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Abstract

Personalized predictive medicine necessitates the modeling of patient illness and care pro-
cesses, which inherently have long-term temporal dependencies. Healthcare observations,
stored in electronic medical records are episodic and irregular in time. We introduce
DeepCare, an end-to-end deep dynamic neural network that reads medical records, stores
previous illness history, infers current illness states and predicts future medical outcomes.
At the data level, DeepCare represents care episodes as vectors and models patient health
state trajectories by the memory of historical records. Built on Long Short-Term Memory
(LSTM), DeepCare introduces methods to handle irregularly timed events by moderat-
ing the forgetting and consolidation of memory. DeepCare also explicitly models medical
interventions that change the course of illness and shape future medical risk. Moving
up to the health state level, historical and present health states are then aggregated
through multiscale temporal pooling, before passing through a neural network that esti-
mates future outcomes. We demonstrate the efficacy of DeepCare for disease progression
modeling, intervention recommendation, and future risk prediction. On two important
cohorts with heavy social and economic burden – diabetes and mental health – the results
show improved prediction accuracy.

Keywords: Electronic medical records, predictive medicine, Long-Short Term Memory,
irregular timing, healthcare processes.

1. Introduction

When a patient is admitted to a hospital, there are two commonly asked questions:
“what is happening?” and “what happens next?” The first question is about illness
diagnosis, the second is about predicting future medical risk [43]. Whilst there are a wide
array of diagnostic tools to answer the first question, fewer technologies address the second5

[41]. Traditionally, the prognostic question may be answered by experienced clinicians
who have seen many patients or by clinical prediction models with well-defined risk factors.
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But both methods are expensive and restricted in availability. Modern electronic medical
records (EMRs) promise a fast and cheap alternative. An EMR contains the history of
hospital encounters, diagnoses, interventions, lab tests and clinical narratives. The wide10

adoption of EMRs has led to recent research to build predictive models from this rich
data source [26, 45, 48, 49].

Answering prognostic inquiries necessitates modeling patient-level temporal health-
care processes. Effective modeling must address four open challenges: (i) Long-term
dependencies in healthcare: the future illness and care may depend critically on historical15

illness and interventions. For example, the onset of diabetes in middle age remains a risk
factor for a person’s remaining life; cancers may recur after years; and a previous surgery
may prevent certain future interventions. (ii) Representation of admission information:
an admission episode consists of a variable-size discrete set containing diagnoses and in-
terventions. (iii) Episodic recording and irregular timing: medical records vary greatly in20

length, are inherently episodic in nature and irregular in time [47]. The data is episodic
because it is only recorded when the patient visits the hospital and undergoes an episode
of care. The episode is often tightly packed in a short period, typically ranging from a
day to two weeks. The timing of arrivals is largely random. (iv) Confounding interactions
between disease progression and interventions.25

We address the four challenges to construct a predictive system that is both end-to-end
and generic so that it can be deployed on different hospital implementations of EMRs.
An end-to-end system requires minimal or no feature engineering, reads medical records,
infers present illness states and predicts future outcomes.

Existing methods are poor in handling such complexity. They inadequately model30

variable length [45] and ignore the long-term dependencies [24, 31, 51]. Temporal mod-
els based on the Markovian assumption are limited to model temporal irregularity and
have no memory, and thus they may completely forget previous major illness given an
irrelevant episode [1]. Deep learning, which has recently revolutionized cognitive fields
such as speech recognition, vision and computational linguistics, holds a great potential35

in constructing end-to-end systems [27]. However, little work has been done using deep
learning for healthcare [8, 13, 28, 46]. While work in deep learning has been done to ad-
dress the challenge of long-term dependencies [5, 7, 29], the three other challenges remain
unsolved.

To this end, we introduce DeepCare, an end-to-end deep dynamic memory neural40

network that addresses the four aforementioned challenges [38]. DeepCare is built on
Long Short-Term Memory (LSTM) [15, 21], a recurrent neural network equipped with
memory cells to store experiences. At each time-step, the LSTM reads an input, updates
the memory cell, and returns an output. Memory is maintained through a forget gate that
moderates the passing of memory from one time step to another, and is updated by seeing45
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new input at each time step. The output is determined by the memory and moderated
by an output gate. In DeepCare, the LSTM models the illness trajectory and healthcare
processes of a patient encapsulated in a time-stamped sequence of admissions. The inputs
to the LSTM are information extracted from admissions. The outputs represent illness
states at the time of admission. Memory maintenance enables capturing of long-term50

dependencies, thus addressing the first challenge. In fact, this capacity has made LSTM
an ideal model for a variety of sequential domains [15, 17, 44].

Addressing the other three drawbacks, DeepCare introduces C-LSTM as an extension
of the standard LSTM unit (Fig. 1). For representing an admission, which is a set of
discrete elements in different types such as diagnoses and interventions, the solution is55

to embed these elements into continuous vector spaces. Vectors of the same type are
then pooled into a single vector. Type-specific pooled vectors are then concatenated
to represent an admission. In that way, variable-size admissions are embedded in to
continuous distributed vector space. The admission vectors then serve as input features
for the C-LSTM. As the embedding is learned from data, the model does not rely on60

manual feature engineering.
For irregular timing, the forget gate is extended to be a function of irregular time gap

between consecutive time steps. We introduce two new forgetting mechanisms: monotonic
decay and full time-parameterization. The decay mimics natural forgetting when learning
a new concept in human. The parameterization accounts for more complex dynamics65

of different diseases over time. The resulting model is sparse in time and efficient to
compute since only observed records are incorporated, regardless of the irregular time
spacing. Finally, in DeepCare the confounding interaction between disease progression
and interventions is modeled as follows: Interventions influence the output gate of current
illness states and the forget gate which moderates memory carried into the future. As a70

result, the illness states (the output) are moderated by past and current interventions.
Once illness states are outputted by the C-LSTM layer, they are aggregated through

a new time-decayed multiscale pooling strategy for future projection. This allows further
handling of time-modulated memory. Finally at the top layer, pooled illness states are
passed through a neural network for future prognosis (See Fig. 1 for a graphical depict75

of DeepCare). Overall, DeepCare is an end-to-end prediction model that relies on no
manual feature engineering, is capable of reading generic medical records, memorizing a
long history, inferring current illness states and predicting the future risk.

We demonstrate our DeepCare on answering a part of the question “what happens
next?”. In particular, we validate our model on disease progression, intervention rec-80

ommendation and future risk prediction. Disease progression refers to the next disease
occurrence given the medical history. Intervention recommendation is about predicting a
subset of treatment procedures for the current diagnoses. Future risk may involve read-
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Figure 1: DeepCare architecture. Top: The healthcare dynamics are modelled as a sequence of C-LSTM
units which model irregular timing and interventions (see Fig. 4 for more detail). The symbols (e.g.,
stars, circles and triangles) in the bottom rectangles are diagnosis and interventions codes (See Sec. 2.2).
Bottom: Predictive computation summarized in an equation.

mission or mortality within a predefined period after discharge. Our experiments are
demonstrated on two datasets of very different nature – diabetes (a well-defined chronic85

condition) and mental health (a diverse mixture of many acute and chronic conditions).
The cohorts were collected from a large regional hospital in the period of 2002 to 2013.
We show that DeepCare outperforms state-of-the-art classification methods.

