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Abstract  

In socially monogamous species, individuals can use extra-pair paternity and offspring 

sex allocation as adaptive strategies to ameliorate costs of genetic incompatibility with their 

partner. Previous studies on domesticated Gouldian finches (Erythrura gouldiae) demonstrated a 

genetic incompatibility between head colour morphs, the effects of which are more severe in 

female offspring. Domesticated females use differential sex allocation, and extra-pair paternity 

with males of compatible head colour, to reduce fitness costs associated with incompatibility in 
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mixed-morph pairings. However, laboratory studies are an oversimplification of the complex 

ecological factors experienced in the wild, and may only reflect the biology of a domesticated 

species. This study aimed to examine the patterns of parentage and sex-ratio bias with respect to 

colour pairing combinations in a wild population of the Gouldian finch. We utilized a novel PCR 

assay that allowed us to genotype the morph of offspring before the morph phenotype develops, 

and to explore bias in morph paternity and selection at the nest. Contrary to previous findings in 

the laboratory, we found no effect of pairing combinations on patterns of extra-pair paternity, 

offspring sex ratio, or selection on morphs in nestlings. In the wild, the effect of morph 

incompatibility is likely much smaller, or absent, than was observed in the domesticated birds. 

Furthermore, the previously studied domesticated population is genetically differentiated from 

the wild population, consistent with the effects of domestication. It is possible that the 

domestication process fostered the emergence (or enhancement) of incompatibility between 

colour morphs previously demonstrated in the laboratory.  

 
Introduction  

Given that mating and raising offspring is costly, there is a trade-off between future and 

current reproductive events, and the two parents will be selected to maximize their own fitness, 

and modulate their investment in a reproductive event according to their own condition and the 

perceived reproductive value of their mate (Trivers & Willard, 1973; Burley, 1986, 1988). For 

example, mates that have low reproductive value could be closely related, therefore increasing 

the risk of inbreeding depression (Szulkin et al., 2013). In socially monogamous species, the 

common goal of raising offspring together is tempered by constraints on optimal choice of 

partner (Griffith et al., 2011), and individuals will use different strategies to maximize their 
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fitness in these situations, including modifying parental effort,  offspring sex-ratio and through 

extra-pair paternity. For example, female zebra finches (Taeniopygia guttata) will modulate egg 

size and incubation effort in relation to partner quality (Rutstein et al., 2004; Gorman et al., 

2005; Bolund et al., 2009), and female collared flycatchers (Ficedula albicollis) will produce 

male-biased broods when paired with high quality males (Bowers et al., 2013). Partners may 

have low reproductive value because they are genetically incompatible, such that offspring are 

inviable or infertile (Tregenza & Wedell, 2000; Griffith, 2010; Presgraves, 2010). For example, 

female collared flycatchers (F. albicollis) paired with pied flycatchers (F. hypoleuca) use extra-

pair paternity with conspecific males to reduce the number of infertile hybrid offspring produced 

in these heterospecific social pairings (Veen et al., 2001).  

In colour polymorphic species, mate choice options are often discrete, and when colour 

is tightly correlated with a number of other traits there can be fitness detriments to partnering 

with the wrong colour morph (McKinnon & Pierotti, 2010; Griffith et al., 2011; Bolton et al., 

2015). For example, colour polymorphism in the white-throated sparrow (Zonotrichia albicollis) 

is controlled by an inversion polymorphism and pairings are almost always disassortative 

(Thorneycroft, 1966; Houtman & Falls, 1994). Assortative white-throated sparrow pairs would 

lack necessary parental co-ordination to raise offspring successfully and risk production of 

inversion homozygotes that may suffer reduced fitness relative to inversion heterozygotes 

(Tuttle, 2003; Horton et al., 2013). Moreover, if selection for colour morph differs between the 

sexes, then parents of a particular morph may bias their offspring sex ratio to match that 

selection. For example, large spotted barn owls (Tyto alba) produce female-biased brood sex 

ratios, while small-spotted parents have male-biased broods (Roulin et al., 2010). Furthermore, 

because many colour polymorphic species are undergoing strong divergent correlational 
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selection and mate assortatively, this may facilitate the evolution of genetic incompatibilities 

between sympatric colour morphs, although examples are rare (Sinervo & Svensson, 2002; 

Roulin & Bize, 2006; Seehausen et al., 2014; Bolton et al., 2015). In cases where colour morphs 

are genetically incompatible, there should be selection for strategies to avoid the costs of 

incompatibility. 

The Gouldian finch (Erythrura gouldiae) is a colour polymorphic bird that has 

behavioural and physiological traits correlated with sex-linked Mendelian red and black head 

colour morphs, and exhibits a genetic incompatibility between morphs that strongly affects 

mortality of female offspring (Southern, 1945; Pryke & Griffith, 2006, 2009b; Pryke et al., 2007) 

(Box 1). This is unusual, because until relatively recently genetic incompatibility is generally 

thought to be proportional to the degree of genetic divergence between allopatric populations 

(Presgraves, 2010). However, in the Gouldian finch, head colour morphs are sympatric across 

the entire distribution at stable frequencies (Gilby et al., 2009). In accordance with strong 

selection against offspring from mixed-morph parents, mate choice experiments on domestic 

Gouldian finches have demonstrated assortative mate preference for head colour (Fox et al., 

2002; Pryke & Griffith, 2007; Templeton et al., 2012). In order to ameliorate some of the costs 

of incompatibility, females in mixed-morph pairs invest less in rearing offspring and offspring 

primary sex-ratios favour the sex (males) less affected by incompatibilities (Pryke & Griffith, 

2009a, 2010). Further, when experimentally given the opportunity for extra-pair copulations, a 

single copulation with a compatible male was able to sire a large proportion of the clutch, 

consistent with a post-copulatory cryptic female choice mechanism (Pryke et al., 2010). All of 

the previous work (cited above) was conducted on domesticated Gouldian finches, and no 

previous work has examined the extent to which incompatibility and related selection occurs in 



A
cc

ep
te

d
 A

rt
ic

le
A

cc
ep

te
d

 A
rt

ic
le

This article is protected by copyright. All rights reserved. 

the wild. Although controlled laboratory studies can tease apart possible factors guiding animal 

behavior, they may not be completely relevant to the complex ecological contexts in the wild 

(Healey et al., 2007); nor do they account for any behavioural and physiological differences that 

accrue as a result of the domestication process (Burns et al., 2009; Christie et al., 2012). Here, 

we have used the previous work on the domesticated Gouldian finch to guide predictions for 

patterns in incompatibility avoidance and morph selection in the wild. 

