
What shall I share and with Whom? - A Multi-Task Learning

Formulation using Multi-Faceted Task Relationships

Sunil Gupta∗ † Santu Rana ∗ ‡ Dinh Phung ∗ § Svetha Venkatesh ∗ ¶

Abstract

Multi-task learning is a learning paradigm that improves the per-

formance of “related” tasks through their joint learning. To do this

each task answers the question “Which other task should I share

with”? This task relatedness can be complex - a task may be re-

lated to one set of tasks based on one subset of features and to other

tasks based on other subsets. Existing multi-task learning methods

do not explicitly model this reality, learning a single-faceted task

relationship over all the features. This degrades performance by

forcing a task to become similar to other tasks even on their unre-

lated features. Addressing this gap, we propose a novel multi-task

learning model that learns multi-faceted task relationship, allow-

ing tasks to collaborate differentially on different feature subsets.

This is achieved by simultaneously learning a low dimensional sub-

space for task parameters and inducing task groups over each latent

subspace basis using a novel combination of L1 and pairwise L∞

norms. Further, our model can induce grouping across both posi-

tively and negatively related tasks, which helps towards exploiting

knowledge from all types of related tasks. We validate our model

on two synthetic and five real datasets, and show significant perfor-

mance improvements over several state-of-the-art multi-task learn-

ing techniques. Thus our model effectively answers for each task:

What shall I share and with whom?

1 Introduction

Multi-task learning is an established framework to improve

predictive performance of related tasks through joint model-

ing, and has been applied in diverse areas successfully[4, 5,

25, 31]. These techniques rely on sharing useful knowledge

between the tasks via inductive transfer [8]. The main idea

is to represent each learning task as an instance in a com-

mon hypothesis space because learning in a common hypoth-

esis space leads to a better generalization performance (in an

average sense) than if learning was performed on tasks in-

dependently [3]. This idea is translated in many ways, and

some examples include using the same generative processes
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for task parameters [11, 28, 21], representing the task param-

eters in a common low-dimensional subspace [2, 18, 19, 14],

sharing a small distance from a common classification vec-

tor [13], or by modeling task parameters as a combination of

a common low rank matrix with a task independent sparse

vector [9, 10]. An important assumption is that only “re-

lated” tasks should be included. However, in a task pool, not

all tasks may be related to each other. Thus identifying the

“related” set is crucial in multi-task learning.

Early works in MTL naı̈vely included all tasks for joint

learning with a prior assumption that all of them are related.

For example, Argyriou et al. [2] proposed a multi-task

feature learning model that represents the task parameters in

a low-dimensional subspace and uses a mixed norm (L2/L1)

penalty on the parameters’ representations. The L2 norm

helps in avoiding model over-fitting whilst L1 norm ensures

that dimensionality of the subspace is kept small. Similar

attempts using a manifold or an infinite subspace were made

by [1, 23]. None of these works compute any form of task

relatedness. In practice, the assumption of all tasks being

related is rarely true and its violation may lead to degradation

in performance. To overcome this problem, recent works on

MTL compute some form of task relatedness and confine

the joint learning only within the set of the related tasks. For

example, Kang et al. [18] proposed a model that iteratively

learns groups of related tasks via integer programming and

then construct group-specific subspaces based on multi-task

feature learning (as in [2]). To learn the task groups, it

requires the number of groups to be specified in advance,

which is usually unknown. Further, it is not be able to exploit

the knowledge from the negatively related tasks as they may

lie in separate groups. In a different approach, Zhang et

al. [29] use a covariance matrix to learn the relatedness

between tasks, successfully exploiting the knowledge across

negatively related tasks. However, both of the above models

use a form of task relatedness that we call ‘single-faceted

task relatedness’- that is, a task relatedness measure that is

computed over all the features and represented by a single

number, thus presenting a single view of the relationship

between any two tasks.

Consider spam classifiers using keywords as features.

Two individuals (akin to two tasks) may share some common
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interests but differ in others. The presence of some keywords

(features) might indicate spam emails for both in their shared

interests; however, in areas where their interests are not

congruent, their notion of spam may be divergent, and thus

keywords indicating spam will be different. A single-faceted

task relatedness measure would treat all these keywords

(features) in a similar manner, resulting in a value between 0

and 1 (partially related) for these two tasks. Ideally, a multi-

task learning method should combine the two individual’s

classifiers only along the set of keywords where their spam

labeling is correlated. However, existing MTL methods,

due to their use of single-faceted task relatedness, are not

able to treat the two sets of keywords differentially and

impose joint learning along all the keywords according to

the single aggregated task relatedness. One way to solve

this problem is to first learn the two subsets of keywords

- the first set groups both tasks together, the second subset

keep them separate. Then, task relatedness for each of the

two subsets needs to be computed separately. Generalizing

from this example, each subset of features that yields a

unique grouping of tasks is called a facet. Several facets

may be identified across tasks, giving rise to the concept of

‘multi-faceted task relatedness’. This gives us capacity to

group tasks at a finer levels because we can treat the facets

differentially in joint learning.

