
JID:YJCSS AID:2939 /FLA [m3G; v1.169; Prn:10/12/2015; 16:17] P.1 (1-12)

Journal of Computer and System Sciences ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Discovery of stop regions for understanding repeat travel 
behaviors of moving objects

Guangyan Huang a,∗, Jing He b, Wanlei Zhou a, Guang-Li Huang d, Limin Guo c, 
Xiangmin Zhou d, Feiyi Tang b

a School of Information Technology, Deakin University, Melbourne, Australia
b College of Engineering and Science, Victoria University, Melbourne, Australia
c Institute of Software, Chinese Academy of Sciences, Beijing, China
d School of Computer Science and Information Technology, RMIT University, Melbourne, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 April 2015
Received in revised form 1 July 2015
Accepted 28 October 2015
Available online xxxx

Keywords:
Trajectory mining
Repeat travel behaviors
Repeat route patterns
Stop regions

GPS trajectory dataset with high sampling-rates is usually in large volume that challenges 
the processing efficiency. Most of the data points on trajectories are useless. This paper 
summarizes trajectories using stop points. We define a new concept of stay stability (i.e., 
time dividing distance or reciprocal of speed) between any two GPS points to detect stop 
points on individual trajectories. We propose a novel Mining Repeat Travel Behaviors Using 
Stop Regions (MRTBUSR) method. In MRTBUSR, a stop region is a popular region containing 
a certain number of close stop points that can be grouped into a cluster. We then retrieve 
common sequences of stop regions to denote repeat route patterns and further analyze
the stop durations on a stop region to find repeat travel behaviors. The experiments on 20 
labeled trajectories selected from GeoLife demonstrated the semantic effect, accuracy and 
near linear efficiency of our proposed method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

GPS trajectories have been widely used for travel experience sharing, life logging, sports activity analysis and multimedia 
content management, etc. [1]. However, it is not convenient to directly use raw GPS data (coordinates and timestamps) [1]
and the raw data are hard to be understood by human, since raw data that are collected at high sampling-rates by machine 
usually are accumulated in large volume and comprise a great ratio of meaningless points. It is a challenge for handling 
big-sized data, and thus detecting key points to reduce the data size is an important task before mining trajectories.

In our previous work [2], we use a sequence of turning region IDs to approximate an original trajectory and greatly 
reduce the data size. Unfortunately, the turning regions that naturally simplify the trajectories are not equal to interesting 
regions. In contrast, stop regions, which are the places frequently visited by a certain number of users, such as culturally 
important places and commonly frequented public areas, are more meaningful to study the users’ behaviors [1]. Simplifying 
trajectories using meaningful stop regions helps us to understand the behavior of moving objects. But stop points (i.e., 
instances of stop regions) are implicit on raw trajectories, which are generally displayed as the repeat similar locations.
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In this paper, we efficiently and accurately detect stop points/regions, use stop regions with stop durations to simplify 
trajectories and discover repeat travel behaviors for trajectory understanding. We define a new concept of stay stability (i.e., 
time dividing distance or reciprocal of speed) between any two GPS points to detect stop points on individual trajectories, 
and propose a novel Mining Repeat Travel Behaviors Using Stop Regions (MRTBUSR) method. In MRTBUSR, a stop region 
is a popular region containing a certain number of close stop points that can be grouped into a cluster. We then retrieve 
common sequences of stop regions to denote repeat stay routes and further analyze the stop durations on a stop region 
to find repeat travel behaviors. The experiments on 20 labeled trajectories selected from GeoLife [1,3] demonstrated the 
semantic effect, accuracy and near linear efficiency of our proposed method. Particularly, using stop regions with stop 
durations to summarize trajectories in a semantic way enables easier understanding of behaviors of moving objects and 
allows manual analysis of massive trajectories.

The most related work is provided in [1] and [3], where a concept of stay points is very similar to our stop regions. 
A stay point is defined as a geographic region where a user stayed over a certain time interval [1]. Different from the 
definition of stay points, we do not use an absolutely interval threshold to define our stop regions; instead, a stop region 
is a special place where moving objects entering with relatively lower speed compared to their speeds before and after 
entering this place; we define a stay stability concept to measure this near-to-stop relatively low speed. Therefore, our stop 
regions are more flexible than stay points in [1] to capture more meaningful regions and are more effective to help discover 
repeat travel behaviors of moving objects.