Theoretical modeling (based on the parameters of incompatibility identified in 

domesticated populations) has demonstrated that incompatibility and morph interactions can be 

detrimental to population fitness and cause extinction of one or both morphs (Kokko et al., 

2014), and could be an additional threatening process for this threatened species (Environmental 

Protection and Biodiversity and Conservation Act 1999). In the wild, there are more red males 

than red females (and more black females than black males), because of uneven morph allele 

frequencies in the wild, and sex linked inheritance (Box 1a), (Southern, 1945; Franklin & 

Dostine, 2000). This means that mates of the same head colour are limiting, and 15-20% of 

individuals are constrained to mate with an individual from a different morph to themselves 

(Pryke & Griffith, 2007; Griffith et al., 2011). In such mixed pairs, any genetic incompatibilities 

would be exposed and this would reduce reproductive success. In contrast with findings on 

offspring survival in the domesticated birds (Pryke & Griffith, 2009b), previous work in the wild 

has shown that the survival of nestlings from mixed-morph pairs was not significantly lower in 

comparison to those from same-morph pairs (Brazill-Boast et al., 2013a). The previous study in 

the wild (Brazill-Boast et al., 2013a), however, did not account for strategic extra-pair paternity 

or differential sex-ratio allocation to ameliorate some of these costs, as shown in domesticated 

birds (Pryke & Griffith 2009b; Pryke et al. 2010).  
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Based on the collection of previous work on domesticated birds in the laboratory, we 

therefore predicted that compatibility selection will be the primary driver for patterns of extra-

pair paternity and offspring sex-ratio in the wild (Pryke & Griffith, 2009a; b; Pryke et al., 2010). 

Like in the domesticated birds, we assumed that females of all morphs and pairing types are 

equally likely to engage in extra-pair copulations (Pryke et al., 2010), and that females in the 

wild are able to access at least one extra-pair copulation with a compatible male. This seems 

plausible as the species is non-territorial and they forage in small flocks (Brazill-Boast & 

Griffith, Pers. Obs.), providing ample opportunity for females to find and copulate with an extra-

pair partner. We therefore predicted that females in mixed-morph pairs should have a higher 

proportion of offspring sired by an extra-pair (compatible) male, than females in same-morph 

pairs (Box 1b, Prediction 1). Further, offspring from mixed pairs are expected to have a male-

biased sex-ratio, due to the combined effects of sex-allocation and female biased mortality as 

demonstrated in the domesticated birds (Box 1b, Prediction 2; Pryke & Griffith, 2009a). The 

contribution of compatible males to extra-pair offspring is examined through the identification of 

extra-pair sires through genotyping, and by inference from the head colour of extra-pair chicks 

using the novel PCR assay developed for the Red head colour gene in Gouldian finches (Kim, 

2011). This marker also allowed us to directly test whether there was any selection against 

heterozygote red males, as inferred from the work on domesticated birds (Box 1b, Prediction 3; 

Pryke & Griffith, 2009b). To explore mate limitation and adaptive mate choice, we measured the 

frequency of assortative and disassortative pairs in the population and predicted that there will be 

more assortative mate pairs than expected under random mating (Box 1b; Prediction 4). Further, 

if incompatibility is occurring we predicted there to be a restriction of gene-flow between red 

and black morphs (Box 1b; Prediction 5), and compared levels of genetic differentiation between 
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head colour morphs both in the wild and in a sample of the domesticated population. We discuss 

how these findings relate to the evolution of genetic incompatibilities in this species, and more 

broadly.  

 

Methods 

Study site and nest monitoring: 

This study was conducted on a population of Gouldian finches, near Wyndham in the 

eastern Kimberly region, Western Australia (S15°340´, 128°090´). This site comprises 109 Ha of 

suitable Gouldian finch breeding habitat (see Brazill-Boast et al., 2011 for specific details). The 

study site was supplemented with nestboxes that resemble the natural cavities preferred by 

Gouldian finches to facilitate the study by providing access to the nest chamber (Brazill-Boast et 

al., 2010, 2013b). The data were collected from February to August, which encompasses the 

breeding season of the Gouldian finch, in consecutive years (2008-2009). In the study area, all 

nestboxes and natural hollows were marked and checked for nest initiation every 7-10 days. 

After initiation, the nest was checked every 2-3 days to record brood size and hatching date. 

Once hatched, nestlings were monitored every 2-4 days, and if they were in nestboxes nestlings 

were blood-sampled and banded between the age of 14 days and fledging, which occurred after 

day 18. On first capture, all adults were given a unique combination of plastic colour bands in 

addition to a metal band supplied by the Australian Bird and Bat Banding Scheme, and their 

head colour was recorded. Blood samples were taken from the brachial vein (<50μL), and stored 

in 95% ethanol. Putative parentage (or social parentage, the pair that raises the offspring) was 

assigned by either: (1) capture of an adult entering an active nest using a hand net or (2) direct 
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observations of a colour-banded adult visiting a nest to feed offspring. In addition, every one to 

two weeks, birds congregating around waterholes were mist-netted and blood-sampled, in order 

to gain a broader sample of the adult population, including individuals that were deemed to be 

non-breeding (although it is possible that they were breeding in undetected nests either inside or 

outside the study area). 

Only nestlings from nestboxes were bled, as offspring in natural hollows were inaccessible. 

In total, blood samples were collected from 51 putative families, including 257 offspring 

sampled at day 14. In total we also had 252 adult blood samples from the population, which 

included parents sampled at nests and also adults caught in the local vicinity of the breeding 

areas. For more details on the total sample of natural hollows and nestboxes see Supplement 1. 

The above protocols were approved by the animal ethics committees at Macquarie 

University (AEC2007/037 & AEC 2007/038), and followed all Australian legislation. 

 

Molecular methods and parentage assignment: 

Blood samples were extracted using a Qiagen PureGene Kit. We amplified 10 variable 

microsatellite loci described previously (Pryke et al., 2010). In addition to these markers, we 

genotyped all adults and offspring in the sample for two consecutive SNPs that segregate almost 

perfectly with head colour phenotype (Kim, 2011). These SNPs (locus Ego172) were developed 

into a simple allele-specific PCR test, where alleles are differentiated by labeled dyes and a 3bp 

size difference (Kim, 2011). This assay was included into the above microsatellite multiplexes. 

In our sample of 252 adults, only a single adult’s genotype at this colour marker conflicted with 

the observed phenotype at the time of capture and blood sampling (see Supplement 1). All 
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offspring were sex-typed at the CHD locus using primers 2550F and 2718R (Fridolfsson & 

Ellegren, 1999). The details for the protocols we used are in Supplement 2. 