Building on the idea of exploiting multi-faceted task re-

latedness, we propose a new multi-task learning model that

allows the tasks to collaborate differently on different fea-

ture subsets. To achieve this, we represent task parameters

in a subspace where each basis corresponds to a set of corre-

lated features. To capture intuitive basis vectors (so that they

separate positively correlated features from negative ones),

we use non-negativity constraints on basis vectors. For each

basis, tasks are partitioned automatically into groups of re-

lated tasks, and the partitions can vary from one basis to an-

other, resulting in multi-faceted task relationships. The task

partition is learnt using a combination of L1 and pair-wise

L∞ regularization on the task parameters. Task groupings are

induced automatically without the need to specify the num-

ber of groups. A key feature of our model is its ability to

group both positively-related and negatively-related tasks to-

gether. This helps towards exploiting knowledge even from

negatively-related tasks. This is a direct result of using the

pairwise L∞ norm. On the other hand, the use of L1 norm

ensures that the subspace dimension is kept small. These

regularizations are introduced in the OSCAR model [6] that

was applied for feature selection. We instead use the regular-

izations over task parameters in a MTL setting, calling our

model OSCAR-MTL. This model is formulated as an opti-

mization problem that combines the least-square loss func-

tion with the above-mentioned regularizations. We provide

an efficient solution to this optimization problem using al-

ternating direction method of multipliers (ADMM). We val-

idate our model on two synthetic and five real datasets, and

show significant performance improvements by our model

over several state-of-the-art multi-task learning techniques.

Our main contributions are:

• Proposal of the novel concept of multi-faceted task

relatedness and utilizing it to construct a new multi-

task learning model that allows tasks to collaborate

differently on different facets (feature subsets).

• Formulation of the proposed model as an optimization

problem, and provision of an efficient solution using

alternating direction method of multipliers (ADMM).

• Validation of the effectiveness of our model in sev-

eral multi-task classification and regression applica-

tions, and demonstrating that OSCAR-MTL achieves

significant performance improvements over many state-

of-the-art multi-task learning techniques.

The significance of our work lies in the fact that we extend

the scope of traditional multi-task learning techniques that

solve “learning- with whom to share?” to a wider scope of

“learning- with whom to share and what?”. This way we

offer a richer multi-task learning framework.

2 Background

OSCAR: Bondell and Reich [6] proposed a new method of

feature selection that uses a combination of L1 and pairwise

L∞ norms to encourage both sparsity of features and equal-

ity of feature weights for correlated features. Due to the use

of these norms, the constrained region used by this method

takes an octagonal shape. Motivated by this shape and the

equality inducing property, this method is known as Octago-

nal Shrinkage and Clustering Algorithm for Regression (OS-

CAR). Given an input data matrix X ∈ R
N×M (where each

row being a data point) and the outcome vector y ∈ R
N , OS-

CAR learns a sparse regression model by minimizing the fol-

lowing constrained least-square cost function

β̂ = arg min
β

||y−Xβ ||2,(2.1)

s. t. ||β ||1 + c ∑
j<k

max
{
|β j|, |βk|

}
≤ h,

where c≥ 0 and h> 0 are tuning constants with c controlling

the relative weighting of the norms and h controlling the

magnitude of the weights. One of the important properties

of OSCAR is that it encourages parsimony in the regression

model using only a small set of features. This property

makes it useful for feature selection. Another important

property of OSCAR is that it encourages weights of equal

magnitudes for the correlated features. The sign of the

weights depends on whether they are positively correlated

or negatively correlated. This leads to automatic grouping

or clustering of correlated features. In this paper, we use
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a similar regularization to that in OSCAR to automatically

learn the task-grouping for multi-task learning.

3 OSCAR-MTL

We develop a novel multi-task learning (MTL) model with

a goal to address the following fundamental issues in real-

world data with multiple tasks:

1. Most real-worlds tasks are only partially related to

each other and thus need to collaborate differentially on

different feature subsets.

2. Task relatedness in real-world data varies: tasks can

be positively related, negatively related or unrelated.

