multivariate

analytical approach to produce valid and useful predictions of their physical

or chemical properties. Increasing the number of samples in the calibration

set could capture better the latent structure of their spectra over the same, or

broader, ranges. It could also enable a more thorough validation, adding to

the robustness of the predictive models and offering an appealing alternative

for the high-throughput analysis of similar samples.

4.4.5 PLS Chemometrics for Clay Mineral Processing
Applications

This section highlights the application of PLS chemometrics as a platform

technology for quantitative analysis at the clay mineral processing plant.

The perspective is both appealing and challenging: Assuming that good-

quality spectra can be collected at suitable points of the processing line, these

can be used to produce instantaneous predictions on several prevalidated pro-

perties of the sample. The latter can then be used for optimising subsequent

processing steps or for the quality assurance of the final products. In addition,

this approach would create over time a spectral record of all processed

materials at the selected sampling points. If properly managed, such detailed

records of production can be revisited at later stages for additional data

mining regarding the identification of unknown components, for troubleshoot-

ing, or for setting up new methodologies.

There are several issues that are critical for the implementation of such

projects and require close collaboration and mutual understanding between

the spectroscopist and the end user. These issues concern the selection of sam-

pling points, the choice of the spectroscopic technique, the properties to be

targeted for fitting among the characterisation data that can be independently

available, and the operational maintenance of the application. In addition,

they concern the way the spectroscopic chemometric tool will be developed,

tested and installed in a ‘transparent’ way that does not obstruct or delay

normal operation. Few of these aspects are detailed in the peer-reviewed liter-

ature (but see Goetz et al., 2009; Konrad et al., 2015), because each applica-

tion is custom made for a specific deposit and plant. Thus this section

provides general guidelines and examples rather than detailed accounts of

specific applications.

A deposit is mined selectively on the basis of exploratory data, for exam-

ple on drill-core samples. A typical clay mineral processing plant accepts

the mined ore in coarsely crushed rock form, with near-natural moisture con-

tent and with variable mineralogical composition. What follows is a series of

physical (mixing, drying, milling, beneficiation), and sometimes chemical

(ion exchange, calcination) modification steps that are necessary for pro-

ducing the final product(s). All these steps from ore mining to the final
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product(s) eliminate progressively the original variability of the material,

resulting in a product with a relatively narrow range of compositions and con-

sistent specified properties. Each of these steps down the process line provides

a potential sampling point, with its own requirements and limitations.

The overall geological structure of the deposit may be diverse, but the

samples that are isolated from drill cores can be relatively uniform at the

medium (100 g–5 kg) scale. In addition they can be available dry after equili-

bration to ambient conditions and in homogenised powder or bulk rock forms.

Such samples are relatively easy to measure by many vibrational techniques,

although their potentially large number calls for high-throughput data acquisi-

tion (Herrmann et al., 2001; Yang et al., 2001). The opposite holds for the

agglomerate rock that is accepted as raw material for further processing,

usually after coarse crushing. Critical screening decisions may need to be

made at this early stage of production. The material, however, can be very

diverse on the medium scale of single lumps. Their surface is created by

fracture and cannot be assumed to be identical to the bulk, and their mois-

ture content can vary locally. Such material needs to be sampled and

measured in a manner that represents large volumes, of the order of many

tons (e.g. Goetz et al., 2009). Subsequent processing steps typically produce

finer and more uniform material but may require measurements under dyna-

mically changing conditions, for example, during the evolution of equilibra-

tion to ambient reactions and other diffusion-dependent processes. In the

final products the properties may require precise measurement over narrow

ranges of variability.

Among the various vibrational sampling techniques discussed previously

in Chapter 3, diffuse reflectance in the NIR is perhaps the most suitable in ful-

filling the majority of the diverse sampling requirements of the processing

plant and in providing high-quality and throughput spectra that are suitable

for chemometric modelling (see Section 3.3.5). Optical fibres, integrating

spheres and external illumination diffuse reflectance probes (see Fig. 3.7)

have progressively increasing sampling spot sizes which are useful for averag-

ing the signal from the surface of heterogeneous samples. Fibres and spheres

are more suitable for laboratory, off-line applications, whereas external illu-

mination probes allow additionally for the contactless, quasicontinuous,

real-time measurement of large or moving samples, for example, during belt

transportation (see Fig. 3.8).