Stop regions are vital to represent repeat travel behaviors. Three applications are

• common trip routes, denoted by sequences of stop regions of public transportations, such as train, which can be used to 
find return trips (the same sequence of key stop regions between two places);

• popular visiting routes of special places, such as beauty/historical spots, which can be recommended to others;
• personal daily travel routes, denoted by sequences of key stop regions for work, study and living, which can be used to 

study personal daily travel behaviors.

The rest of this paper is organized as follows. We present related work in Section 2 and define the problem in Section 3. 
The MRTBUSR method is proposed in Section 4, while its performance is evaluated in Section 5. Finally, Section 6 concludes 
the paper.

2. Related work

In this section, we conduct a survey of the state-of-the-art techniques about trajectory understanding for user behavior 
analysis [1,3], where similarity measurement of trajectories is critical. Particularly, we brief our previous work on both 
trajectory simplification [2] and using the duration of staying on each location of trajectories to discover common behaviors 
of objects [4].

GPS Trajectories record human behaviors. The same human behavior pattern cannot repeat exactly because of uncertain-
ties introduced by discrete sampling and sampling error [5], as well as individual difference of moving objects. So, similarity 
measurement of trajectories is a basis for trajectory mining.

The simplest similarity measurement only considers spatial difference of trajectories, such as Euclidean-based distance 
measures. It is more precise to measure both the spatial (i.e., locations) and temporal (i.e., timestamps) similarities of 
trajectories. Dynamic Time Wrapping (DTW) [6] allows similar shapes to match even when they are in different time phase. 
Both Edit Distance on Real sequence (EDR) [7] and Longest Common Subsequences (LCSS) [8] are used to measure the 
similarity between trajectories that contain noise and local time shifting. EDR is more robust than Euclidean distance and 
DTW and more accurate than LCSS. TRACLUS [9] is used to discover common sub-trajectories.

To further understand user behaviors, extracting behavior knowledge in semantic aspects other than in merely spatial 
temporal data is more effective. For example, the similarity of movement patterns are extracted from trajectories [11,12], 
and also some special behavior phenomena, like the silent durations, are considered for clue-aware trajectory similarity 
measurement in [13]. Here, the semantic trajectory [14–17] means a set of spatial temporal positions complemented with 
semantic annotations. Semantic annotations can be a label of geographic information, such as the real-world address cor-
responding to a longitude and latitude location, or a label of a traveling mode, such as by train, walk and driving car. In 
[18], the similarity between two users in terms of the similarity of their maximal semantic trajectory patterns are consid-
ered. A semantic hierarchical tree-structured framework [1,19,20] is provided to calculate similarity, and both spatial and 
semantic feature are considered for trajectory analysis [21,22].

Other work considers context in addition to trajectories; for example, in [10], both moving path and user groups in 
Location Based Service environments are used to predict the next behavior of mobile users.

In [2], we proposed a novel mining algorithm for Longest Common Route (LCR) patterns based on turning regions (LCR-
Turning), which discovers a sequence of turning regions to abstract a trajectory; this method keeps the coarse shapes of 
trajectories. But we have observed that many turning regions are meaningless; they are not interesting landmark regions. 
Instead, the stop regions discovered by this paper, where people stay for a longer time, are more meaningful.

Different from the above existing work, we argue that the stop points with staying durations of a trajectory are the most 
important clues for analysis of human behaviors. At a stop point, user’s location is in a bounded region/area and how long 
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the user stays on the stop point reflect the meaning/purpose of his/her stay behavior. Also, analysis of staying patterns of 
users need not semantic annotations, instead, it can help automatically generate semantic annotations.