A successful MTL model should exploit positive and

negative relatedness equally and automatically separate

the unrelated tasks from joint learning. Doing this gets

harder in presence of the first problem.

Our model addresses the first issue by learning a multi-

faceted task relationship. For this, it simultaneously learns

a low dimensional subspace for task parameters and induces

independent task-grouping/partitioning for each latent sub-

space basis (facet). Due to this property, our model offers

finer and flexible control in learning different aspects of a

problem from different tasks. The second issue is dealt by

inducing a grouping that tries to bring both positively and

negatively related tasks closer (or equal) in their magnitude

while retaining their signs.

Let us assume we have T0 tasks, indexed as t =
1, . . . ,T0. The labeled examples of t-th task are denoted as

{(xti,yti) | i = 1, . . . ,Nt} where feature vector xti ∈ R
M , the

output yti ∈ R (for regression) and yti ∈ {−1,+1} (for clas-

sification). Collectively, we denote the data of t-th task by

Xt = (xt1, . . . ,xtNt )
T

and yt = (yt1, . . . ,ytNt )
T

and its task pa-

rameter by βt . Since our goal is to model T0 tasks jointly,

we first represent their task parameters in a low-dimensional

subspace, which is spanned by columns of a matrix U. For-

mally, βt is represented in the subspace as βt = Uθt . We

stack the representation vectors θt ’s in a matrix as Θ =(
θ1, . . . ,θT0

)
. We denote the k-th row of matrix Θ as θ(k).

Each column of the matrix U serves as a basis for the sub-

space and captures a set of features along which the weights

of the task parameters β1:T0
are correlated. We also impose

a non-negativity constraint on U to obtain intuitive topic-like

bases similar to non-negative matrix factorization (NMF).

We note that subspace learning can be guided by data such

that each basis captures an unique facet of the problem. Col-

lectively, multiple bases provide multiple facets (or sets of

features) along which tasks can collaborate differentially.

To induce facet-specific task-grouping, our model im-

poses a regularization on each row of Θ (i.e. θ(k)) using

a combination of L1 and pairwise L∞ penalties. The pair-

wise L∞ regularization is used to induce grouping of both

positively-related and negatively-related tasks. This helps

towards exploiting knowledge even from negatively-related

tasks. The L1 norm (acting along both rows and columns of

Θ) is used to ensure that unrelated tasks are separated out of

joint learning and the subspace dimension is kept small. We

formulate our model as the following objective function

(3.2) min
U≥0,θ1:T0

J
(
U,θ1:T0

)
=

1

2
∑

t

||XtUθt −yt ||
2+

η ||U||2F +
K

∑
k=1

[
λ1||θ(k)||1 +λ2 ∑

t,t ′:t<t ′

max(|θkt |, |θkt ′ |)

]

where η ,λ1,λ2 are regularization parameters and collec-

tively denoted as �= {η ,λ1,λ2}. The regularization term of

the above formulation is motivated from OSCAR feature se-

lection where this regularization is used to automatically dis-

cover correlated feature groups [6]. An extension for undi-

rected graphs is proposed in [27]. We note that none of these

formulations have considered such regularization for multi-

task learning. Since our model uses octagonal shrinkage as

in OSCAR, we call it as “OSCAR-MTL”.

The cost function of (3.2) has terms involving pairwise

L∞ norms. With the use of simple algebra ([6, 27]) we can

reduce these terms to a transformed L1 norm term leading to

the following cost function

(3.3) J
(
U,θ1:T0

)
=

1

2
∑

t

||XtUθt −yt ||
2+η ||U||2F +R(Θ)

where we define R(Θ) � ∑
K
k=1

[
λ1||θ(k)||1 +λ2||Dθ(k)||1

]
and the matrix D arises due to the following decomposition

property of the max operator:

max(|θkt |, |θkt ′ |) = 0.5(|θkt +θkt ′ |+ |θkt −θkt ′ |)

The right hand side terms can be written as |fT θ(k)|+ |gT θ(k)|
where f, g (both of size T0×1) are sparse vectors with all zero

elements except the t, t ′ elements, which are ft = ft ′ = 0.5
and similarly, gt = −gt ′ = 0.5. The matrix D is obtained

by row-stacking the pair of vectors [f,g]T culminating in a

matrix sized T0 (T0 −1)×T0. This matrix does not depend on

data or model parameters and can be constructed in advance.