Initial implementation of our framework has been conducted and preliminarily re-
ported in [38]. Here we provide a complete account of the model and more comprehensive90

results on two chronic cohorts (diabetes and mental health). To summarize, through
introducing DeepCare, we make four modeling contributions: (i) handling long-term de-
pendencies in healthcare; (ii) introducing a novel representation of variable-size admission
as fixed-size continuous vectors; (iii) modeling episodic recording and irregular timing;
and (iv) capturing confounding interactions between disease and interventions. We also95

contribute to the healthcare analytic practice by demonstrating the effectiveness of Deep-
Care on disease progression, intervention recommendation and medical risk prediction.
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The rest of this paper is organized as follows. Section 2 presents preliminaries for
DeepCare model: LSTM and the coding of EMRs. DeepCare is described in Section 3
while the experiments and results are reported in Section 4. Finally, Section 5 discusses100

further and concludes the paper.

2. Preliminaries

2.1. Long Short-Term Memory
A Recurrent Neural Network (RNN) is a neural network repeated over time. In

particular, an RNN allows self-loop connections and shared parameters across different105

time steps. While a feedforward neural network maps an input vector into an output
vector, an RNN maps a sequence into a sequence (see Fig. 2 for a graphical illustration).
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Figure 2: (Left) A typical Recurrent Neural Network that recurrently reads new input x, re-computes
the hidden state h and returns the output ỹ. (Right) an RNN unfolded in time. Each RNN unit at time
step t reads input xt and previous hidden state ht−1 , generates output at and predicts the label ỹt.

An RNN unit has three connections: a recurrent connection from the previous hidden
state to the current hidden state (ht−1 → ht), an input-to-hidden-state connection (xt →
ht) and a hidden-state-to-output connection (ht → at). At time step t, the model reads110

the input xt ∈ RM and the previous hidden state ht−1 ∈ RK and compute the hidden
state ht, where M and K are vector dimensions of input and hidden state at every
step. Thus ht summarizes information from all previous inputs x1,x1, ...,xt. The output
at ∈ Rnc is generated by a transformation function of ht, where nc is the number of
classes in the classification tasks. Many experiments have shown that learning long RNNs115

is difficult due to vanishing or exploding gradients [4, 36].

Long Short-Term Memory (LSTM)
LSTM is a RNN that effectively solves the vanishing gradient problem [21]. Central

to an LSTM is a linear self-loop memory cell that allows gradients to flow through long
sequences. The memory cell is gated to moderate the information flow to or from the120

cell. LSTMs have been successful in many applications, such as machine translation [44],
handwriting recognition [16] and speech recognition [18].

5



f
t

i
t

*

*

*

g
t

c
t-1

c
t

o
t

Figure 3: An LSTM unit that reads input xt and previous output state ht−1 and produces current
output state ht. An unit has a memory cell ct , an input gate it, an output gate ot and a forget
gate f t.

Fig. 3 describes an LSTM unit. Instead of a simple RNN unit, an LSTM unit has
a memory cell that has state ct ∈ RK at time t. The information flowing through the
memory cell is controlled by three gates: an input gate, a forget gate and an output gate.125

The input gate it ∈ RK controls the input flowing into the cell, the forget gate f t ∈ RK

controls the forgetting of the memory cell, and the output gate ot ∈ RK moderates the
output flowing from the memory cell. Before proceeding with technical details, we denote
the element-wise sigmoid function of a vector by σ and the element-wise product of two
vectors by ∗.130

The three gates are all sigmoid units that set every element of the gates to a value
between 0 and 1:

it = σ (Wixt + Uiht−1 + bi) (1)

f t = σ (Wf xt + Uf ht−1 + bf ) (2)

ot = σ (Woxt + Uoht−1 + bo) (3)

where W{i,f,o}, U{i,f,o}, b{i,f,o} are parameters. The gates control the amount of infor-
mation passing through: full flow when the gate value is 1, to complete blockage when
the value is 0.135

At each time step t, the input features are first computed by passing input xt ∈ RMand
the previous hidden state ht−1 ∈ RK through a squashing tanh function:

gt = tanh (Wcxt + Ucht−1 + bc) (4)

The memory cell is updated through partial forgetting of the previous memory cell and
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the moderated input features as follows:

ct = f t ∗ ct−1 + it ∗ gt (5)

The memory cell sequence is additive, and thus the gradient is also updated in a linear140

fashion through the chain rule. This effectively prevents the gradient from vanishing or
exploding. The memory cell plays a crucial role in memorizing past experiences through
the learnable forgetting gates f t. On the contrary, f t → 1, all the past memory is
preserved, and new memory keeps updated with new inputs. If f t → 0, only the new
experience is updated and the system becomes memoryless.145

Finally, a hidden output state ht is computed based on the memory ct, gated by the
output gate ot as follows:

ht = ot ∗ tanh (ct) (6)

Note that since the system dynamics are deterministic, ht is a function of all previous
inputs: ht = LSTM(x1:t). The output states are then used to generate outputs.

2.2. EMR coding150

An electronic medical record (EMR) is a digital version of a patient’s health infor-
mation. A wide range of information can be stored in EMRs, such as detailed records
of symptoms, data from monitoring devices and clinician’s observations [37]. A typical
EMR contains information about a sequence of admissions for a patient. There are two
types of admission methods: planned (routine) and unplanned (emergency). Unplanned155

admission refers to transfer from the emergency department. EMRs typically store ad-
mitted time, discharge time, lab tests, diagnoses, procedures, medications and clinical
narratives. Diagnoses, procedures and medications are typically coded in standardized
formats. Diagnoses are represented using WHO’s ICD-10 (International Classification of
Diseases) coding schemes1. For example, in ICD-10, E10 encodes Type 1 diabetes mel-160

litus, E11 encodes Type 2 diabetes mellitus while F32 indicates depressive episode. The
procedures are coded in CPT (Current Procedural Terminology) or ICHI (International
Classification of Health Interventions) schemes 2. Medication names can be mapped into
the ATC (Anatomical Therapeutic Chemical) scheme 3.