So, in our recent work [4], we developed a novel approach for discovering common behaviors by considering the duration 
of staying on each location of trajectories (DoSTra). The duration of staying on a location is important. DoSTra can easily 
to differentiate user behaviors by considering duration of staying on each location when the users follow the same route 
(a sequence of regions) and thus help detect the group that has similar lifestyle, habit or behavior patterns.

The most related work is provided in [1] and [3], where a concept of stay point, is very similar to our stop regions. 
A stay point is defined as a geographic region where a user stayed over a certain time interval [1]. Similar strategies are 
used to detect arbitrary shape of the interesting regions: OPITCS is used for stay points in [1] and DBSCAN [23] is used for 
stop regions in this paper. But different from the definition of stay points, we do not use an absolutely interval threshold to 
define our stop regions; instead, a stop region is a special place where moving objects entering with relatively lower speed 
compared to their speeds before and after entering this place. Thus, our stop regions are more flexible than stay points in 
[1] to capture more meaningful regions and are more effective to help discover repeat travel behaviors of moving objects.

In this paper, we extend further the work in [4] and provide a more flexible and systematic solution to discover repeat 
travel routes denoted by sequences of stop regions from GPS trajectories to understand human behaviors.

3. Problem definition

3.1. Basic terms

We formally define basic terms and then model the problem.

Definition 1 (GPS trajectory). (See [1].) A GPS trajectory is a sequence of points, traj =< p1, . . . , pu, . . . , pk >, where pu =
(latu, lgtu, tu), tu (u = 0..k) is a timestamp (yy–mm–dd, hh–mm–ss) for a snapshot, ∀0≤u<k , tu < tu+1, and (latu , lgtu) are 
2-D locations denoted by latitude and longitude.

Definition 2 (Stay stability). The stay stability on trajBA (a trajectory segment between locations: A and B) is denoted by

Sstay(A, B) = dT

len(trajBA)
, (1)

where len(trajBA) is the length of trajBA , dT = T B − T A is the duration on trajBA , and T A and T B are timestamps on locations 
A and B, respectively.

According to Definition 2, the stay stability is the reciprocal of the speed on a trajectory segment, the slower the velocity, 
the greater the stay stability.

Definition 3 (Stop points). A point between A and B is a stop point, if its stay stability is greater than a threshold, Ncoef , 
times of the average stay stability on trajBA , Sstay(A, B).

Definition 4 (Stop regions). If a group of stop points from more than min_sup trajectories are clustered into a cluster, we call 
this stop point cluster a stop region. Stop points are instances of a stop region.

Definition 5 (Stop duration). is the duration of staying at a stop region.

After having studied common behaviors of objects using the duration of staying on each location of trajectories in [4], 
we define a more complete and formal concept — repeat travel behaviors in Definition 6.

Definition 6 (Repeat travel behaviors (or repeat stay patterns)). A repeat stay route is a sequence of at least k stop regions and 
the whole route repeats at least l times. A repeat travel behavior is a repeat stay pattern, where each stop region with similar 
(with a bounded error of ε) stop duration on a repeat stay route.

So, we group the three typical applications mentioned in Section 1 into two classes:

• repeat stay routes: common trip routes of multiple moving objects or return trips of one moving object and popular visiting 
routes of special places;

• repeat stay patterns: personal daily travel patterns.
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Table 1
The MRTBUSR method.

Input: Ncoef , min_sup, k, l and ε.

Output: Repeat travel behaviors.

Step 1. Detect stop points (Algorithm 1). Compute stay stabilities (see Definition 2). Find stop points with stay stability greater than Ncoef times of 
the average stay stability of the whole trajectory (see Definition 3).

Step 2. Label trajectories using stop regions (Algorithm 2). Group stop points into clusters to identify stop regions with at least min_sup supports 
(see Definition 4). Merge the same consecutive stop regions on a trajectory and compute stop duration (see Definition 5) of this stop region. 
Use a sequence of stop region IDs with stop duration to label a trajectory.

Step 3. Find repeat travel behaviors (Algorithm 3). Discover repeat travel behaviors of moving objects with at least a sequence of k stop regions and 
the whole sequence repeats at least l times with a bounded stay duration difference, ε (see Definition 6).

Table 2
An example.