3.1 Learning and Optimization The cost function of

(3.3) contains a least-square loss term that is used to learn

task parameters from data and the regularization terms that

are used to couple task parameters of multiple tasks. To learn

the proposed model, we need to estimate the matrix U and

the task parameters θ1:T0
. The cost function of (3.3) is jointly

non-convex in U and θ1:T0
. However, it reduces to a con-

vex function in U when θ1:T0
are fixed or vice versa. Given

θ1:T0
, the optimal solution of U takes a closed form expres-

sion if there are no non-negative constraints. However, since
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our formulation uses non-negative constraints on U, we op-

timize it in an iterative fashion. Given U, the cost function

involving θ1:T0
becomes a quadratic function along with non-

smooth L1 penalty. There are several ways to optimize this

cost function. A direct way is to convert the L1 regulariza-

tions to appropriate constraints and use optimization solvers

such as ‘quadratic programming with inequality contraints’.

However, the computational cost of such techniques is often

high. Another promising way is to use the accelerated gra-

dient descent (AGD) for OSCAR [30]. However, due to the

simultaneous involvement of both row and columns of Θ ma-

trix in the optimization, it is not straight-forward to use this

method. This leads us to use the popular alternating direction

method of multipliers (ADMM) [7]. ADMM is a general

method of decomposing a large optimization problem into a

set of smaller problems and then combining their solutions

to get the solution of the main problem. In the following, we

detail the optimization process.

Optimizing U given θ1:T0
Given θ1:T0

, the optimization

problem involving U can be re-written as

(3.4) min
U≥0

1

2
∑

t

||XtUθt −yt ||
2 +η ||U||2F .

A naı̈ve way to solve the above optimization problem is by

using constrained optimization methods such as Lagrange

multiplier or projected gradients. However, these methods

usually require a step size for the gradient descent. Choice

of a step size can be easily avoided by following a multipli-

cation update for U using an optimization strategy similar to

NMF [20] or semi-NMF [12]. Using this strategy, we de-

rive a multiplicative update of U. The Lagrangian of the cost

function of (3.4) can be written as

L(U) =
1

2
∑

t

||XtUθt −yt ||
2 +

η

2
||U||2F + tr

(
ΛUT

)
,

where Λmk is the Lagrange multiplier for the constraint

Umk ≥ 0. The derivative of L with respect to U is

∇UL = ∑
t

XT
t (XtUθt −yt)θ T

t +ηU+Λ.

Using the Karush-Kuhn-Tucker conditions ΛmkUmk = 0, we

get the following equation for Umk[
∑

t

XT
t (XtUθt −yt)θ T

t +ηU

]
mk

Umk = 0.

Applying ‘vec’ operator of a matrix, we can write[(
∑

t

AtUBt

)
vec

−

(
∑

t

Ct

)
vec

+ηUvec

]
j

[Uvec] j = 0,

where we use the notation, Uvec to denote vec(U) and define

At � XT
t Xt , Bt � θtθ

T
t and Ct � XT

t ytθ
T
t . The index j is

one-dimensional index of the matrix elements after using the

vec operator and we have j = M(k − 1) + m. The above

expression can be further simplified as

[PUvec −Qvec +ηUvec] j [Uvec] j = 0,

where we define P � ∑t At ⊗ Bt , Q � ∑t Ct . Using a

notation, v j = v+j − v−j , where v+j = 0.5(|v j|+v j) and

v−j = 0.5(|v j|−v j) (both non-negative matrices), the above

equation can be written as[
−P−Uvec −Q+

vec +P+Uvec +Q−
vec +ηUvec

]
j
[Uvec] j = 0,

which leads to the following update for U

(3.5) [Uvec] j ← [Uvec] j

√√√√ [
P−Uvec +Q+

vec

]
j[

P+Uvec +Q−
vec +ηUvec

]
j

THEOREM 3.1. The cost function J
(
U,θ1:T0

)
of (3.3) is

monotonically decreasing under the update rule of (3.5) for

a fixed θ1:T0
.

Proof. The poof closely follows along the lines of the proof

of Theorem 1(A) in semi-NMF [12].

Optimizing θ1:T0
given U Given U, the cost function in-

volving θ1:T0
becomes a quadratic function along with non-

smooth L1 penalty and can be written as

(3.6) J
(
U,θ1:T0

)
=

1

2
∑

t

||XtUθt −yt ||
2 +R(Θ)

The term R(Θ) is non-smooth in θ1:T0
due to the L1 penalty

terms. To deal with this, we use ADMM, which can de-

couple non-smooth constraints from a smooth loss function.