1http://apps.who.int/classifications/icd10/browse/2016/en
2http://www.who.int/classifications/ichi/en/
3http://www.whocc.no/atc_ddd_index/
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3. DeepCare: A Deep learning framework for Care episodes165

In this section, we present our main contribution: DeepCare for modeling illness
trajectories and predicting future outcomes. DeepCare is built upon LSTM to exploit
its ability to model long-term dependencies in sequences. We extend the LSTM unit to
C-LSTM unit to address the three major challenges: (i) variable-size discrete inputs, (ii)
confounding interactions between disease progression and intervention, and (iii) irregular170

timing.

3.1. Model overview

DeepCare (see Fig. 1) is a deep dynamic neural network that has three main layers.
The bottom layer is built on C-LSTM whose memory cells are modified to handle irregular
timing and interventions, the capacity not seen in standard LSTM units (see Fig. 4).175

More specifically, the input is a sequence of admissions. Each admission t contains a
set of diagnosis codes (which is then formulated as a feature vector xt ∈ RM ), a set of
intervention codes (which is further formulated as a feature vector pt ∈ RM , where M
is the vector dimension of xt and pt), the admission method mt ∈ R and the elapsed
time ∆t between the current admission and its previous one. Denote by u1,u2, ...,un180

the input sequence, where ut = [xt,pt,mt,∆t], the C-LSTM computes the corresponding
sequence of distributed illness states h1,h2, ...,hn, where ht ∈ RK and K is the vector
dimension. (see Fig. 4b). The middle layer aggregates illness states through multiscale
weighted pooling h̄ = pool {h1,h1, ...,hn}, where h̄ ∈ RsK for s scales.

The top layer is a neural network (nnety) that takes pooled states and other statistics185

to estimate the final outcome probability, as

P (y | u1:n) = P
(
nnety

(
h̄
))

The probability P (y | u1:n) depends on the nature of outputs and the choice of statistical
structure. For example, for binary outcomes, P (y = 1 | u1:n) is a logistic function; for
multiclass outcomes, P (y | u1:n) is a softmax function; and for continuous outcomes,
P (y | u1:n) is a Gaussian. In what follows, we describe the first two layers in greater190

detail.

3.2. Representing variable-size admissions

An admission contains multiple diagnoses and interventions. Interventions include
procedures and medications. Diagnoses, procedures and medications are coded using
coding schemes which are described in Sec. 2.2. Our approach is to embed admissions195

into vectors (See Fig. 4a). An admission is a variable-size set of codes (diagnoses and
interventions). Let D be the set of diagnosis codes and I be the set of intervention
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Figure 4: (a) Code embedding. (b) C-LSTM (Care-LSTM) unit as a carrier of illness history. Compared
to the original LSTM unit (Fig. 3), the new C-LSTM unit models times, admission methods, diagnoses
and intervention.

codes. The two sets are indexed from 1 to |D| and from 1 to |I|, respectively. Denote the
diagnosis embedding matrix by A ∈ RM×|D| and the intervention embedding matrix by
B ∈ RM×|I|. Let Aj be the jth column and Aj

i be the element at the jthcolumn and the ith
200

row of the matrix A. Each admission t contains h diagnoses: d1, d2, ..., dh ∈ {1, 2, ..., |D|}
and k interventions: s1, s2, ..., sk ∈ {1, 2, ..., |I|}. Codes are first embedded into vec-
tors. The embedded vectors for diagnosis and intervention codes are Ad1 , ..., Adk and
Bs1 , ..., Bsk . We then pool all the present diagnosis vectors to derive xt ∈ RM . Likewise,
we derive a pooled intervention vector pt ∈ RM . Finally, an admission embedding is a205

2M -dim vector [xt,pt]. The two embedding matrices are first randomly initialized and
then learned through training the prediction tasks.

3.2.1. Pooling
Let xi

t be the ith element of the vector xt and pi
t be the ith element of the vector pt.

The admission is pooled by max, sum or mean pooling as:210

• Max pooling admission (max adm.). The pooling is element-wise as follows:

xi
t = max

(
Ad1

i , A
d2
i , ..., A

dh
i

)
9



pi
t = max (Bs1

i , Bs2
i , ..., Bsk

i )

for i = 1, ...,M . This is analogous to paying selective attention to the element
of highest impact among the diagnoses and the interventions. It also resembles
the usual coding practice that one diagnosis is picked as the primary reason for
admission.215

• Normalized sum pooling admission (sum adm.). A patient with multiple diseases
(multiple comorbidities) is more likely to be at risk than those with a single condi-
tion. We propose the following normalized sum pooling:

xi
t = Ad1

i +Ad2
i + ...+Adh

i√
| Ad1

i +Ad2
i + ...+Adh

i |

pi
t = Bs1

i +Bs2
i + ...+Bsk

i√
| Bs1

i +Bs2
i + ...+Bsk

i |

for i = 1, ...,M . The normalization reduces the effect of large diagnosis and inter-220

vention sets.

• Mean pooling admission (mean adm.). In absence of primary conditions, a mean
pooling could be a sensible choice:

xt = Ad1 +Ad2 + ...+Adh

h

pt = Bs1 +Bs2 + ...+Bsk

k

3.2.2. Admission as input225

Once admission embedding has been derived, the diagnosis component is used as input
for the C-LSTM. As interventions are designed to reduce illness, their effect is modeled
separately in Sec. 3.3.1. Recall from Sec. 2.2, there are two main types of admission:
planned and unplanned. Unplanned admissions refer to transfer from emergency atten-
dances, which typically indicates higher risk. Recall from Eqs. (1, 4) that the input gate230

i controls how much new information is updated into memory c. The gate is modified to
reflect the risk level of admission type as follows:

it = 1
mt

σ (Wixt + Uiht−1 + bi) (7)

where mt = 1 if the admission method is unplanned, mt > 1 otherwise, and σ is the
element-wise sigmoid function of a vector. (See Supplementary Appendix A.5 for more
details about the effect of mt).235
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3.3. C-LSTM unit

We now describe C-LSTM, which stands for Care-LSTM, units. A C-LSTM unit
extends the LSTM unit to reflect the properties of healthcare dynamics. In particular, C-
LSTM units model the effect of interventions and capture time irregularities. See Fig. 4b
for a graphical illustration.240

3.3.1. Modeling effect of interventions
The intervention vector (pt) of an admission is modeled as illustrated in Fig. 4b.

Since interventions are designed to cure diseases or reduce patient’s illness, the output
gate, which controls the illness states, is moderated by the current intervention as follows:

245

ot = σ (Woxt + Uoht−1 + Popt + bo) (8)

where Po is the intervention weight matrix for the output gate and pt is intervention at
time step t.

Moreover, interventions may have long-term impacts (e.g., curing disease or introduc-
ing toxicity). This suggests the illness forgetting is moderated by previous intervention

250

f t = σ
(
Wf xt + Uf ht−1 + Pf pt−1 + bf

)
(9)

where pt−1 is intervention embedded vector at time step t− 1 and Pf is the intervention
weight matrix for the forget gate.