Point (Latitude, longitude) Time Stay stability

A (41.688133, 82.828615) 39541.4726 (2008/4/3 11:20:33) 0.0389
B (41.695882, 82.847058) 39541.47329 (2008/4/3 11:21:32)

3.2. Overview of the proposed method

We propose a novel Mining Repeat Travel Behaviors Using Stop Regions (MRTBUSR) method as shown in Table 1 and 
develop three algorithms to implement the MRTBUSR method in three steps, respectively. In Step 1, we detect stop points 
(see Algorithm 1 in Section 4.2). In Step 2, we label trajectories using stop regions (see Algorithm 2 in Section 4.3). In Step 3, 
we find repeat travel behaviors (see Algorithm 3 in Section 4.4).

4. Mining Repeat Travel Behaviors Using Stop Regions

In this section, we present the details of the three algorithms in the MRTBUSR method.

4.1. Computing the stay stabilities

We calculate the distance between two locations denoted by latitude and longitude by

len(trajBA) = 2αR × arcsin

√
sin2(

latB − latA

2
) + cos(latA) × cos(latB) × sin2(

lgtB − lgtA

2
) (2)

where the radius of the Earth is R = 6 367 000 meters and the coefficient is set to α = 10−5 for simplifying the value of 
a stay stability. We explain how to calculate the stay stabilities using an example of two points in Table 2. In Table 2, 
latA = 41.688133, lgtA = 82.828615, latB = 41.695882, lgtB = 82.847058, T A = 39541.4726 and T B = 39541.47329, and 
according to Equations (1) and (2), Sstay(A, B) = 0.0389.

4.2. Detecting stop points

We first use examples to explain how to detect stop points by one cut under both single and multiple transportation 
modes, and then provide a general OneCut algorithm.

4.2.1. Trajectories under single transportation modes
In Fig. 1, we use the average stay stabilities of the whole curve to detect stop points for single transportation modes; 

that is, Ncoef = 1. The maximum value of stay stability is set to around τ = 5 times of the cut point, since the stay stability 
approximates to infinite when the distance is zero. Fig. 1 shows the effectiveness of the cut on the stay stability curves. The 
points above the cut can be used to compute stop points and the points below the cut can be neglected, particularly for the 
curves of train and taxi. The cut for the walk curve generates a large number of stop points; this captures an interesting 
human behavior patterns that people frequently stop when walking and can help automatically separate walking segment 
of trajectories from train/taxi segments of trajectories.

4.2.2. Trajectories under multiple transportation modes
In Fig. 2, we separate different transportation modes of a trajectory using a cut on the stay stability curve of this 

trajectory.
Fig. 2 (a) plots an example of an original GPS trajectory that comprises four partitions in three transportation modes: 

by train, walking and by taxi. Fig. 2 (b) accordingly shows the stay stability curve of the trajectory in Fig. 2 (a). We can 
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Fig. 1. Detecting stop points under single transportation modes (Ncoef = 1).

see from Fig. 2 (b) that the stay stabilities by train are close to zero, the stay stabilities by taxi are between 0 and 0.5, 
and the stay stabilities by walking are greater than 0.5, actually, most are greater than 1. That is, the stay stabilities during 
walking are far greater than those under other transportation modes. Also, the values of stay stabilities vibrate rapidly when 
switching transportation modes. Using stay stabilities can help automatically partition trajectories into different modes, just 
like the work done in [3] to segment walk modes. Those intervals with great stay stabilities such as the peak in the curve 
of Fig. 2 (b) help to identify stop points, so we identify stop points using a cut (i.e., the stay stability of the whole segment). 
The points above the cut are used to compute stop points. The maximum value of stay stability is set to τ = 10 times of 
the cut point for Fig. 2 (b). Here, the setting of the value of τ is only for display purpose.