For each year in our dataset, genetic data were used to assign parentage to offspring using a 

likelihood approach in CERVUS 3.0.6 (Marshall et al., 1998; Lemons et al., 2014). All families 

had at least one putative social parent identified at the nest through behavioural observations, and 

47 of 51 families had both social parents identified. Allele frequencies were estimated using the 

default settings, and parentage was simulated using 100,000 offspring and assuming 80% of the 

adult population was sampled. We assigned mothers to all offspring in the dataset, followed by 

fathers after the exclusion of maternal alleles. Parents were assigned on the basis of the highest 

log-likelihood ratio score (LOD). The CERVUS assigned mother was compared with the field 

observation of the social mother to verify the results and to identify causes for mismatches 

(allelic dropout or different parents). Allelic dropout was inferred by a manual check when a 

chick mismatched its parents at a locus where either the respective parent or offspring was 

homozygous, but matched both parents at all other loci. We subsequently assigned paternity 

having accounted for the maternal alleles using the known mothers, based on the consensus 

mother derived from manual, automated, and field observations of maternity. Rates of null 

alleles were calculated using CERVUS (Supplement 2).  

Parents were assigned based on a conservative set of rules based on number of 

mismatches and allelic dropout. Parents were only assigned if they either matched at all loci, or 

mismatched at a maximum of two loci that could be readily explained by allelic dropout and 

backed up by a high LOD score. No more than two mismatches attributable to dropout were 

tolerated. Instances of extra-pair paternity were defined when offspring mismatched the social 

father at two or more loci (out of ten). If an offspring mismatched both social parents at two or 
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more loci (not attributable to dropout), then intra-specific brood parasitism (IBP) was inferred. 

For the identified extra-pair offspring, potential fathers from the population pool were only 

assigned when there were zero mismatches at all loci typed, or if there was just one mismatch 

readily attributable to allelic dropout. As can be seen in the results, the bimodal distribution of 

mismatches indicates that all offspring were assigned unambiguously.  

Across genetically sampled nests, there were four families with only one social parent 

identified at the nest, and the missing parent was not identified with parentage analysis. The 

genotypes of the missing parents were reconstructed from the offspring genotypes, but to be 

conservative we excluded three (of four) families where reconstructed genotypes included more 

than three alleles because it was not possible to distinguish between multiple paternity and allelic 

dropout without the second parent as a reference.  

The final genetic dataset comprised 57 broods from 48 families (comprising 257 day 14 

offspring), with a total of 92 sampled parents and an additional pool of 154 adults captured in the 

study area. Of the sampled families, six pairs were sampled over two breeding attempts, and two 

were sampled over three attempts.  

 

Determinants of extra-pair paternity: 

 Although the primary focus of this study was to explore morph and incompatibility 

related drivers of extra-pair paternity, other factors such as the opportunity for extra-pair 

copulations can be important in explaining variation in paternity (Griffith et al., 2002). Breeding 

density and synchrony were explored in relation to patterns of extra-pair paternity as described in 

Supplement 3. Additional insight into spatial constraints on extra-pair paternity was explored by 
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characterizing the distances females travelled to attain extra pair copulations, based on the 

nestlings that were confidently assigned to an individual extra-pair father. For these nestlings, we 

tabulated whether that father was observed nesting at the same time, and if so, how far his nest 

was from the focal female (the mother).  

We focused on genetic incompatibility in mixed-morph pairs as a primary driver of extra-

pair paternity patterns, and compared our results directly with those from the previous captive 

experiments (Pryke et al., 2010). We included only the first observed clutch in these analyses 

because a) it was more directly comparable with the captive experiments and b) to remove 

pseudoreplication, as there were not enough replicate clutches to run nested analyses. There was 

one nest included in the analysis where the social mother as not observed in the field and was not 

identified by the parentage analysis, but the head colour assay allowed us to reconstruct her head 

colour genotype based on the genotype of the social father, and their offspring. We also repeated 

the analyses described below with respect to intra-specific brood parasitism, and further explore 

our broader findings of intra-specific brood parasitism in relation to other Estrildid finches 

(Supplement 3). 

We evaluated whether females in mixed-morph pairs were more likely to have any 

offspring from an extra-pair father (Prediction 1a). To do this, we coded whether any given 

family had at least one instance of extra-pair paternity.  We compared the number of families 

with extra-pair paternity in mixed-morph (total families = 12, red female (ZRW) x black male 

(ZrZr) = 4; black female (ZrW) x red male (ZRZr) = 8), and same-morph pairs (total families = 36; 

black female x black male = 34; red female x red male = 2). Throughout this paper females will 

be referred to first when describing pairing combinations. We tested the difference in number of 



A
cc

ep
te

d
 A

rt
ic

le
A

cc
ep

te
d

 A
rt

ic
le

This article is protected by copyright. All rights reserved. 

families with any extra-pair offspring in mixed and same-morph pairs using a Fisher’s Exact 

Test.  

To test whether the results in the wild conform to expectations from the captive females, 

we extracted the occurrence of extra-pair paternity across all families in the experimental dataset 

from Figure 1 in Pryke et al. (2010) and tested whether there was a difference in the occurrence 

of extra-pair paternity (see Supplement 3 for more details). From the previous study, we present 

only the level of extra-pair paternity in mixed pairs in the adaptive treatment (n=10), and the 

pure pairs in the neutral treatment (n=10). We use this subset of data throughout as a comparison 

with wild birds and it will hereafter be referred to as ‘domesticated’. 

In our wild sample, all red females in same-morph pairs were with heterozygous red 

males, and this pairing type was previously found to be incompatible in the domesticated birds 

(Pryke & Griffith, 2009b). To test prediction 3a, we tested for differences in the number of black 

females with any instance of extra-pair paternity using a Fisher’s exact test (same-morph, n=34; 

mixed-morph, n=8). 

We compared whether mixed morph pairs had more extra-pair offspring (Prediction 1b). 

We tested this by comparing the proportion of extra-pair offspring in mixed pair broods with 

same-morph broods using a Mann-Whitney Test. To control for differences in clutch size we 

also compared mixed and same-morph pairs using a binomial logistic regression with a logit 

link. From nests with any instance of extra-pair paternity, we tallied the total extra-pair offspring 

and compared pairing types with a Fisher’s exact test, and compared these values against the 

number of offspring observed in the Pryke et al. (2010) domesticated dataset.  
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We also conducted power analyses on the Fisher’s Exact tests about whether we could 

reject a false null hypothesis of no difference between mixed and same-morph pairs in the wild. 

We ran three different tests: 1) power when the effect size is as observed in the wild, 2) the 

sample size required to reject Ho with the observed effect size, 3) power to reject Ho from the 

effect size observed in the domesticated birds (subset as above). All analyses were conducted in 

R using the ‘pwr’ package, and considered 0.8 to be adequate power (Champely, 2015). All 

effect sizes reported are Cohen’s h, as a measure of distance between two probabilities.  