Besides noninvasive sampling, NIR spectroscopy has additional advan-

tages that are specific to the study of clay-containing ores. Due to its sensitiv-

ity to vibrational modes involving the hydrogen atom, NIR can provide

spectra that may be diagnostic for natural samples that contain significant

amounts of nonhydrous associated minerals. Further, due to the activity of

OdH stretching-bending combination modes, and also due to anharmonicity

effects, NIR typically offers better resolution between structural OH and H2O

in the sample than MIR. On the other hand, ATR-MIR is superior to NIR in
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modelling the nonhydrous components (M€uller et al., 2014), the content of

which can be among the critical specifications of the final product. Robust,

industrial-grade FT instruments are preferable due to their higher resolution

and accuracy, but simpler instruments can be employed if portability and/or

the cost associated with the number of sampling points are the dominant con-

siderations (Herrmann et al., 2001; Yang et al., 2001).

The next decision concerns the choice of properties that need to be

validated for the chemometric modelling of the vibrational spectra (see

Section 4.4.2). A good (and often the only possible) starting point is the mod-

elling of the properties that are already implemented in the plant and used for

decision making. With some precautions, these established quality control

operations can be used for providing matching calibration spectra and inde-

pendent property data. The advantage is that sampling and on-site analytics

are already available and based on standardised procedures. The usual draw-

back is that, due to time and cost considerations, the on-site materials charac-

terization can be coarse in terms of fundamental understanding. It may,

therefore, be lacking the specificity in terms of structure and composition that

would be desirable for correlation with vibrational spectroscopic data. As an

example, industrial determinations of smectite content may be based on titra-

tions with a cationic dye (Lagaly, 1981). Such methods can provide the aver-

age CEC or layer charge but are unsuitable for distinguishing the type and

content of the various smectite species in the sample. Besides that, they can

be sensitive to the aggregation of the dye molecule (Budják et al., 2002).

As another example, several problems can be anticipated when the exchange

of the interlayer cations of the parent material is required in order to develop

performance. First, the effect of the nature of interlayer cations in the NIR (or

MIR) spectra of clay minerals is indirect and weak. Second, the ion-exchange

routines applied on site may be lacking the accuracy of those performed in an

academic laboratory. More seriously, the chemometric model may be required

to predict the anticipated performance of the raw material, prior to the proces-

sing that is needed for the development of this performance.

Despite these concerns, properly validated PLS chemometrics can perform

very well at the clay mineral processing plant. The predictions shown in

Fig. 4.15 are selected among the results of two independent industrial feasibil-

ity projects on dioctahedral bentonite and palygorskite-smectite systems. The

spectra have been collected by FT NIR instruments in the diffuse reflectance

mode with an external illumination unit and a powder probe, respectively.

In both cases, the samples were in a <250 mm homogenised powder form,

dried at ambient conditions without further treatments. They were selected

from company depositories of reference production and deposit exploration

samples, respectively, and their properties were determined by in-house

standardised procedures applied after a common preparation step. PLS chemo-

metrics were developed with the QUANT2 package of the OPUS software by

Bruker Optics. In most cases, spectral preprocessing involved Savitzky–Golay
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second derivatives, for filtering out variable baselines or broad vibrational

bands, and enhancing the resolution of sharp features (see Section 4.3.2). The

methods were typically cross-validated by applying a leaving-10%-out method

after randomising the order of the spectra in X to remove possible time-series

systematics. The properties shown in Fig. 4.15 (arbitrary units) include mois-

ture content (A) estimated gravimetically, ‘smectite content’ (B, E) estimated

by titration methods, palygorskite content (D) estimated from the intensity of

the d110 XRD reflection at �10.4 Å as in Gionis et al. (2007), and two propri-

etary sets of data on anticipated performance (C, F). At this level of develop-

ment, PLS chemometrics can complement or substitute seamlessly the

existing laboratory quality control procedures on site. In addition, a number

of knowledge-based parameters, typically based on peak positions or relative

intensities (e.g. Post and Noble, 1993; Yang et al., 2001; Chryssikos et al.,

2009; Stathopoulou et al., 2011) can be extracted from the spectra and included

in the characterisation report of each sample as additional proxies of crystal

structure and composition.