4.2.3. The OneCut algorithm for detecting stop points
According to Equations (1) and (2), we compute the stay stability of the trajectory, trajBA , in Fig. 2 (a) below:

Sstay(A, B) = dT

len(trajBA)
= �n

i=1(�ti)

�n
i=1(�di)

, (3)

where �ti = ti+1 − ti is the interval between two consecutive points: pi+1 and pi (pi = (lati, lgti, ti)), �di = len(trajpi+1 pi
)

and n is the number of intervals between A and B in Fig. 2 (a).
We use the example in Fig. 2 to explain Algorithm 1 (in Table 3). In Step 1, we generate a curve of stay stabilities of a 

moving object. In Step 2, we use Eq. (3) to compute the stay stability of the whole trajectory, Sstay(A, B) = 0.1394. In Step 3, 
we set Ncoef = 3 and get cut = Ncoef × Sstay(A, B) = 0.4182; the cut coarsely partitions the trajectory into four segments 
as shown in Fig. 2 (b). In Step 4, we simplify a trajectory using a sequence of stop points denoted by a 2-tuple (average 
location, stop duration). The OneCut algorithm can use to help detect walk segments in [3], where walk segments are used 
to separate different transportation mode pieces.

The stop points detected by our OneCut algorithm are meaningful to analyze human behavior and an example in Fig. 3
shows the effectiveness. Fig. 3 shows a stop region map, which is generated using our OneCut algorithm from a GPS user’s 
trajectory (“010” in GeoLife) collected for over 1.5 years and displays the user’s behavior and life style. We have marked 
three different types of stop points (i.e., stay 5+ minutes, stay 30+ minutes and stay 2+ hours) on the map, which help 
understand the user’s behavior in over 1.5 years.
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Fig. 2. Analysis of stay stabilities on a trajectory under various travel modes.

Table 3
The OneCut algorithm.

Algorithm 1. Detecting stop points using one cut.

Input: A GPS trajectory, trajBA .

Output: A sequence of stop points on trajBA .

Step 1. Calculate stay stabilities on each interval of a trajectory to form a curve, S.
Step 2. Compute the stay stability of the whole trajectory, Sstay(A, B), using Eq. (3).
Step 3. Use cut = Ncoef ∗ Sstay(A, B) to cut the trajectory curve S into m partitions with two modes: stable (partitions above the cut line) and 

non-stable (partitions below the cut line), where Ncoef is a coefficient.
Step 4. For each partition with mode equal to “stable”,

Compute a stop point denoted by an average location (latitude, longitude) and a duration (i.e. the end time subtract the start time);
Output a sequence of stop points on trajBA in time order.

4.3. The algorithm of labeling trajectories using stop regions

We present the main idea of the Trajectory Labeling (TL) algorithm, as shown in Algorithm 2 (Table 4), as follows. We 
use DBSCAN [23] to cluster a group of close stop points (that are identified by the OneCut algorithm) into a stop region 
(Step 1) and a stop point is an instance of a stop region. Then we identify stop regions (Step 2) and compute the location of 
stop regions (Step 3). Finally, we use a sequence of stop region IDs to label a trajectory (Step 4). Algorithm 2 changes each 
original trajectory into sequences of stop region IDs with stop duration as shown in Fig. 4; this is easier to be understood 
by people. Note that not every stop point can be grouped into a stop region; for example, those with label “00” as shown 
in Fig. 4 are neglected, since they are not repeated at a minimal number of times required for a stop region.
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Fig. 3. Stop region map of a GPS user (“010” in GeoLife) for over 1.5 years.

Table 4
The Trajectory Labeling algorithm.

Algorithm 2. Labeling trajectories using stop regions.

Input: A trajectory, trajraw =< subtraj1, subtraj2, . . . , subtraji , . . . , subtrajm >, where subtraji =< p1i , . . . , pui , . . . , pki >, where pui = (latui , lngtui , tui), and 
a stop point set on trajraw , Setstop = {q1, . . . , q j , . . . , qx}, where q j = (lat j , lgt j , t j , subtrajID j);

Output: A labeled trajectory with m sequences of stop regions, trajlabel =< lsubtraj1, lsubtraj2, . . . , lsubtraji , . . . , lsubtrajm >, where lsubtraji =< r1i , . . . ,
rvi , . . . , rki >, rvi = (latvi , lgtvi , StopIDvi , t1vi , t2vi), the center location of stop region, StopIDvi , is (latvi , lgtvi), t1vi is the start time and t2vi is the end 
time for entering stop region, StopIDvi .