ADMM uses an augmented Lagrangian, which in our case is

Lρ (Θ,W,Z,μ,ν) =
1

2
∑

t

||XtUθt −yt ||
2 +R(Θ,W,Z,μ,ν)

where the augmented regularization terms, denoted as

R(Θ,W,Z,μ,ν), are given by

R(Θ,W,Z,μ,ν)= λ1||W(k)||1+λ2||Z(k)||1+μT
(k)

(
W(k)−θ(k)

)
+νT

(k)

(
Z(k)−Dθ(k)

)
+

ρ

2
||W(k)−θ(k)||

2+
ρ

2
||Z(k)−Dθ(k)||

2

In the above equation, we have introduced auxiliary vari-

ables W , Z with the constraint that W(k) − θ(k) = 0 and

Z(k) −Dθ(k) = 0. Further, we have μ(k) ∈ R
T0 and ν(k) ∈

R
T0(T0−1), which are the augmented Lagrange multipliers

and a non-negative parameter ρ , which is used to enhance

the numerical stability of the algorithm. In our implementa-

tion, ρ is set to 1. ADMM finds the solution by iteratively

optimizing the above Lagrangian over Θ, W , Z, μ and ν .

In the following we present update rules for θ1:T0
and other

auxiliary variables.
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Algorithm 1 The proposed OSCAR-MTL

1: Input: Multi-task data {Xt ,yt}
T0
t=1, parameter set � and

subspace dimension K.

2: Output: Task parameters β1:T0
, matrix U and matrix Θ.

3: Initialization: Initialize nonnegative matrix U and ma-

trix Θ randomly. Set W = Θ and Z = ΘDT .

4: repeat

5: update U using Eq. (3.5) until it converges.

6: for k = 1 : K do

7: update θ(k) by solving Eq. (3.7).

8: update W(k),Z(k) using Eq. (3.8)-(3.9).

9: update μ(k),ν(k) using Eq. (3.10)-(3.11).

10: end for

11: until convergence

• Update θ(k) given other variables: Optimum solution

of θ(k) given other variables has a closed form and is

obtained by solving the following equation

(3.7) [Γ+diag(ek)]θ(k) = r(k)− s(k)

where we first define Γ � ρ
(
I+DT D

)
,

Et � UT XT
t XtU, bt � UT XT

t yt and then use Et ,

bt to further define ek �

[
E1

kk, . . . ,E
T0
kk

]T

, s(k) �[(
E1θ1

)
k
, . . . ,

(
ET0θT0

)
k

]T
−

(
θ(k)	 ek

)
, and r(k) �[

b1
k , . . . ,b

T0
k

]T

+ μ(k) + DT ν(k) + ρ
(
W(k) +DT Z(k)

)
.

We note that the matrix Γ+ diag(ek) is diagonal and

has full rank. Therefore, Eq. (3.7) decouples in all

variables and does not involve any matrix inverse.

• Update W,Z given other variables: Optimum solu-

tion of W can be obtained by minimizing the following

min
W(k)

λ1||W(k)||1+
ρ

2
||W(k)−θ(k)||

2+μT
(k)

(
W(k)−θ(k)

)
,

which can be reduced to the following standard form

that is amenable to using proximal gradient operators

min
W(k)

λ1

ρ
||W(k)||1 +

1

2
||W(k)−

(
θ(k)−

μ(k)

ρ

)
||2.

The closed form solution to the above non-smooth min-

imization problem using proximal operators is given by

(3.8) W(k) = Hλ1/ρ

(
θ(k)−

μ(k)

ρ

)
,

where Hλ (θ) is the soft-thresholding operator given by

Hλ (θ) = max(|θ |−λ ,0)sign(θ) .

The optimum solution of Z given other variables can be

obtained similarly and is given as

(3.9) Z(k) = Hλ2/ρ

(
Dθ(k)−

ν(k)

ρ

)

• Update μ,ν given other variables: The Lagrange

multipliers μ,ν can be updated as following

μ(k) ← μ(k) +ρ
(
W(k)−θ(k)

)
(3.10)

ν(k) ← ν(k) +ρ
(
Z(k)−Dθ(k)

)
(3.11)

A step-by-step procedure of the proposed OSCAR-MTL is

provided in Algorithm 1. We analyze the computational cost

of the algorithm. Computational complexity of computing

XT
t Xt and XT

t yt is O
(
M2Nt

)
and is required only once at the

start of the algorithm. The costliest computation is incurred

for updating U, which is O
(
KM2T 2

0

)
per iteration. The

complexity for updating Θ is O (KT0) per iteration. Thus the

total computational complexity of Algorithm 1 per iteration

is O
(
KM2T 2

0

)
.

4 Experiments

We perform extensive experiments using both synthetic and

real datasets to validate the effectiveness of OSCAR-MTL.