As discussed in Section 4.4.2, the successful development of any chemo-

metric correlation method relies on the similarity between the calibration sam-

ples and the anticipated unknowns. This is because predictions should be
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based on interpolation rather than extrapolation, but also because diffuse

reflectance techniques depend strongly on the particle size of the sample.

For these reasons, the chemometric monitoring of the same material at a dif-

ferent sampling point along the process pipeline requires in most cases inde-

pendent calibration and validation. In Fig. 4.16 are compared two such

calibrations for moisture and smectite content (arbitrary units) based on the

incoming wet, coarse material from the conveyor belt against laboratory mea-

surements on powdered samples equilibrated at ambient conditions (as in

Fig. 4.15). The two sets of data are obtained from the same production line

over the same time period of several months. The data should, therefore, rep-

resent the same distributions of the essential properties of the material (except

moisture content and particle size), which is in agreement with the results

shown in Fig. 4.16. On the other hand, the RMSE of the predictions based

on wet, coarse calibrants is clearly inferior to that based on dry powders.

The reason for this must be sought in the way calibration and property data

(X and Y, respectively, see Section 4.4.2) are obtained. For practical and

safety reasons, the characterisation of the coarse material may require taking

a sample from the conveyor, sealing it to avoid loss of natural moisture, and

measuring it at a later time in the laboratory by a sampling system that simu-

lates spectral acquisition over the belt (e.g. a rotating platform as in Goetz

et al., 2009). Measuring the independent properties of the same sample by

the usual standard methods requires sample drying and homogenisation.

Obtaining such X and Y data on samples that exhibit local variations in
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FIG. 4.16 Comparison of cross-validated PLS predictions at two different sampling points of
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to real-time NIR measurements of the wet, coarse material over the conveyor (�800 samples).
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composition is by no means trivial. Calibration is prone to higher sampling

errors in both the spectral and property measurements, as well as in matching

exactly the samples of the two sets.

Overcoming these obstacles leads to chemometric tools that can be applied

on-line to characterise the incoming raw material over, for example, a con-

veyor belt in real time. This approach is illustrated in Fig. 4.17. It is based

on a representative time series of diffused reflectance NIR data (similar to that

in Chapter 3, Fig. 3.8) and a set of suitable chemometric validations as in

Fig. 4.16. In this manner, the time dependence of several sample properties

can be obtained simultaneously. These properties can feed-back decisions

on the potential use of the incoming materials and, if applicable, on the para-

meters of subsequent treatments. The data are equispaced in time but can be

converted to tonnage by considering the time-dependent loading capacity of

the conveyor. The time resolution of the graphs in Fig. 4.17 is sufficiently

sensitive to sudden changes, but average predictions can be obtained over lon-

ger periods, if needed. The performance of each prediction algorithm can be
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FIG. 4.17 Real-time PLS chemometric predictions of four different properties during the

monitoring of wet, coarse clay-mineral ore during transportation on an open-air conveyor. The

spectral time series, similar to that shown in Chapter 3 (Figure 3.8) was collected by an external

illumination diffuse reflectance probe. The predictions (arbitrary units) concerned the moisture

(A), smectite (B), interlayer (C) and one common impurity (D) contents of a 2-min average

sample, over a period of�5 h of continuous operation. Lines on the left and right side of each

panel (red in online version) correspond to the results of independent laboratory analysis from

the routine periodic sampling of the transported material.
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accessed in real time by the quality figures of the PLS fit, and can also be

externally evaluated (and validated) by existing protocols for the regular sam-

pling and characterisation of the raw material (horizontal ticks in each panel

of Fig. 4.17).