Step 1. Use the DBSCAN algorithm to cluster stop points in Setstop by locations, with parameters of eps and Minpts;

Step 2. Identify stop point clusters (stop regions) from the DBSCAN clusters that satisfy at least k different sub-trajectory IDs;

Step 3. Denote a stop point cluster (stop region) by (latc , lgtc , StopID), where (latc , lgtc) is the center location of all stop points in this cluster;

Step 4. Change each raw trajectory by sequences of labels. A label of the ith stop region on the vth sub-trajectory is denoted by rvi =
(latvi , lgtvi , StopIDvi , t1vi , t2vi). A consecutive sequence of stop points within the same stop region is merged as one.

Fig. 4. An example of labeled trajectory using stop regions (“01, 02, 03, 04, 05, 06”). The original trajectory piece is from GeoLife, 073 dataset, 2008/5/23, 
9:58:39–10:17:27.

4.4. Mining repeat travel behaviors of moving objects

A repeat travel behavior occurs on a repeat route. If a certain number of objects also stay at each stop region within 
similar durations, we call it a repeat stay pattern. So, we first retrieve repeat stay routes in Section 4.4.1 and then find 
repeat stay patterns further in Section 4.4.2.



JID:YJCSS AID:2939 /FLA [m3G; v1.169; Prn:10/12/2015; 16:17] P.8 (1-12)

8 G. Huang et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 5. An example repeat stay pattern detected from Geolife, 073 dataset, 0805 (2008/8/5 2:16:22–2:29:14) and 0804 (2008/8/4 2:14:27–2:28:15).

4.4.1. Finding repeat stay routes
We assume that no stop region is missed on a route since high sampling-rates ensure the precision of the original 

trajectories. That is, “A− > B− > C− > D” and “A− > B− > D” are definitely two different routes from A to D . We use 
suffix trees to efficiently retrieve common sequences of stop region IDs for representing repeat stay routes. We use words 
(i.e., a sequence of letters/numbers), instead of letters, to denote a stop region ID and thus the number of stop regions is 
unlimited. For example, we use words of meaningful location names to represent locations A, B , C and D , and denote the 
route by “flinders, parliament, flagstaff, newmarket”, where one word denotes one location name and a comma (“,”) or a blank 
space is used to separate two consecutive location names.

We introduce the basic concept of suffix trees. A suffix tree with a word-based alphabet is as follows. Str =< W1, W2, . . . ,
W i, . . . , Wn > is a string, where W i is the ith word in Str, then Suf i =< W i, W i+1, . . . , Wn > is the ith suffix of Str that 
starts at the ith word. The suffix tree for the string Str of length n is defined as a tree such that (in [24]):

• The paths from the root to the leaves have a one-to-one relationship with the suffixes of Str,
• Edges spell non-empty strings, and
• All internal nodes (except the root) have at least two children.

For example, a string of 3 stop regions, “flinders parliament flagstaff ”, has three suffixes: “flinders parliament flagstaff ”, 
“parliament flagstaff ” and “flagstaff ”.

We provide a special suffix tree structure which can store the support list of sub-trajectory IDs for each common sub-
sequences. We use a hash table to store the number of supports (nSupports) and the support list, and thus we can easily 
achieve common sub-sequences (i.e., repeat stay routes) that have at least k words (i.e., stop regions) and nSupports ≥ l sup-
ports (i.e., sub-trajectory IDs). The parameters k and l are defined in Definition 6. Note that we consider the return route as 
the same route; for example, “flinders parliament flagstaff ” and “flagstaff parliament flinders” are the same route. Fig. 5 shows 
an example of a repeat stay route.