Synthetic data in a controlled scenario is used to illustrate the

behavior of the model with different configurations of task-

grouping with respect to the underlying subsets of features.

A total of 2 classification and 3 regression real datasets are

used to measure the effectiveness of our model for real world

tasks. Performance is compared with the following state-of-

the-art multi-task learning models:

• Multi-task Feature Learning (MTFL) [2]: This method

assumes that all the tasks are related and represents the

task parameters in a low dimensional subspace. There

is no grouping of tasks.

• Grouped Multi-task Learning (GMTL) [18]: This

method extends MTFL by clustering the tasks into a

set of groups and then modeling tasks of each group

jointly. Unlike OSCAR-MTL, it requires the number of

groups to be pre-specified. Further, it learns a single

task-grouping irrespective of feature subsets. In addi-

tion, it can not exploit the knowledge from negatively

related tasks as such tasks are not grouped together.

• Multi-task Relationship Learning (MTRL) [29]: This

method first learns the relationship among the tasks

through a covariance matrix and then uses the task re-

lationship for jointly learning task parameters. This

method can learn both positive and negative task re-

latedness. However, this method only learns a single-

faceted relationship between the tasks.

In addition to the above baselines, comparison is also per-

formed with single-task learning (STL), which learns each

task independent of other tasks and a baseline that we call

ATL (All Task Learning), which pools data from all tasks

together and learns a single model for all the tasks. For all

the models including OSCAR-MTL, the best parameters are

learnt using a grid search through 5-fold cross validation.
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Figure 1: Experimental results for Synthetic-I: (a) task parameters (true) (b) task parameters (estimated) (c) matrix U

(estimated) (d) multi-faceted task-grouping (estimated). In (c) and (d), latent bases are permuted for easy viewing.
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Figure 2: Experimental results for Synthetic-II: (a) task parameters (true) (b) task parameters (estimated) (c) matrix U

(estimated) (d) multi-faceted task-grouping (estimated). In (c) and (d), latent bases are permuted for easy viewing.

We evaluate the performance on classification tasks us-

ing the area under ROC curve (AUC) and on regression tasks

using root mean square error (RMSE). AUC is chosen as the

measure since our classification datasets are imbalanced and

it is known that AUC is a more robust measure than Accu-

racy for imbalanced datasets[17].

4.1 Experiments with Synthetic Data We create 30 syn-

thetic tasks and divide them into 3 task groups such that

tasks ‘1-10’ belong to task group-1, tasks ‘11-20’ belong to

task group-2 and the tasks ‘21-30’ belong to task group-3.

The parameters (βt ) for all the tasks are defined in a 12-

dimensional space. Following this, we create two synthetic

datasets. Both the datasets simulate scenarios where task re-

latedness varies depending on subsets of features i.e. task re-

lations are multi-faceted. The first dataset includes positively

related or unrelated tasks but does not contain any negatively

related tasks. The second dataset simulates a more general

scenario having all types of task relatedness (positively re-

lated, unrelated and negatively related).

• Synthetic-I: Along the first 4 features the task group-1

is related to the task group-2 (but unrelated with the task

group-3), along the next 4 features the task group-1 is

related to the task group-3 (but unrelated with the task

group-2) while along the last 4 features the task group-

2 and task group-3 are related but the task group-1 is

unrelated to them. This dataset simulates a situation

where task relations are multi-faceted i.e. relatedness

varies depending on the feature subsets.

• Synthetic-II: This is identical to the Synthetic-I along

the first 8 features. However, along the last 4 features,

the task group-2 and task group-3 are now negatively

related and the task group-1 is unrelated.

For both datasets, the feature matrix for t-th task, i.e. Xt =[
xt

1, . . . ,x
t
Nt

]
is generated using a multi-variate normal distri-

bution as xt
i ∼N (0,I). Given i-th data vector xt

i and its task

parameter βt , the label yt
i is generated as

(4.12) yt
i = sign

(
β T

t xt
i + ε t

i

)
, ε t

i ∼ N (0,0.1).

For all our synthetic experiments, we randomly split the data

in two sets: 70% for training and the remainder for test. The

results are averaged over 40 random training-test splits. As

seen in Figure 3, OSCAR-MTL usually converges in 20-30

iterations. Figure 1 (a-b) shows the true task parameters and

those estimated by OSCAR-MTL for Synthetic-I dataset.