 

Offspring morph: 

Fathers of extra-pair offspring should be a compatible morph with the mother (Prediction 

1c). When not all extra-pair offspring are assigned fathers, genotyping offspring with the head 

colour marker (Ego172) allows us to infer patterns of paternity by expectations from Mendelian 

inheritance and known allele frequencies in the parental generation. See Supplement 4 for details 

about how expected genotype proportions were calculated. For this we pooled all extra-pair 

offspring across all broods (not just the first brood) by maternal morph. We then used a binomial 

exact test to compare whether extra-pair offspring genotype frequency deviated from 

expectation. We tested against two scenarios: whether offspring genotype frequency matched 

that expected under random paternity (no female preference or morph specific fertilization), or 

under assortative morph preference. These were tested against expectations using a expectations 

using a goodness-of-fit binomial exact test, or a multinomial exact (‘XNomial’ package) test in R 

(Engels, 2015). 
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In domesticated birds, red females paired with heterozygote red males showed evidence 

of incompatibility; therefore heterozygote red offspring should be selected against (Prediction 

3b). In our data from the wild, we tested selection through deviation from Mendelian 

expectations (based on their parents’ genotypes) in each pairing type for all within-pair offspring 

of the first observed clutch (n=190). Unfortunately, the PCR assay for head colour was not 

available when the original (captive) experiments were conducted, so we are not able to make 

quantitative predictions about the degree of deviation from Mendelian expectations from 

genotype-specific survival or allele-specific fertilization. For each pairing type, offspring 

genotype frequencies were compared to Mendelian expectations using a goodness-of-fit binomial 

exact test, or a multinomial exact (‘XNomial’ package) test in R (Engels, 2015). 

 

Offspring sex-ratio: 

If incompatibility is occurring in the wild as observed in domesticated birds (Pryke & 

Griffith, 2009b), along with adaptive sex-ratio allocation (Pryke & Griffith, 2009a), then there 

should be a significantly male biased sex-ratio in the broods of mixed-morph pairs (Prediction 

2). To account for variation in clutch size, we used a binomial logistic regression with a logit 

link, with offspring sex as the response and pairing type as the predictor. We tested pairing type 

as the two-factor mixed vs. same-morph, and as four-factors for each individual pairing type. 

The latter approach was used because, in captivity, red females in “assortative” pairs with 

heterozygote males also showed (albeit weaker) male biased sex-ratios (Pryke & Griffith 2009) 

(Box 1b; Finding 3).  
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Assortative pairing: 

In the domesticated Gouldian finch, birds showed assortative mate preferences and therefore 

avoided the costs of incompatibility by pairing with same-morph partners, and we therefore 

predict an assortative social mating pattern in the Wyndham population (Prediction 4). We 

assessed the extent to which birds were pairing assortatively with respect to head colour in the 

Wyndham population. We compared unique breeding pairs Wyndham (pairs; n=59), against two 

hypotheses: a) random mating, calculated by random union of morph genotypes; b) and “perfect 

assortative mating”. Perfect assortment was defined as the situation where all individuals will 

always mate assortatively. As the frequency of head colours differs in males and females in the 

population, any strict assortative mate preference means that surplus red males are inevitably 

forced to breed with black females or forego reproduction (Southern, 1945; Griffith et al., 2011). 

We compared the expected frequencies of mixed and same-morph pairs in these scenarios 

against the observed social pairings in Wyndham using a binomial exact test, where red males 

(regardless of underlying genotype) paired with red females were considered “same-morph”. We 

also assessed whether there was any difference in head colour frequency between the individuals 

that were observed to breed, and the wider population using a Fisher’s exact test by comparing 

breeders with non-breeders. 

 

Population genetics of morph phenotypes in domesticated and wild populations: 

If incompatibility is occurring, then we would expect to see associated genetic 

differentiation between red and black morphs (Prediction 5). We examined genetic 

differentiation in red and black wild birds and in a cohort of domesticated birds used in previous 



A
cc

ep
te

d
 A

rt
ic

le
A

cc
ep

te
d

 A
rt

ic
le

This article is protected by copyright. All rights reserved. 

studies (Pryke et al., 2010). We also examined genetic differentiation between domesticated and 

wild populations. These domesticated birds were selected as wild-type birds (those without 

avicultural colour mutations) from the broader population of domesticated Gouldian finches held 

by aviculturists in Australia, and had been held by us for no more than four generations at the 

time that the key previous studies were conducted (Pryke & Griffith, 2009b; Pryke et al., 2010). 

Little information is available on how many generations this domesticated population has been 

maintained in captivity, but it was difficult to breed Gouldian finches in captivity reliably prior to 

the 1980’s (Evans & Fidler, 2005). Thus, we estimate the captive population to be around 30 

years old (~30 generations). Although it has been illegal to trap wild Gouldian finches since 

1987, there are still anecdotal reports of wild finches being taken into captivity, thus the degree 

of isolation from the wild populations is difficult to ascertain. 

In order to explore genetic changes since domestication, we genotyped 48 adult birds (16 

red and 32 black) from the domesticated population that had been studied previously (Pryke et 

al. 2010), and compared them with the wild birds. We genotyped these individuals at the same 

ten microsatellite loci using the laboratory protocols described above. We created a random 

sample of individuals from the wild population to match the dataset of domesticated birds. We 

compared levels of genetic diversity between red and black morphs and between wild and 

domesticated populations, and calculated the rarefied allelic richness in FSTAT 2.9.3.2 (Goudet, 

1995), and heterozygosity, deviation from Hardy-Weinberg equilibrium and inbreeding 

coefficients in ARLEQUIN v.3.5.2.2 (Excoffier & Lischer, 2010). Linkage disequilibrium 

between markers was assessed using GENEPOP v4.2 (Raymond & Rousset, 1995).  
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We examined population structure between red and black morphs in both wild and 

domesticated populations, and between wild and domesticated populations, using AMOVA 

implemented in ARLEQUIN (10,000 permutations) (Excoffier & Lischer, 2010). We also ran the 

AMOVA on the full dataset of wild birds, comprising 47 red and 197 black birds. Groupings for 

the AMOVA were devised based on the provenance of the birds (wild or domesticated, n=48 

each), and the head colour morph observed of the individual bird (red (n=16) or black (n=32)), 

and analyses were run separately for each comparison (red vs. black, wild vs. domesticated). 