3.3.2. Capturing time irregularity
When a patient’s history is modeled by LSTM (Sec. 2.1), the memory cell carries the

illness history. But this memory needs not be constant as illness states change over time.255

In C-LSTM, we introduce two mechanisms of forgetting the memory by modifying the
forget gate f t in Eq. 9:

Time decay. There are acute conditions that naturally reduce their effect through time.
This suggests a simple decay modeled in the forget gate f t:

f t ← d (∆t−1:t) f t (10)

where ∆t−1:t is the time passed between step t − 1 and step t, and d (∆t−1:t) ∈ (0, 1] is260

a decay function, i.e., it monotonically decreases in time. We found that the function
d(∆t−1:t) = [log(e+ ∆t−1:t)]−1 works well, where ∆t−1:t is measured in days and e ≈
2.718 is the base of the natural logarithm.
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Parametric time. Time decay may not capture all conditions as some conditions can get
worse, and others can be chronic. This suggests a more flexible parametric forgetting:265

f t = σ
(
Wf xt + Uf ht−1 +Qf q∆t−1:t + Pf pt−1 + bf

)
(11)

where q∆t−1:t is a vector derived from the time difference ∆t−1:t, Qf is the parametric time

weight matrix. For example, we may have: q∆t−1:t =
(

∆t−1:t
60 ,

(
∆t−1:t

180

)2
,
(

∆t−1:t
365

)3
)

to

model the third-degree forgetting dynamics. ∆t−1:t is measured in days and is divided
by 60, 180 and 365 to prevent the vector q∆t−1:t from having large values.

3.4. Trajectory prediction270

Once the C-LSTM units have been set up, at each time-step, the hidden illness state
ht is computed. The states are then used to predict the future trajectory. We consider
three tasks: (1) next-step disease progression, (2) intervention recommendation, and (3)
future risk prognosis. The first two tasks cover short-range prediction (current and next
admissions), but the third task looks far into the future of any horizon.275

3.4.1. Short-range disease progression
Disease progression refers to occurrence of future diseases in the next time-step. It

could be the progression from a stage to another of the same disease, the recurrence of a
disease, or the transition to a new disease. The illness state ht can be used to predict a
diagnosis code dt+1 as follows280

P (dt+1 = c | u1:t) = softmax
(
w>c ht

)
(12)

where softmax(z) = ez/
∑

z′ e
z′ , wc is code-specific parameter.

3.4.2. Short-range intervention recommendation
Intervention recommendation refers to predicting medications and procedures for the

current diagnoses. Similar to disease progression, an intervention code st at time t can
be generated as follows285

P (st = c | u1:t) = softmax
(
v>c ht

)
(13)

where vc is code-specific parameter.

3.4.3. Long-range prognosis by pooling multiple temporal resolutions
Recall that the C-LSTM has two temporal characteristics:

12



• Integrating long-range information through gradually forgotten memory. A conse-
quence of forgetting is that recent information affects the current illness state more,290

and this fits the nature of healthcare processes.

• Representing a complex effect of time lapse between two admissions from parame-
terization of time in the forget gate.

However, C-LSTM, like its ancestor LSTM, is not explicitly designed to predict the far
future. This because the memory is updated at every admission but the global dynamics295

across multiple admissions are not fully captured. For this reason, we propose to impose
a multiscale temporal structure on top of the C-LSTM layer to predict the far future (see
Fig. 1). It means to pool historical illness states within multiple time-horizons. This is
to reflect the variable rates at which diseases progress.

• For state pooling per time-horizon, the simplest way is to use mean-pooling, where300

h̄ = pool {h1:n} = 1
n+1

∑n
t=1 ht. However, this does not reflect the recency in

history. Here we introduce a simple attention scheme that weighs recent events
more: h̄ =

(∑n
t=t1

rtht

)
/
∑n

t=t1
rt, where

rt = [mt + log (1 + ∆t:n)]−1

and ∆t:n is the elapsed time between the step t and the current step n, measured in
months; mt = 1 if emergency admission, mt = 2 if routine admission. The starting305

time step t1 is used to control the length of look-back in the pooling, for example,
∆t1:n ≤ 12 for one year look-back.

• For multiple time-horizons, we employ multiple look-backs: 12 months, 24 months,
and all available history. Finally, the three pooled illness states are stacked into
a vector: h̄ =

[
h̄12, h̄24, h̄all

]
which is then fed to a neural network for inferring310

about the future.

Once all the illness states are pooled and stacked into vector h̄, h̄ is then fed to a neural
network to predict the future outcome y. The design of the neural network is flexible with
any depth as desirable with or without parameter tying between layers (see for example,
recent work in [39]).315

In this paper, we use a simple neural network with one hidden layer, as follows:

ah = σ
(
Uhh̄ + bh

)
(14)

zy = Uyah + by (15)

P (y | u1:n) = fprob (zy) (16)
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The function fprob (zy) depends on the nature of the future outcome. For example, in
the case of binary classification, fprob (zy) is a logistic regression. Although not pursued
here, this can be easily extended to survival analysis setting, where fprob (zy) is partial-
likelihood.320

In summary, computation steps in DeepCare can be summarized as follows:

P (y | u1:n) = P (nnety (pool {C~LSTM(u1:n)})) (17)

where u1:n is the input sequence of admission observations, y is the outcome of interest
(e.g., readmission), nnety denotes estimate by the neural network with respect to outcome
y, and P is probabilistic model of outcomes.

3.5. Model training325

Recall that there are three prediction tasks – two short-range (intervention recom-
mendation and disease progression) and one long-range prognosis. As the the short-range
tasks are indeed special detailed cases of the long-range task, the models learned from
the short-range can be reused in the long-range. This is also known as transfer learning.
In particular, the short-range models will serve as a pre-training step for the long-range330

task. See Appendix A.2 for more detail on pre-training.

• For short-range tasks, models are trained by minimizing the log-loss L = −
∑

t logP (yt | u1:t),
where yt is either intervention code st in Eq. (13) or disease code dt+1 in Eq. (12).

• For the long-range task, the loss is L = − logP (y | u1:n) where P (y | u1:n) is
given in Eq. (16)335

Despite having a complex structure, DeepCare’s loss functions are fully differentiable,
and thus can be minimized using standard back-propagation and supported by current
programming frameworks with automatic differentiation facilities. The learning complex-
ity is linear with the number of parameters (see Appendix A.1 for model complexity
analysis).340

Alg. 1 is an overview of our DeepCare forward pass. In actual implementation, we
also make use of recent techniques such as dropouts [42] (see Appendix A.3 for further
detail).