We can see that upto some proportionality constant, these

parameters are estimated accurately. Figure 1 (c-d) shows

the latent subspace bases and the subspace representation of

the task parameters estimated by OSCAR-MTL. In Figure

1 (c), we can see that the features are correctly segmented,

i.e. the first basis is mostly about the first 4 features, the

next basis is mostly about the next 4 features and the third

basis is mostly about the last 4 features. When looking at the

subspace representation of the task parameters (in Figure

1 (d)), we can see that along the first subspace basis (i.e.

the first 4 features), the weights of the first 10 tasks are

very similar to the next 10 tasks. The correct recovery is

also obtained for the other two bases. Figure 2 shows a
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Method Synthetic-I Synthetic-II

STL 0.827 (0.003) 0.802 (0.005)

ATL 0.884 (0.002) 0.823 (0.003)

MTFL 0.876 (0.002) 0.856 (0.004)

GMTL 0.868 (0.002) 0.847 (0.004)

MTRL 0.883 (0.002) 0.858 (0.004)

OSCAR-MTL 0.945 (0.002) 0.949 (0.004)

Table 1: Comparison of classification performance of

OSCAR-MTL with various methods in terms of the area un-

der ROC curve (AUC) for Synthetic data. AUC performance

is averaged over 40 random training-test splits and the num-

bers in parenthesis are the respective standard errors.
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Figure 3: Convergence plot of OSCAR-MTL for Synthetic-I.

similar results for Synthetic-II dataset. We note that both task

parameters and their subspace representations (see Figures 2

(b) and (d)) correctly capture the negative task relatedness.

In Table 1 we present a comparison between OSCAR-

MTL and the baseline methods. Clearly, OSCAR-MTL sig-

nificantly outperforms all the baselines. Comparing between

the results of Synthetic-I and Synthetic-II, we note that all

the baseline methods including MTFL, GMTL and MTRL

suffer a degradation in their performance due to the nega-

tive correlation between task group-2 and task group-3 along

the last 4 features. In contrast, the performance of OSCAR-

MTL is marginally improved indicating that it can exploit

both positive and negative relatedness equally due to the use

of multi-faceted task relationship. Although MTRL claims

to learn negative task relatedness, it fails to capture true task

relations due to using a single-faceted measure.

4.2 Experiments with Real Data We use the following

classification and regression datasets.

Landmine Data (Classification): This dataset is cre-

ated from radar images collected from 19 landmine fields,

used previously in [26]. Each data instance is a 9-

dimensional representation of each image formed by con-

catenating different image based features. The task is to de-

tect images with landmines. Treating each landmine field as

a task, we jointly model them via multi-task learning.

Cancer Data (Classification): This dataset is collected

from a hospital in Australia (Ethics approval #12/83). It

contains records of patients who visited the hospital during

2010-2012 and suffered from one or many of 11 different

cancer types (cf. Figure 5(b)). The records include a variety

of information such as demographics, medical conditions

using WHO ICD-10 codes and tumor-specific information.

This information leads to a total of 528 features. The total

number of patients over all cancer types is 668[16]. The

task is to build a 1-year mortality prediction model for

each cancer type. Since the number of instances for many

of the cancer types are small, the predictive performance

of independently trained models is poor. To improve the

performance, we jointly model them via multi-task learning.

Computer Survey Data (Regression): This dataset

was introduced in [22] and later used by [2] for multi-task

learning. This dataset contains ratings of 20 computers by

190 students. Each computer was rated by students based

on 13 binary features (cf. Figure 4(a)) and assigned a score

on a scale of 0-10 indicating their likelihood of buying the

product. We treat ratings by each student as a task, giving

rise to 190 tasks. As these tasks are related, we jointly model

them under the setting of multi-task learning.

School Data (Regression): This dataset comes from the

Inner London Education Authority and has been widely used

[2, 19]. It consists of examination scores of 15362 students

from 139 secondary schools in London during 1985-1987.

Each student is represented as a 26-dimensional feature

vector containing year of examination, school and student-

specific attributes. We treat the prediction of examination

score for each school as a task.

Parkinson Data (Regression): This dataset consists of

a range of biomedical voice measurements taken from 42

people with early-stage Parkinson’s disease [24]. A total of

19 features includes subject’s age, gender, time interval from

baseline recruitment date, and 16 voice measures. There

are a total of 5875 instances collected over time from all

patients. The task is to accurately predict Parkinson’s disease

symptom score (motor UPDRS). We model it using multi-

task learning treating each subject as a task.