To explore whether there was genetic structure that did not fall into our a priori 

population groups we ran a genetic clustering analysis using STRUCTURE v2.3.4 with 

domesticated/wild or red/black in the captive population as a prior (LOCPRIOR) (Pritchard et 

al., 2000; Hubisz et al., 2009). The LOCPRIOR model sets sampling provenance as a prior in the 

analysis to be considered as potentially informative to population structure, and will aid in the 

detection of weak population structure according to sampling provenance, but will not bias the 

result if there is not structure according to these localities (Hubisz et al., 2009). We used the 

default admixture model, and simulated genetic clusters (K) 1-10 with ten iterations per value of 

K. We chose a maximum K of ten to ensure that we captured any clusters additional to those in 

our a priori groups.  For each value of k the burn-in was 100,000 with a final MCMC length of 

1x106 .A STRUCTURE analysis has previously been conducted on the red/black comparison in 

wild birds (Kim, 2011), so we do not present those results here. We compared the likelihoods 

(LnP(D)) and ΔK of assignment for clusters in each comparison using the output in Structure 

Harvester v0.6.94 (Pritchard et al., 2000; Evanno et al., 2005; Earl & VonHoldt, 2012). Q-plots 

that graphically depict the probability an individual belongs to a particular genetic cluster, were 

generated using CLUMPP v1.1.2 and DISTRUCT v1.1 (Rosenberg, 2004; Jakobsson & 
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Rosenberg, 2007). Because the Evanno method (2005) cannot distinguish between k=1 and 2, a 

single genetic cluster was inferred when Q-plots were equally admixed and an LnP(D)max=1.  

 

Results 

Parentage analysis: 

Across years, CERVUS was able to correctly predict the social mother 94.5% of the time 

at 95% confidence levels. The combined non-exclusion probability for these datasets for the first 

parent in 2008 and 2009 was 0.0008 and 0.0009, and 0.00002 for the second parent (see Table 

S3 for characteristics of the individual loci used). Out of 257 offspring, 212 were identified as 

the offspring of the social parents identified in the field. Of these, 67 offspring showed a 

mismatch with their putative parents, but in all cases CERVUS assigned parentage to the social 

parents observed in the field. All these mismatches could be readily attributed to allelic dropout, 

as dropouts tended to run in families and matched the estimated rates of null alleles for each 

locus (Table S3). Of the nestlings that mismatched their putative father, 24 nestlings mismatched 

at one locus, and three nestlings mismatched at two; and 24 nestlings mismatched their putative 

mothers at one locus. Four nestlings mismatched both their parents at one locus, and twelve 

mismatched either maternal or paternal alleles at two loci.  

There were 20 nestlings assigned as extra-pair offspring and these mismatched their 

social father at three or more loci (mean of 5.25 loci). Only one pair that re-nested was observed 

to have extra-pair paternity in both broods (Family 33). Five nests had multiple instances of 

extra-pair paternity within a clutch and, of these, three were from multiple extra-pair fathers 

(based on manually reconstructed genotypes). We were able to assign four (out of 20) extra-pair 
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offspring to fathers in our adult population pool, and three of these fathers matched the offspring 

at all loci (i.e. 10 out of 10). One extra-pair father mismatched at one locus, but this could be 

attributed to allelic dropout. Of the observed first clutches with extra-pair paternity (n=10) and 

IBP (n=9), three of these contained both IBP and extra-pair offspring. Overall the level of extra-

pair paternity was found to be 22.8% of broods (13 out of 57), representing 8.6% of offspring 

produced by the social mother (20 out of 232). 

There were eleven nestlings that mismatched both their social parents at more than one 

locus each, plus mismatched a mixture of maternal and paternal alleles at more than two other 

loci. These were considered to be the result of either intra-specific brood parasitism (IBP), or 

nest takeovers (where a new pair takeover a nest containing eggs laid by the female of the 

usurped pair) that were observed in the field (Brazill-Boast et al., 2013a). IBP offspring 

mismatched the social mother at a mean of 4.5 loci, and mismatched the social father at a mean 

of 6.1 loci. There was no evidence of pseudo-IBP or quasi-parasitism, where the social father but 

not mother matches the offspring (Griffith et al., 2004). Most observations of IBP were a single 

offspring per clutch, and no families had more than one clutch with any IBP offspring. Further, 

one family in each year had two IBP offspring; in each, less than four alleles were reconstructed 

and may represent offspring from the same parents. Two IBP offspring had both parents 

identified with no mismatches, and in one offspring the father was identified with no 

mismatches. Overall the level of IBP was found to be 15.8% broods (9 of 57) representing 4.5% 

all offspring (11 of 243) (Table 1).  See Supplement 3 for further exploration of the IBP data. 
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Determinants of extra-pair paternity: 

There was no evidence for any effect of either spatial constraints or breeding density on 

the incidence of extra-pair paternity, and extra-pair sires were identified breeding themselves and 

nesting up to 4.28km away from the nest in which they gained paternity (other males were 0.33 

and 0.54km away). There was no evidence that the number of pairs breeding or that time in the 

breeding season influenced patterns of extra-pair paternity. For more information see 

Supplement 3. 

Across pairing types, we compared the instances where females engaged in extra-pair 

paternity (≥1 extra-pair offspring). There was no difference between pairing types in the 

incidence of extra-pair paternity (4/12 vs. 6/36, Fisher’s Exact test, two-sided p-value= 0.24, 

Figure 1a). However, the power to reject the null at the effect size observed in the wild was low 

(h=0.39, power=0.22), and we would have required a sample of 65 mixed pairs and 195 same-

morph pairs to confidently conclude there was no difference. A sample size of 260 pairs 

represents about 20% of the estimated total adult population in the entire species (Garnett et al., 

2011). In the subset of birds from the domesticated study, there was no significant difference in 

whether a family had any instance of extra-pair paternity between mixed pairs in the and same-

morph pairs, though the effect size and power were much larger (8/10 vs. 4/10, Fisher’s exact 

test p=0.17, h=0.84, power=0.76, Supplement 3 (Pryke et al., 2010a). However, if the same 

biological effect size (h=0.84) was present in the wild, we would have had much greater power 

to discriminate differences in extra-pair paternity between morphs (power=0.72). Mixed pairs in 

the domesticated birds had a significantly higher incidence of extra-pair paternity than mixed 

pairs in the wild (two-tailed Fisher’s exact test, p=0.043, h=0.98, power=0.63).  
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We had insufficient power to determine whether black females in different pairing 

contexts had significant differences in extra-pair paternity to test prediction 3a (1/8 vs. 6/34, 

Fisher’s Exact test, two-sided p-value= 1, h=0.14, power=0.066; Figure 1b).  

In the wild, there was no significant difference between mixed and same-morph pairs in 

the proportion of the brood sired by an extra-pair male same-morph (Mann-Whitney test: W=8, 

p=0.45), nor was there a difference when accounting for brood size (GLM: χ2=0.073, df=1 p= 
0.79) (Figure 1c; Prediction 1b). From those nests with extra-pair paternity, the number of extra-

pair offspring in each pairing type did not differ (5/16 vs. 12/28 Fisher’s Exact test, two-sided p-

value=0.53, h=0.24, power=0.09). In mixed pairs, 31.3% of the offspring were sired by an extra-

pair male, which is significantly less than the observed 75.0% of offspring observed in the 

domestic population (Fisher’s exact test, two-sided p=0.002, h=0.91, power=0.88). Further, total 

extra-pair offspring in same-morph pairs was higher (42.9%), but not significantly different from 

what was observed in the domesticated population (24.0%) (Fisher’s exact test, two-sided 

p=0.245, h=0.40, power=0.31) (Pryke et al., 2010). In the domesticated birds the biological 

effect size was four times greater (and in the opposite direction) than we observed in the wild for 

the total number of extra-pair offspring in pairing types, this effect size would have given ample 

power with our sample sizes (h=1.07, power=0.92).  