4. Case studies on chronic diseases

In this section we report case studies for two chronic cohorts: mental health and345

diabetes. For each cohort we modeled disease progression, intervention recommendation
and future risk prediction. These diseases differ in causes and progression. Further details
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Algorithm 1 DeepCare forward pass
1: Input: EMRs as sequences of sets of diagnosis, intervention codes, admission type

and time lapse.
2: for each step t

* [xt,pt] = embedding(d1, ..., dh, s1, ..., sk) (Sec. 3.2.1)
* Compute 3 gates: it (Eq. 7), ot (Eq. 8), f t (Eq. 10 or Eq. 11)
* Compute ct (Eq. 5) and ht (Eq. 6)
endfor

3: if the task is Disease progression
* Compute the predictive probability using Eq. (12)
* Compute the log-loss.
endif

4: if the task is Intervention recommendation
* Compute the predictive probability using Eq. (13)
* Compute the log-loss.
endif

5: if the task is Future risk prediction
* Compute h̄ (Sec. 3.4.3)
* Compute P (y | u0:n) (Eqs. 14, 15, 16)
* Compute the log-loss.
endif

of DeepCare implementation are given in Appendix A.4. Code for the experiments can
be found in GitHub 4

4.1. Data350

Data for both cohorts were collected for 12 years (2002-2013) from a large regional
Australian hospital. Diseases are coded using ICD-10 (See Sec 2.2 for a brief descrip-
tion). We preprocessed the datasets by removing (i) admissions with incomplete patient
information; and (ii) patients with less than 2 admissions. The vocabulary is defined
as the set of diagnosis, procedure and medication codes. In diabetes cohort, there are355

7,153 diagnosis codes and 1,126 intervention codes while in mental health cohort, there
are 8,127 diagnosis codes and 1,351 intervention codes. The vocabularies in both datasets
are large that may lead to overfitting when training the model. To reduce the vocabulary,
we collapsed diagnoses that share the first 2 characters into one diagnosis. For example,
E10.1 would be collapsed into E1. Likewise, the first digits in the procedure block were360

used.
The diabetes cohort contained more than 12,000 patients (55.5% males, median age

73). Data statistics are summarized in Fig. 5. After preprocessing, the dataset contained

4https://github.com/trangptm/DeepCare
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Figure 5: Top row: Diabetes cohort statistics (y axis: number of patients; x axis: (a) age, (b) number
of admissions, (c) number of days); Mid row: Progression from pre-diabetes (upper diag. cloud) to
post-diabetes (lower diag. cloud). The size of a diagnosis in a cloud is proportional to its occurrence in
the data; Bottom row: Top diagnoses.

7,191 patients with 53,208 admissions. The vocabulary consisted of 243 diagnoses, 773
procedures and 353 medication codes. The mental health cohort contained more than365

11,000 patients (49.4% males, median age 37). Data statistics are summarized in Fig. 6.
After preprocessing, the mental health dataset contained 6,109 patients and 52,049 ad-
missions with the vocabulary of 247 diagnoses, 752 procedures and 319 medication codes.
The average age of diabetic patients is much higher than the average age of mental pa-
tients (See Fig 5a and Fig 6a).370

For each dataset, 2/3 is used for parameter estimation, 1/6 is for tuning, and 1/6 is
for testing.

4.2. Disease progression
For disease progression, the model predicts the next np diagnoses at each discharge

(see Sec.3.4.1). For comparison, we implemented two baselines: Markov models and plain375

RNNs. A Markov model is a stochastic model used to model changing systems. A Markov
model consists of a list of possible states, the possible transitions between those states and
the probability of those transitions. The future states depend only on the present state
(Markov assumption). The Markov model has memoryless disease transition probabilities
P
(
di

t | d
j
t−1

)
from disease dj to di at time t. Given an admission with disease subset Dt,380
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Figure 6: Top row: Mental health cohort statistics (y axis: number of patients; x axis: (a) age, (b)
number of admissions, (c) number of days); Mid row: Progression from pre-mental diseases (upper diag.
cloud) to post-mental diseases (lower diag. cloud). The size of a diagnosis in a cloud is proportional to
its occurrence in the data; Bottom row: Top diagnoses.

the next disease probability is estimated as Q
(
di; t

)
= 1
|Dt|

∑
j∈Dt

P
(
di

t | d
j
t−1

)
. Plain

RNNs are described in Sec. 2.1.
We use Precision at K (Precision@K) to measure the performance of the models.

Precision@K corresponds to the percentage of relevant results in retrieved results. That
means if the model predicts np diagnoses of the next readmission and nr diagnoses among385

of them are relevant the model’s performance is

Precision@np = nr

np

Dynamics of forgetting
Fig. 7(left) plots the contribution of time into the forget gate. The contributions for

all 40 states are computed using Qf q∆t
as in Eq. (11). There are two distinct patterns:

decay and growing. This suggests that the time-based forgetting has a very small di-390

mensionality, and we will under-parameterize time using decay only as in Eq. (10), and
over-parameterize time using full parameterization as in Eq. (11). A right balance is
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Figure 7: (Left) 40 channels of forgetting due to time elapsed. x axis is ∆t from 0 to 365 days and y
axis is the values of parameterized time in forget gate Qf q∆t

. (Right) 40 channels of the forget gates of
a patient in the course of their illness.

interesting to warrant a further investigation. Fig. 7(right) shows the evolution of the
forget gates through the course of illness (2000 days) for a patient.

Diagnoses prediction result395

Table 1 reports the Precision@np for different values of np. For diabetes cohort, using
plain RNN improves over memoryless Markov model by 8.8% with np = 1 and by 27.7%
with npred = 3. This significant improvement demonstrates the role of modeling the
dynamics in sequential data. Modeling irregular timing and interventions in DeepCare
gains a further 2% improvement. For mental health cohort, Markov model fails to predict400

the next diagnoses (9.5% for np = 1). Plain RNN gains 50% improvement in Precision@1,
while and DeepCare demonstrates a 2% improvement in Precision@1 over RNN.

4.3. Intervention recommendation

We first conducted experiments with DeepCare for intervention recommendation task.
The model predicts the current np interventions at each admission (see Sec. 4.3). As the405

current interventions are now the output of the prediction, DeepCare only read the current
diagnoses and the previous interventions as input. The Eq. 8 now becomes

ot = σ (Woxt + Uoht−1 + bo)

Table 2 reports the results of current intervention prediction. For all values of np,
RNN consistently outperforms Markov model by a huge margin for both diabetes and
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Table 1: Precision@np diagnoses prediction with the confidence interval (CIs), estimated using bootstrap.