It needs to be emphasised that any quality control process based on chemo-

metric correlations requires regular maintenance. Modern spectrometers have

internal validation standards that can be used regularly for detecting and cor-

recting drifts with time. Systematic changes regarding the state of the material

at the sampling points need to be accounted for. More importantly, it cannot

be assumed that the unknown incoming samples will remain within the cali-

brated range of latent variables as mining advances with time. The problem

is typically addressed by the periodic update of the sample and property data-

sets and their use for the revalidation of the methods. It has been proposed that

the necessary adjustments and chemometric updates can be performed in an

unsupervised manner (Li et al., 2000; Benndorf, 2015). Including the explora-

tion samples as a separate stage of chemometric assessment can provide an

early external validation warning about anticipated material changes in pro-

duction. The need for method maintenance implies that the in-house conven-

tional quality control procedures should not be abandoned. Chemometrics

should be employed for increasing the number of characterised samples by

orders of magnitude, also for providing an independent assessment of the

material, but not as a full substitute of conventional characterisation.

4.5 CONCLUDING REMARKS

When applying mathematical treatments to interrogate the data, it is important

to keep in mind that statistics do not generate information. Instead, they just

help extract relevant information from signals that contain noninformative

content. The less noninformative content, the greater is the accuracy of infor-

mation extraction. Emphasis should therefore be placed on the quality of the

raw data per se, and this implies decisions regarding the most suitable sam-

pling technique, the spectral range, the optical and digital resolution, the acqui-

sition time, the elimination of (or compensation for) spectral artifacts. With

appropriate adaptations, the same holds for the various types of independent

data that are considered for chemometric correlation with the spectral data.

Deciding what part(s) of the spectral information is(are) informative is

question dependent: It is determined by what information is sought from the

spectra. Vibrational spectroscopy is extremely rich in information concerning

the composition, structure and bonding of clay minerals and related samples.

Yet one should be prepared to encounter situations where the information

content of the spectra that is relevant to the specific question of interest is

below the detection limit of a particular (or any) vibrational spectroscopic

technique. Further, the threshold between significance and triviality can be

vague and should only be approached statistically by validation procedures.
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Vibrational spectra are fingerprints of samples (Farmer and Russell, 1964,

1967). From the perspective of multivariate analysis, spectra (or samples) are

pixels of a more general picture and acquire most of their significance as spe-

cific parts of that general picture. Thus a single spectrum of a specific mont-

morillonite has little to offer if observed outside the context of the IR spectra

of other montmorillonites or smectites in general. The situation calls for a

large number of observations that are needed to create the general picture.

Multivariate analysis is a toolbox designed for identifying and analyzing sys-

tematics within large sets of observations, or among large sets of observations

obtained by different ‘sensors’. It is in their latter capacity that multivariate anal-

ysis and especially chemometrics can bridge between disciplines and open the

way towards scientific discovery.

Yet it should always be remembered that the human brain has amazing

multivariate analytic capabilities in handling and rationalising observations.

The visual inspection of large numbers of spectra on screen, subjected to var-

ious pretreatments (derivatives, normalisations, etc.) has always been reward-

ing in identifying important trends and subtle systematics.

A final remark is deserved regarding multivariate analysis and chemo-

metrics: Their performance can be properly judged during application, but

its reporting in the literature is often received with scepticism. This is because

the models are built from datasets that may not be available for inspection,

even less for review, but also because the physical meaning of the latent vari-

ables is rarely straightforward. Further, it is easy to use commercial software

and modest computing resources for producing solutions of no value. Poorly

validated ‘results’ appear more impressive the more mathematically trivial

they are. For these reasons, multivariate analysis and chemometric modelling

should not be developed, nor reported as ‘black box’ applications. They

should, instead, be discussed in their real context, as tools for classifying,

identifying and predicting the behaviour of individual objects that are part

of a complex, poorly understood cosmos.
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