 

Offspring morph: 

 In the wild, we tested for an effect of morph on the paternity patterns of extra-pair 

offspring using the genotypes of the extra-pair offspring (Figure 2; Prediction 1c). For the 

offspring of red females, goodness of fit tests were unable to reject that offspring were fertilized 
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according to random mating, or according to a preference for red males, but our power was very 

low due to small sample size (extra-pair offspring from red female n=5). From the genotypes of 

the extra-pair offspring we can conclude that none of their fathers were homozygote red males. 

There was no evidence of red alleles in the extra-pair offspring of black morph mothers, and the 

three assigned extra-pair offspring from black morph mothers showed the father was also a black 

morph. Interestingly, the single remaining assigned offspring was from a red female in a mixed 

pair, but the father who was assigned was also a black morph male (matched 9/9 loci, 

LOD=11.36, nest 4.28 km away).  

We found little evidence that morph frequencies deviated from Mendelian expectations in 

WP offspring (Table 2; Prediction 3b), but power was low due to small sample sizes (sample 

sizes in Table 2). In nests where we would predict there to be a reduction in heterozygote red 

males, there was no significant effect (Table 2). There was deviation from Mendelian 

expectations in offspring of same-morph black pairs (ZrW x ZrZr), where black morph females 

were more numerous than expected by chance (binomial test, obs= 0.61, exp=0.5, p=0.011).  

 

Offspring sex-ratio: 

 There was no effect of same-morph vs. mixed pairing types on brood sex-ratio (GLM: 

χ2=1.52, df=1, p=0.29), nor when considering all four pairing types observed (GLM: χ2= 2.65 

df=3 p=0.45) (Figure 3), therefore brood sex ratios were not distinguishable from parity.  
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Assortative pairing: 

In Wyndham, observed social pairs did not differ significantly from the pattern expected 

by random mating with respect to head colour when the adult morph frequencies were accounted 

for (16 mixed, 43 same-morph: binomial test: expected=0.30, p=0.67, h= 0.07, power=0.081), 

but were significantly different from estimates of perfect assortment (binomial test: expected= 

0.14, p=0.0076, h=0.32, power=0.71). There was no difference in the head colour of females or 

males represented in the breeding versus the wider population (Fisher’s exact test: p=1.0, 

p=0.844 for females and males respectively).  

 

Population genetics of morph phenotypes in domesticated and wild populations: 

None of the markers used to explore population structure in the wild and captive 

populations were consistently out of Hardy-Weinberg equilibrium, and allelic richness and 

heterozygosity estimates for each locus are presented in Table S4. Two pairs of loci were in 

linkage disequilibrium in the domesticated population after Bonferroni correction (Table S5). 

One locus from each pair was excluded and the analyses were run on eight loci. The summary 

rarefied allelic richness, and heterozygosity estimates for reds and blacks in the domesticated and 

wild population are presented in Table 3. There was a significant reduction in allelic richness in 

the domesticated population compared with the wild population (paired two-tailed t-test, t = -

2.823, df = 9, p = 0.02), but no significant difference between expected heterozygosity (two-

tailed paired t-test, t=-1.95, df=9, p=0.08) or observed heterozygosity (t=-1.81, df=9, p=0.10).  
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In the domesticated population, red and black were slightly, but significantly 

differentiated from each other (AMOVA FST = 0.041, p=0.00079), but there was no evidence of 

differentiation between morphs in the wild in either the reduced dataset (AMOVA FST = -0.0038, 

p=1), or the full dataset (AMOVA FST =0.0040, p=0.31). In the domesticated population the 

clustering analysis indicated a ΔKmax = 2, and LnP(D)max was also K = 2 (Figure 4a). There was 

slight but highly significant differentiation between the wild and domesticated populations (FST = 

0.016, p = 0.0015). The clustering analyses including the wild and domesticated populations 

indicated that ΔKmax = 2 LnP(D)max=4. We compared the Q-plots for K=4 (Figure S5) and K=2 

(Figure 4b), and it showed that the two additional clusters in K=4 were restricted entirely to the 

domesticated population, which is consistent with hierarchical structure and with the result 

observed in Figure 4a.  

 

Discussion 

The observed rate of extra-pair paternity in the Gouldian finch (22.8% of broods, 8.6% of 

offspring) is relatively low, and less than the mean frequency found across socially monogamous 

bird species (11% of offspring; Griffith et al. 2002). These estimates of extra-pair paternity are 

not different from those observed in another Australian Estrildid finch, the long-tailed finch, 

(Poephila acuticauda) (12.8%) (Rooij et al., 2016), but are different from the frequency 

observed in the zebra finch (Taeniopygia guttata) (2%) (Birkhead et al., 1990; Griffith et al., 

2010). Intra-specific brood parasitism observed in the Gouldian finch is within the range 

observed in these same Estrildid finches (0.51-10% of offspring) (Supplement 3). In the wild 

population, females appeared not to be constrained by nesting synchrony or density in their 
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ability to gain extra-pair paternity (Supplement 3), and some offspring were sired by extra-pair 

males breeding up to 4.2km away which is within the normal daily movement previously 

observed in the Gouldian finch (Woinarski & Tidemann 1992; K. Maute Pers Comm). This is in 

contrast to highly territorial bird species where distance to copulate and overall breeding 

synchrony can influence patterns of extra-pair paternity (e.g. Canal et al., 2012; Garcia-Navas et 

al., 2014). 

We found little evidence to suggest that patterns of extra-pair paternity across Gouldian 

finch morph pairings were related to amelioration of genetic incompatibility, as predicted by 

work on domesticated birds (Pryke & Griffith, 2009b; Pryke et al., 2010). Although our 

relatively small sample sizes, particularly of the key mixed-morph pairs in the wild reduced the 

power of our tests. However, the biological effect size seen in earlier studies of domesticated 

birds was very strong and such a strong effect should have been apparent even with our sample 

size. Further, to achieve a sample size necessary to test the effect sizes observed in this study we 

would have to sample approximately 20% of the adult population, which is estimated to be 2500 

individuals (Garnett et al., 2011).Across pairing types in the wild we consistently observed fewer 

incidences of extra-pair paternity, and an equivalent number of extra-pair offspring to 

domesticated females in pure pairs. Furthermore, there was no evidence of bias in the head 

colour of extra-pair or within-pair offspring despite the prediction that paternity would be biased 

towards compatible males and show a reduction in heterozygous red offspring. Another 

prediction for incompatibility based on the domesticated population was that there would be a 

male-bias in the brood sex ratio produced by females in mixed-morph pairs, given sex allocation 

and stronger female-specific mortality costs of genetic incompatibility (Pryke & Griffith, 2009a; 

b). However, we found there was no significant difference in day 14 offspring sex-ratio between 
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pairing types. Together with previous observations of no difference in offspring survival in the 

wild, we suggest that the genetic incompatibility previously observed in the domesticated 

population is weaker, or absent, in the wild (Pryke & Griffith, 2009b; Brazill-Boast et al., 

2013a). 