Model Diabetes
np = 1 (95% CIs) np = 2 (95% CIs) np = 3 (95% CIs)

Markov 55.1 (53.0-57.2) 34.1 (32.5-35.7) 24.3 (23.2-25.5)
Plain RNN (Sec. 2.1) 63.9 (62.3-65.4) 58.0 (56.5-59.5) 52.0 (50.5-53.4)
LSTM (Sec. 2.1) 65.7 (64.2-67.4) 59.6 (58.1-61.1) 53.3 (51.8-54.8)
DeepCare (time decay) 64.9 (63.4-64.4) 58.9 (57.5-60.3) 53.2 (51.8-54.6)
DeepCare (mean adm.) 66.2 (64.6-67.7) 59.6 (58.1-61.1) 53.7 (52.3-55.2)
DeepCare (sum adm.) 65.5 (64.0-67.2) 59.3 (57.8-60.9) 53.5 (52.1-55.0)
DeepCare (max adm.) 66.1 (64.6-67.6) 59.2 (57.7-60.7) 53.2 (51.7-54.7)

Model Mental
np = 1 (95% CIs) np = 2 (95% CIs) np = 3 (95% CIs)

Markov 9.5 (7.9-11.1) 6.4 (5.4-7.4) 4.4 (3.4-5.1)
Plain RNN (Sec. 2.1) 50.7 (48.9-52.4) 45.7 (44.1-47.3) 39.5 (38.2-40.8)
LSTM (Sec. 2.1) 51.0 (49.1-52.9) 46.4 (44.7-48.1) 40.0 (38.7-41.3)
DeepCare (time decay) 51.3 (49.6-53.0) 46.4 (44.7-48.0) 39.8 (38.5-41.0)
DeepCare (mean adm.) 52.7 (50.8-54.4) 46.9 (45.3-48.5) 40.2 (39.0-41.4)
DeepCare (sum adm.) 51.7 (49.9-53.5) 46.2 (44.6-47.9) 39.8 (38.5-41.1)
DeepCare (max adm.) 51.5 (49.6-53.3) 46.7 (45.0-48.3) 40.2 (38.9-41.5)

mental health cohort. DeepCare with sum-pooling outperforms other models in both410

diabetes and mental health datasets.

4.4. Predicting future risk

Next we demonstrate DeepCare on long-range risk prediction (see Sec. 3.4.3). For
each patient, a discharge is randomly chosen as a prediction point, from which unplanned
readmission and high risk patients within X months will be predicted. A patient is at415

high risk at a particular time T if he or she have at least three unplanned readmissions
within X months after time T . We choose X = 12 months for diabetes and X = 3 months
for mental health. Results are measured in F1-score.

For comparison, baselines are SVM and Random Forests running on standard non-
temporal features engineering using one-hot representation of diagnoses and intervention420

codes, and plain RNN and LSTM running on sequences of admissions. One-hot represen-
tation of a code is a vector with the dimension equal to the vocabulary size, the value at
the code index is 1 and all other indices are 0. Then pooling is applied to aggregate over
all existing admissions for each patient. Two pooling strategies are tested: max and sum.
Max-pooling is equivalent to the presence-only strategy in [1], and sum-pooling is akin to425

an uniform convolutional kernel in [45]. This feature engineering strategy is equivalent to
zeros-forgetting – any risk factor occurring in the past is memorized.
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Table 2: Precision@np intervention prediction with the confidence interval (CIs), estimated using boot-
strap.

Model Diabetes
np = 1 (95% CIs) np = 2 (95% CIs) np = 3 (95% CIs)

Markov 35.0 (32.7-37.4) 17.6 (16.4-18.7) 11.7 (10.9-12.5)
Plain RNN (Sec. 2.1) 77.7 (75.6-79.6) 54.8 (53.7-55.9) 43.1 (42.1-44.2)
LSTM (Sec. 2.1) 78.2 (76.3-80.0) 54.7 (53.8-55.7) 42.9 (42.0-43.9)
DeepCare (time decay) 77.0 (74.9-78.9) 54.2 (53.1-55.3) 42.8 (41.7-43.8)
DeepCare (mean adm.) 77.8 (76.3-79.5) 54.9 (53.9-55.9) 43.3 (42.3-44.3)
DeepCare (sum adm.) 78.7 (77.1-80.4) 55.5 (54.5-56.5) 43.5 (42.4-44.6)
DeepCare (max adm.) 78.4 (76.7-80.1) 55.1 (54.1-56.1) 43.4 (42.3-44.5)

Model Mental
np = 1 (95% CIs) np = 2 (95% CIs) np = 3 (95% CIs)

Markov 20.7 (18.2-23.4) 12.2 (10.5-13.4) 8.1 (7.0-9.3)
Plain RNN (Sec. 2.1) 70.4 (67.6-73.2) 55.4 (53.0-58.0) 43.7 (41.9-45.6)
LSTM (Sec. 2.1) 70.9 (68.3-73.3) 55.6 (53.2-58.1) 44.2 (42.5-45.9)
DeepCare (time decay) 70.5 (67.6-73.0) 55.5 (53.0-58.1) 43.9 (42.0-45.7)
DeepCare (mean adm.) 70.3 (67.4-73.0) 55.7 (53.0-58.5) 44.1 (42.3-46.0)
DeepCare (sum adm.) 71.0 (68.2-73.9) 55.8 (53.4-58.3) 44.7 (43.0-46.4)
DeepCare (max adm.) 70.0 (67.3-72.6) 55.2 (52.8-57.9) 43.9 (42.2-45.9)

Pretraining and Regularization
Table 3 reports the effects of pretraining and regularization on unplanned readmission

prediction in diabetes dataset using DeepCare model. Pretraining and regularization430

improve the results of all three admission pooling methods. While mean pooling admission
is found to perform well with regularization, max pooling produces best results with
pretraining and sum pooling produces best results with both approaches. Further details
of pretraining and regularization are given in Appendix A.2 and Appendix A.3.

Table 3: Effect of pretraining and regularization for unplanned readmission prediction using DeepCare
for diabetes dataset. The results are reported in F-score (%)

Approach Mean adm. Sum adm. Max adm.
None 77.8 77.9 78.3
Pretrain 78.3 78.6 78.9
Regularization 79.0 78.7 78.6
Both 78.4 78.9 78.8

Unplanned readmission prediction results435

Table 4 reports the F-scores of predicting unplanned readmission. For the diabetes
cohort, the best baseline (non-temporal) is Random Forests with sum pooling has a F-
score of 71.4% [Row 4]. Using plain RNN with simple logistic regression improves over

20



best non-temporal methods by a 3.7% difference in 12-months prediction [Row 5, ref:
Sec. (2.1,3.2)]. Replacing RNN units by LSTM units gains 4.5% improvement [Row 6,440

ref: Sec. 2.1]. Moving to deep models by using a neural network as classifier helps with
a gain of 5.1% improvement [Row 7, ref: Eq. (17)]. By carefully modeling the irregular
timing, interventions and recency+multiscale pooling, we gain 5.7% improvement [Row
8, ref: Secs. (3.3.2–3.4.3)]. Finally, with parametric time we arrive at 79.0% F-score, a
7.6% improvement over the best baselines [Row 9, ref: Secs. (3.3.2)].445

For the mental health dataset, the best non-temporal baseline is sum-pooling Random
Forest with result of 67.9%. Plain RNN and LSTM with logistic regression layer gain
2.6% and 3.8% improvements, respectively. The best model is DeepCare with parametric
time with a gap of 6.8% improvement compared to sum-pooling Random Forest.