For all classification datasets, we randomly split the data

in two parts: 70% instances for training and the remainder

for testing. The results are averaged over 40 random training-

test splits. For school and computer dataset, following [15],

we use 70% instances for training and the remainder for

testing. For Parkinson, since the number of examples per

task is not small, to show the efficacy of multi-task learning,

we use a smaller training set: 20% instances for training and

the remainder for testing. The performance is averaged over

40 trials. Convergence plots of OSCAR-MTL for all real

datasets are similar to that of synthetic-I and not shown.

4.2.1 Experimental Results Table 2 presents a compar-

ison of our proposed OSCAR-MTL with STL, ATL and

three other MTL algorithms. OSCAR-MTL consistently

and clearly outperforms all the baselines for both regression
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AUC (Classification) RMSE (Regression)

Method Landmine Cancer Computer School Parkinson

STL 0.761 (0.02) 0.692 (0.005) 2.22 (0.00) 10.07 (0.00) 1.70 (0.05)

ATL 0.741 (0.01) 0.793 (0.004) 2.21 (0.00) 10.29 (0.00) 7.36 (0.09)

MTFL 0.762 (0.02) 0.703 (0.004) 2.06 (0.00) 9.81 (0.00) 2.85 (0.08)

GMTL 0.755 (0.02) 0.724 (0.004) 2.07 (0.01) 9.74 (0.02) 2.93 (0.10)

MTRL 0.781 (0.01) 0.750 (0.004) 2.04 (0.00) 9.83 (0.00) 1.37 (0.02)

OSCAR-MTL 0.779 (0.01) 0.827 (0.004) 1.71 (0.05) 9.73 (0.03) 1.14 (0.07)

Table 2: Experimental results for real datasets: The results are reported in terms of area under ROC curve (AUC) for

classification datasets and root mean square error (RMSE) for regression datasets. Performance is averaged over 40 random

training-test splits and the numbers in parenthesis are their respective standard errors.

and classification applications except the Landmine dataset

where MTRL achieves the best performance and OSCAR-

MTL is a close second (the standard error bars for OSCAR-

MTL and MTRL overlaps). Usually, MTRL is the closest

contender to OSCAR-MTL for most of the datasets. One

of the reasons is that similar to OSCAR-MTL, MTRL is

also a capable model that can exploit negative task related-

ness. However, since MTRL uses a single-faceted task re-

latedness computed using all the features, it may sometimes

bring the tasks closer even along unrelated features causing

degradations in performance. The performance of MTFL

and GMTL is usually lower than that of MTRL and OSCAR-

MTL, except for the school dataset where GMTL sits at

the second place after OSCAR-MTL. The performance of

GMTL and MTFL are usually similar. Interestingly, GMTL,

in spite of learning task-grouping, fails to perform better than

MTFL. This may be the result of task-grouping derived us-

ing a limited single-faceted view of task relations. In con-

trast, OSCAR-MTL induces multi-faceted task-grouping and

achieves superior performance.

To illustrate further, we use the results from the Com-

puter dataset and show how different task-grouping exist for

different facets of the problem. We show the subspace ma-

trix U and the magnitude of task representations Θ in Figure

4. The matrix U depicted in Figure 4 (a) shows 4 different

facets discovered by OSCAR-MTL. The first facet is mainly

about ‘CPU speed’, ‘Hard disk’ and ‘Cache’. The second

facet is about ‘CD-ROM’, along with ‘Guarantee’ and ‘Hot

line’. The third facet is about ‘Price’. The fourth and the last

facet is about ‘CD-ROM’, ‘RAM’, ’Screen size’ and ‘Soft-

ware’. We can see that these facets are quite different from

each other and are intuitively meaningful. From Figure 4

(b), we clearly see that there exist different grouping of stu-

dents for each facet, implying that joint learning needs to

be done with different students for different facets. Similar

task-grouping for other datasets are shown in Figure 5. As

seen, tasks collaborate differentially on different facets.

5 Conclusion

We propose a novel multi-task learning method exploiting

multi-faceted task relationships. Our model simultaneously

Latent basis index
1 2 3 4
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CPU speed

Hard disk
CD ROM

Cache
Color of Unit
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Figure 4: The latent bases (K = 4) and the basis-specific task

grouping discovered by OSCAR-MTL for computer dataset.

In (b), for easy viewing of the different task groups, we have

re-ordered the tasks along each latent basis.

learns a low dimensional subspace for task parameters and

induces task-grouping on each basis separately. The task

groupings are learnt by using a novel combination of L1 and

pairwise L∞ norms. Further, the model is able to group both

positively and negatively-related tasks together, enabling

learning from all types of related tasks. We formulate the

model as an optimization problem and provide an efficient

solution. We validate our model on five real datasets, and

show significant performance improvements over several

state-of-the-art multi-task learning methods.
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