In further contrast with findings in the domesticated birds, we found no evidence of 

assortative mating by head colour morph. This contrasts with an earlier report of assortative 

mating in a population at Mornington, in the central Kimberley, WA (~300km away) (Pryke & 

Griffith, 2007). However, in their study Pryke & Griffith (2007) did not survey a wider sample 

of adults to sample the total pool of possible mates as we have done in this study. In addition, 

pairs in the earlier study were possibly pseudo-replicated (only 12 of 59 adults were uniquely 

identified by bands), as it was assumed that each water-hole (where families were identified) had 

a unique complement of individuals (Pryke & Griffith, 2007). We know now from our 

subsequent work at Wyndham that the same individuals (identified uniquely by leg-bands) will 

be sighted at different waterholes on different days (JBB, SCG Pers Obs), and the mobility of 

adults is also supported by the distance over which extra-pair paternity is gained. However, 

observed patterns of mating in the wild may not represent true mate-preferences. For example, 

the choice of social partners may be constrained by inherent competitive interactions between 

head colour morphs, as seen in white-throated sparrows (Houtman & Falls, 1994). Competitive 

interactions are likely relevant to Gouldian finch mate choice, because Brazill-Boast et al. 

(2013a) found that red-headed males secured the best quality nesting cavities – an important and 

limited resource (Brazill-Boast et al., 2010, 2011). Indeed, female pied flycatchers (Ficedula 

hypoleuca) choose partner according to resource quality (Alatalo et al., 1986), so female 

Gouldian finches might choose partners on resource quality, or trade off between head-colour 
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and resource quality. Even if there are constraints on the “ideal” mate choice, these constraints 

should be alleviated or completely removed by selection if the cost of mating with a suboptimal 

partner is high enough (Brooks & Griffith, 2010). Our results suggest that mating with a partner 

of a different head colour in the wild may not be as costly to reproductive success as in the 

domesticated population (Pryke & Griffith, 2009b). 

In the wild, the selection on head colour polymorphism and mate choice may be different from 

domesticated birds. This has been demonstrated in other systems, such as the colour polymorphic 

painted dragon (Ctenophorus pictus). Under experimental conditions colour morphs exhibited 

alternative reproductive strategies, but these were not realized in the wild due to the constraints 

of habitat structure (Olsson et al., 2007). In the zebra finch, the frequency of extra-pair paternity 

was significantly higher in multiple domesticated birds than in wild populations (Griffith et al., 

2010; Forstmeier et al., 2011). Furthermore, wild female zebra-finches show different mate 

choice preferences to their domesticated counterparts (Rutstein et al., 2007). Therefore, these 

differences in polyandry and mating patterns in the Gouldian finch may be the result of the 

domestication process itself, or may reflect the more complex factors faced in the wild that were 

removed from the experiment, such as a constraint on extra-pair copulation through mate-

guarding (Komdeur et al., 1999; Pryke et al., 2010). We have presented results from the 

experiments on domesticated birds as a guide to the effect size expected between mixed and 

same-morph pairs in the wild, but we fully appreciate that differences in experimental design 

make these studies difficult to compare directly. Therefore, although we cannot conclude 

unequivocally that there was no difference in incompatibility amelioration strategies between 

pairing types, we can conclude the effect was not as strong as observed in the domesticated birds.  
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The final key prediction is that incompatibility will be associated with a restriction of 

gene-flow between the morphs. Accordingly, we find evidence of genetic differentiation between 

morphs in captivity, where the effects of incompatibility have been demonstrated (Pryke & 

Griffith, 2009b). In contrast, previous work found there was no evidence of genetic 

differentiation between morphs in the wild (Kim, 2011), which further strengthens the evidence 

for weak or absent incompatibility derived from the paternity and sex-allocation data. Although 

we took steps to minimise the inclusion of highly related individuals, the presence of family 

groups may overestimate population structure (Rodríguez-Ramilo & Wang, 2012). Indeed, we 

found some evidence that there was sub-structuring beyond head colour morphs in our 

STRUCTURE analysis, which may represent family lineages from the original captive sources. 

Although the prediction is that incompatibility will be associated with genetic differentiation, the 

differentiation observed here is probably not caused by incompatibility, per se. It is more likely 

that the incompatibility arose due to differentiation between morphs, in small and isolated 

domesticated populations. Indeed, Gouldian finch breeders are often interested in establishing 

exaggerated traits for competitive avicultural shows, and their general management practices 

include the maintenance of same-morph red and black families to enhance plumage colour traits 

(Evans & Fidler, 2005; Hoffman et al., 2014). If domesticated Gouldian finch morphs have 

consistently bred separately, then there is potential to exaggerate morph-specific traits and the 

associated agonistic interactions (Rice & Holland, 1997; Hesketh et al., 2013; Pennell & 

Morrow, 2013). Experiments on Drosophila have shown that when females are not allowed to 

co-evolve with male sexual strategies, subsequent female generations will rapidly experience 

reduced fitness in response to matings (Rice, 1996). This, in combination with artificial 

selection, and perhaps bottlenecks, may generate the conditions necessary to establish 
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incompatibilities between head colour morphs. Our analyses of microsatellite variation 

demonstrated some of the expected genetic differences between the populations of domesticated 

and wild Gouldian finches. We found that there was a significant reduction in allelic richness 

(but not heterozygosity) in the domesticated population, which is expected to accompany a 

reduction in effective population size. Bottlenecks and artificial selection that accompany 

domestication can have profound effects on the genome (e.g. Montague et al., 2014), and can 

alter genetic variation and the strength and direction of trait correlations (Bryant & Meffert, 

1988; Haudry et al., 2007). Therefore, we propose that the population history of the domesticated 

Gouldian finch may have driven the genetic incompatibility observed in the earlier studies 

(although this remains to be further examined in detail).  