Table 4: Results of unplanned readmission prediction in F-score (%) with confidence interval (CIs) within
12 months for diabetes and 3 months for mental health patients. DeepCare 1 is nnets + mean adm.;
DeepCare 2 is [interven. + time decay] + recent.multi.pool. + nnets + mean adm.; DeepCare 3 is
[interven. + param. time] + recent.multi.pool.+ nnets + mean adm. (*) statistical significance over
non-temporal models, and (**) statistical significance over temporal models.
Model Diabetes (95% CIs) Mental (95% CIs)
1. SVM (max-pooling) 64.0 (62.2-65.8) 64.7 (62.0-67.4)
2. SVM (sum-pooling) 66.7 (64.9-68.4) 65.9 (63.2-68.8)
3. Random Forests (max-pooling) 68.3 (66.2-70.5) 63.7 (61.1-66.6)
4. Random Forests (sum-pooling) 71.4 (69.4-73.4) 67.9 (65.2-70.6)
5. Plain RNN (Sec. 2.1) (logist. regress.) 75.1 (73.4-76.9) 70.5 (68.0-73.0)
6. LSTM (Sec. 2.1) (logit. regress.) 75.9 (74.1-77.7) 71.7 (67.8-73.0)
7. DeepCare 1 76.5* (74.7-78.2) 72.8* (70.3-75.2)
8. DeepCare 2 77.1* (75.4-78.9) 74.5** (72.2-76.6)
9. DeepCare 3 79.0** (77.2-80.9) 75.4** (73.1-77.5)

High risk prediction results450

In this part, we report the performance of DeepCare on high risk patient prediction
task. Figure 8 reports the F-score of high risk prediction. RNN improves the best non-
temporal model (sum-pooling SVM) over 10% F-score for both two cohorts. Max-pooling
DeepCare performs best in the diabetes dataset with nearly 60% F-score, while sum-
pooling DeepCare wins in the mental health cohort with 50.0% F-score.455

5. Discussion

5.1. DeepCare as a model of healthcare memory

DeepCare makes use of embedding to represent the semantics of diagnoses, interven-
tions and admissions. In theory, this embedding is agnostic to of the task at hand. Our
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(a) Diabetes (b) Mental health

Figure 8: Result of high risk prediction in F-score (%) within 12 months for diabetes (a) and 3 months
for mental health (b). DC is DeepCare. Mean, sum, max are 3 admission pooling methods

previous work learns diagnosis and patient embedding [46] using nonnegative restricted460

Boltzmann machines [33] and known semantic relations and temporal relations [34]. This
method uses global contexts, unlike DeepCare, where only local contexts (e.g., next ad-
mission) are considered.

It is interesting to see the performance of the model with different pooling methods
on embedding vectors. While mean pooling performs best on diagnoses prediction, sum465

pooling performs best on intervention prediction in both datasets. More evaluations and
analyses will be investigated to understand the results. However, the recording practice
may hinder a full explanation. For example, codes are recorded for billing purposes,
hence there are biases and missing codes. There are also variations between coders.
Mean-pooling may be more robust against these potential noises (due to law of large470

number), and this may explain the results in next-disease prediction (Table 1). However,
for treatment recommendation (Table 2), as the treatments are disease-specific, the sum
of diseases (sum-pooling) explains the treatments better.

The memory cells in DeepCare are used to store, update, forget and manipulate
illness experiences over time-stamped episodes. The inferred experiences are then pooled475

to reason about the current illness states and the future prognosis. Like human memory,
healthcare risk also has a recency effect, that is, more recent events contribute more
towards future risk. In DeepCare, two recency mechanisms are used. First, through
forgetting, recent events in DeepCare tend to contribute more to the current illness states.
The forgetting gate is influenced by the interventions. While it may appear that the480

influence is only in short-term, but it is actually not because the multiplicative nature of
the forget gate, and the long-range dependency of the memory. For example, if the forget
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gate is turned off, then the entire illness history will be forgotten. Second, multiscale
pooling (Sec. 3.4.3) has weights that decay over time.

DeepCare can be implemented for existing EMR systems. More extensive evaluations485

on a variety of cohorts, sites and outcomes will be necessary. This offers opportunities for
domain adaptations through parameter sharing among multiple cohorts and hospitals.

5.2. DeepCare in relations with existing models

Although healthcare is inherently episodic in nature, it has been well-recognized that
the entire illness trajectory is important [14, 23]. Nursing illness trajectory model was490

popularized by Strauss and Corbin [10], but the model is qualitative and imprecise in
time [19]. Thus its predictive power is limited.

Electronic medical records (EMRs) offer a quantitative alternative with precise timing
of events. However, EMRs are complex – they reflect the interleaving between the illness
processes and care processes. The timing is irregular – patients only visit hospital when495

the illness is beyond a certain threshold, even though the illness may have been present
long before the visit. Existing work that handles such irregularities includes interval-
based extraction [45], but this method is coarse and does not explicitly model the illness
dynamics.

Capturing disease progression has been of great interest [25, 30], and much effort has500

been spent on Markov models [24, 50] and dynamic Bayesian networks [35]. However,
healthcare is inherently non-Markovian due to the long-term dependencies. For example,
a routine admission with irrelevant medical information would destroy the effect of severe
illness [1], especially for chronic conditions. Irregular timing and interventions have not
been adequately modeled to reflect their roles in disease progression [22]. Irregular-time505

Bayesian networks [40] offer a promise, but its power has yet to be demonstrated. Further,
assuming discrete states are inefficient since the information pathway has only log(K) bits
for K states. Our work assumes distributed and continuous states, thus offering a much
larger state space.

Deep learning is currently at the center of a new revolution in making sense of a large510

volume of data. It has achieved great successes in cognitive domains such as speech,
vision and NLP [27]. To date, deep learning approach to healthcare has largely been an
unrealized promise, except for several very recent works [6, 9, 28, 29, 46], where irregular
timing is not property modeled. In [32], time gaps are coded as a discrete word and
temporal motifs are detected using convolutional nets.515

5.3. Limitations

We recognize several limitations. First DeepCare has been designed primarily for
coded data (diagnosis, procedure and medication) at the admission level. Numerical data
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such as blood sugar levels could be naturally incorporated, however. For time-series data,
we can extract a feature vector per series. Second DeepCare is more powerful with long520

trajectories of many episodes, whereas young patients typically have only one or two
admissions. With short trajectories, other architectures may be more appropriate [6, 32].