Our evidence from patterns of extra-pair paternity, sex-ratio allocation, assortative mating 

and population structure in the wild are inconsistent with predictions about inter-morph 

incompatibility that was observed in domesticated Gouldian finches. The effects seen in the 

domesticated birds could be a unique result of the domestication process and/or stochastic 

processes that have resulted from breeding small populations. If this is the case, the domesticated 

Gouldian finch provides an opportunity to investigate the emergence of genetic incompatibilities 

and sexual and inter-morph conflict. The time is ripe to investigate these questions, as the rapid 

influx of genomic resources are allowing us to detect signatures of selection and genetic conflict 

in all manner of organisms (Parsch & Ellegren, 2013). Genomic comparison of the head colour 

polymorphism in both wild and captive birds will yield insights into the role of sex-

chromosomes in genetic conflict and speciation (Qvarnström & Bailey, 2009). Thus, 

comparisons between domesticated and wild Gouldian finches may provide an interesting future 

model into the evolution of colour polymorphism and genetic incompatibilities.  
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Box 1: a) Explanation of the alleles and sex linkage of the red/black polymorphism in the 
Gouldian finch. b) Explanation of the key predictions used in this paper that are derived from the 
laboratory studies on domesticated Gouldian finches. 

 

 

 

 

 
 
 
 
 
  

Results from domesticated birds Prediction in the wild 

1. Females in mixed-morph pairs had a 
significantly higher fraction of offspring sired 
by a compatible extra-pair male, than 
females in same-morph pairs (Pryke et al., 
2010).  This was an average of 56% of 
offspring per clutch, and 76.5% of all 
possible offspring 

1. In the wild: a).Mixed-morph pairs will have a 
higher incidence of any extra-pair offspring 
than same-morph pairs 

b) Mixed-morph pairs will have a larger fraction 
of extra-pair offspring than same-morph pairs 

c) Extra-pair offspring will be sired by 
compatible males. 

2. There is a significantly male biased sex-
ratio in offspring of mixed-morph pairs 
(Pryke & Griffith, 2009a) 

2. There will be a male bias in the offspring 
from mixed-morph pairs in the wild. 

3. The offspring of red females paired with 
heterozygous red males did equally poorly 
as those from mixed-morph pairs (Pryke & 
Griffith, 2009b). These females also have 
male biased offspring, but not as strongly as 
in mixed pairs.  

3. a) Red females paired with heterozygote red 
males will have similar compensation 
strategies as black females in mixed-morph 
pairs. 

b) Incompatibility effects are likely to be 
strongest in heterozygous red-headed young, 
therefore there will be a reduction in 
heterozygous red offspring. 

4. Gouldian finches exhibit mutual mate 
choice preferences for individuals of the 
same morph (Fox et al., 2002; Pryke & 
Griffith, 2007; Pryke, 2010). 

4. There will be a pattern of assortative mating 
with respect to morph in the wild 

5. Restriction of gene-flow not tested 
previously in captivity. 

5. There will be genetic differentiation between 
morphs 

Black morph, recessive allele 

Males: ZrZr 

Females: ZrW 

Red morph, dominant allele 

Males: ZRZr, ZRZR 

Females: ZRW 

a) 

b) 
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Table 1: Summary of the extra-pair paternity/offspring (EPP/O) and intra-specific brood parasitism (IBP) data in the Gouldian finch 
from 2008 & 2009 breeding season. 

 

* Average calculated from only those broods with extra-pair paternity.    

  
Number 
families 

Number 
Broods 

Number 
WPO 

Number 
EPO 

EPO 
assigned 
fathers 

Broods 
with EPP 

(%) 
Offspring 
EP (%) 

Average % 
Brood EP ( ± 

SE)* 
Number 
IBPO 

Broods 
with IBP 

(%) 
Offspring 
IBP (%) 

Overall 48 57 212 20 4 22.8 8.6 39.8 (± 6.4) 11 15.8 4.53 

2008 26 27 108 7 0 18.5 6.1 30.3 (± 6.3) 7 22.2 5.74 

2009 22 30 104 13 4 26.7 11.1 49.0 (± 10.0) 4 10.0 3.31 

Mixed-morph 12 17 51 7 1 35.3 12.1 35.4 (± 11.0) 4 23.5 6.45 

ZRW x ZrZr 4 6 14 5 1 66.7 26.3 36.1 (± 15.5) 2 33.3 9.52 

ZrW x ZRZr 8 11 37 2 0 18.2 5.1 33.3 (± 0) 2 18.2 4.88 

Same-morph 36 40 161 13 3 17.5 7.5 42.8 (± 8.5) 7 12.5 3.87 

ZrW x ZrZr 34 38 153 13 3 18.4 7.8 42.8 (± 8.5) 7 13.2 4.05 

ZRW x ZRZr 2 2 8 0 - 0 0 0 0 0.0 0.00 
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Table 2: The observed and expected frequency of offspring genotypes in different pairing types. P-values are the outputs from 
binomial tests or multinomial tests (more than two cases), and w is the effect size. 

 

 

 

 

 

Maternal 
Genotype 

Paternal 
Genotype 

Number 
Families 

Number 
Offspring 

  Offspring Genotype       
  ZrW ZRW ZrZr ZRZr ZRZR p h power 

ZrW ZrZr 34 141 Expected 0.5 - 0.5 - - 0.01 0.22 0.75 
Observed 86 - 55 - - 

ZrW ZRZr 8 31 Expected 0.25 0.25 0.25 0.25 - 0.55 0.26 0.20 
    Observed 6 8 6 11     

ZRW ZrZr Expected 0.5 - - 0.5 - 0.55 0.27 0.15 
  4 11 Observed 7   4 -    

ZRW ZRZr Expected 0.25 0.25 - 0.25 0.25 0.48 0.62 0.25 
  2 7 Observed 3 3 0 2    
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Table 3: Summary of genetic diversity indices using eight loci for red and black domesticated 
birds and a sample size matched subset of the wild birds. N is the number of individuals in each 
category; NAr is the rarefied allelic richness; HO is the observed heterozygosity ±  standard 
deviation; HE is the expected heterozygosity ±  standard deviation; FIS is the inbreeding 
coefficient, none of which were statistically significant. 

 

 

  

   

Population N NAr HO HE FIS 

Domesticated 48 9.75 (± 5.80) 0.72 (± 0.14) 0.75 (± 0.14) 0.04 

Red 16 6.26 (± 3.78) 0.69 (± 0.15) 0.74 (± 0.13) 0.06 

Black 32 7.50 (± 4.10) 0.73 (± 0.14) 0.73 (± 0.16) -0.01 

Wild 48 11.86 (± 7.66) 0.75 (± 0.16) 0.77 (± 0.15) 0.01 

Red 16 8.76 (± 5.43) 0.74 (± 0.20) 0.74 (± 0.20) 0.01 

Black 32 8.60 (± 4.91) 0.75 (± 0.14) 0.77 (±0.16) 0.01 
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