The choice of SVM and Random Forest for baselines of readmission task using one-hot
representation of medical codes is naive. Comparing SVM and Random Forests with non-
temporal features against temporal model (e.g., plain RNN and LSTM) is to emphasize525

the effectiveness of modeling the temporal property. There is other advanced work that
can account for the temporality in healthcare, such as [7, 51]. Our DeepCare contributions
against these temporal models are modeling the irregular timing and the interventions.

5.4. Conclusion

In this paper we have introduced DeepCare, an end-to-end deep dynamic memory530

neural network for personalized healthcare. It frees model designers from manual fea-
ture extraction. DeepCare reads medical records, memorizes illness trajectories and care
processes, estimates the present illness states, and predicts the future risk. Our frame-
work models disease progression, supports intervention recommendation, and provides
prognosis from electronic medical records. To achieve precision and predictive power,535

DeepCare extends the classic Long Short-Term Memory by (i) embedding variable-size
discrete admissions into vector space, (ii) parameterizing time to enable irregular tim-
ing, (iii) incorporating interventions to reflect their targeted influence in the course of
illness and disease progression; (iv) using multiscale pooling over time; and finally (v)
augmenting a neural network to infer about future outcomes. We have demonstrated540

DeepCare on predicting next disease stages, recommending interventions, and estimating
unplanned readmission among diabetic and mental health patients. The results are com-
petitive against current state-of-the-arts. DeepCare opens up a new principled approach
to predictive medicine.
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Appendix A. Supplementary materials

Appendix A.1. Model complexity

The number of model parameters are M × |V | + M ×K + K ×K + K × D, which
consists of the following components:700

Parameters in the C-LSTM layer
• For admission embedding, we use two embedding matrices A and B. We have
A+B ∈ RM×|V |

• The input gate: Wi ∈ RM×K , Ui ∈ RK×K and bi ∈ RK×1

• The output gate: Wo ∈ RM×K , Uo ∈ RK×K , Po ∈ RK×K and bo ∈ RK×1
705
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• The forget gate: Wf ∈ RM×K , Uf ∈ RK×K , Pf ∈ RK×K and bf ∈ RK×1. In
the case of time decay there are no other parameters and in the case of parametric
time, the forget gate has a time weight matrix Qf ∈ RNtime×K (Ntime = 3 in our
implementation)

• The memory cell: Wi ∈ RM×K , Ui ∈ RK×K and bi ∈ RK×1
710

Parameters in the Neural network layer
• The neural network layer consists of an input-hidden weight matrix Uh1 ∈ R3K×D,
hidden-output weight matrix Uh2 ∈ RD×2 and two bias vectors c1 ∈ RD×1 and
c2 ∈ R2x1

Appendix A.2. Pretraining715

Pretraining can be done by unsupervised learning on unlabeled data [20, 11]. Pre-
training has been proven to be effective because it helps the optimization by initializing
weights in a region near a good local minimum [3, 12]. In our work we use auxiliary
tasks to pretrain the model for future risk prediction tasks. In our case, auxiliary tasks
are predicting diagnoses of the next readmission and predicting interventions of current720

admission. These tasks play a role in disease progression tracking and intervention rec-
ommendation.

We use the bottom layer of DeepCare for training auxiliary tasks. As described in
Sec. 3.1, the LSTM layer reads a sequence of admissions u0,u1, ...,un and computes the
corresponding sequence of distributed illness states h0,h1, ...,hn. At each step t, ht is725

used to generate labels yt by the formula given in Eqs. (12 and 13) where yt can be a
set of diagnoses or interventions. After training, the code embedding matrix is then used
to initialize the embedding matrix for training the risk prediction tasks. The results of
next readmission diagnosis prediction and current admission intervention prediction are
reported in Sec. 4.2 and Sec. 4.3.730

Appendix A.3. Regularization with dropouts

DeepCare may lead to overfitting because it introduces three more parameter matrices
to the sigmoid gates to handle interventions and time. Therefore, we use L2-norm and
Dropout to prevent overfitting. L2-norm regularization, also called “weight decay”, is
used to prevent weight parameters from extreme values. A constant λ is introduced735

to control the magnitude of the regularization. Dropout is a regularization method for
DNNs. During training, units are deleted with a pre-defined probability 1 − p (dropout
ratio) and the remaining parts are trained through back-propagation as usual [42, 2]. This
prevents the co-adaptation between units, and therefore prevents overfitting. At the test
time, a single neural net is used without dropout and the outgoing weights of a unit that740
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is retained with probability p during training are multiplied by p. This combines 2k(k is
the number of units) shared weight networks into a single neural network at test time.
Therefore, dropout is also considered as an ensemble method.

In our implementation, dropout in DeepCare is introduced at input layer and neural
network layer:745

• Dropout codes: Before pooling the embedding vectors of diagnoses and interventions
in each admission, each of these embedding vectors is deleted with probability 1−
pcode

• Dropout input features: After deriving [xt,pt] as described in Sec. 3.2, each value
in these two vector is dropped with probability 1− pfeat750

• Dropout units in neural network layer: The pooled state z as described in Sec. 3.2
is feed as the input of the neural network. Dropout is used at input units with
probability 1− pin and at hidden units with probability 1− phidd.

Appendix A.4. DeepCare implementation
DeepCare was implemented in Python using the Theano framework5. We vary the755

embedding and hidden dimensions from 5 to 50 but the results are rather robust. We
report best results for disease progression and intervention recommendation tasks with
M = 30 and K = 40 and for prediction tasks with M = 10 embedding dimensions and
K = 20 hidden units (M and K are the number of embedding dimensions and hidden
units respectively). The L2-regularizer is set as λ = 0.00025 and the dropout rates are set760

as pcode = 0.8, pfeat = 0.8 and phidd = 0.5. Learning is by Stochastic Gradient Descent
with the mini-batch of 16 sequences. The learning rate λ is modified as follows. We
start with λ = 0.01. When the model cannot find a smaller training cost, we wait nwait

epochs before updating λ as λ = λ/2. Initially, nwait = 5, and is subsequently modified as
nwait = min {15, nwait + 2} for each λ update. Learning is terminated after nepoch = 200765

or after learning rate smaller than ε = 0.0001.

Appendix A.5. Effect of admission method as input
As discussed in Sec. 3.2.2, unplanned admissions usually indicates higher risk. This

is reflected in DeepCare model by modeling the admission method mt in the input gate
it (See Eq. 7). We keep mt = 1 for unplanned admissions and choose mt for planned770

admissions empirically. mt is varied in (1, 1.25, 1.5,..., 2.75, 3). Fig A.9 illustrates the
performance of DeepCare on different value of mt. For diabetes cohort, the best value of
mt is 2 while for mental health cohort, the best value of mt is 1.75.

5http://deeplearning.net/software/theano
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(a) Diabetes (b) Mental health

Figure A.9: Performance of DeepCare on unplanned readmission prediction task with different value of
mt for planned admissions. (a) Diabetes cohort and (b) Mental health cohort.
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