4.4.2. Discovering repeat stay patterns
We propose Algorithm 3 in Table 5 to discover repeat stay patterns by clustering instances based on stop durations 

on a repeat stay route. After labeling trajectories by Algorithm 2 (in Table 4), instances (i.e., sub-trajectories) that support 
a repeat stay route are sequences of labels. A label of the ith stop region on the vth sub-trajectory is denoted by rvi =
(lati, lgti, StopIDi, t1vi, t2vi), where StopIDvi is an ID of the stop region, the center location of stop region i is (lati, lgti), 
t1vi and t2vi are the start and the end timestamps for entering the stop region. So, Ri = (lati, lgti, StopIDi) and �T vi =
|t2vi − t1vi |.

In Algorithm 3, we group instances (i.e., curves of stop durations) that support a Repeat Stay Route into different clusters; 
all instances (no less than min_instances) in each cluster have a sequence of at least, min_durations, consecutive similar stop 
durations. In Algorithm 3, we use our previously developed Clustering Points On a Line (CPOL) algorithm [25] to cluster 
a 1-dimension dataset at Line 2. The main idea of the procedure CPOL, (Q , Emax , Nmin), is as follows. Q denotes a set of 
1-dimension data points that are sorted along the X-coordinator. Emax is the maximum bounded error to the center of a 
cluster and Nmin is the minimal number of points required to form a cluster. First, the center of all the data points in Q is 
computed as c0. All data points in the neighborhood of c0, a circle area centered by c0 with a radius of Emax , are grouped 
into a cluster, C1, which naturally separates the remaining data points into Q left and Q right . Then, in the same way, we 
recursively group data points in Q left (or Q right) into clusters. It is possible Q left (or Q right) = � in any recursive step.
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Table 5
Algorithm of discovering repeat stay patterns.

Algorithm 3. Discovering repeat stay patterns (min_instances, min_durations).

Input: A set of m instances of a repeat stay route, R = {I1, . . . , I j , . . . , Im}, where the jth instance is denoted by I j =< (R1, �T1 j),

. . . , (Ri , �Tij), . . . , (Rk, �Tkj) > and the sequence of k region IDs of each instance for this repeat stay route is the same: R =< R1, . . . , Ri , . . . , Rk >.

Output: N: a set of repeat stay patterns.

1 Let Q =< Q 1, . . . , Q i , . . . , Q k >, where Q 1 = {�T11, . . . , �T1 j , . . . , �T1m} and �T11 ≤ �T1 j ≤ �T1m

2 Ci = CPOL(Q i , γ , Nmin);// Ci is a set of clusters of similar durations at Region i.

3 If (Ci �= ∅ and (i + 1) ≤ k)
For each cluster in Ci

{i++;
Go to Line 2;// to check the similarity of durations at the next Region, i, for the data points in current Ci−1.}

4 Output those clusters of instances, as N (a set of repeat stay patterns). Each cluster is a repeat stay pattern, where the minimal number of 
instances is min_instances and all the instances have a sequence of at least min_durations ≤ k similar durations (within a bounded time error, γ ).

Fig. 6. A stay pattern example on a segment of trajectory 115 in GeoLife, from 2008/6/1 (601) to 2008/7/16 (716). (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)

We use examples in Fig. 6 to explain Algorithm 3. We obtain repeat sequences of stop regions by Algorithm 2 as shown 
in Fig. 6 (a), where the repeat pattern has three stop regions, supported by 13 instances (601, 610, 615, 617, 622, 624, 629, 
702, 710, 711, 714, 715, 716). Fig. 6 (b) shows an example of the output of Algorithm 3 by checking the similarity of stop 
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Fig. 7. cutcoef With derror = 50 m.

durations, where “702” and “629” show a repeat travel behavior since both of them stay at each of the three stops 04, 17 
and 27 with very similar stop durations as shown in the table in Fig. 6 (b), given a bounded time error, γ = 15 seconds.

5. Performance evaluation

In this section, we evaluate the effectiveness (precisions and number of patterns retrieved) and efficiency of our MRT-
BUSR method using 20 labeled GPS trajectories selected from GeoLife. We also discuss the optimal parameters of MRTBUSR. 
Note that the examples that show the semantic effect of retrieved patterns can be found in Figs. 1–6.

5.1. Dataset and experimental setup

We have selected 20 labeled GPS trajectory datasets from GeoLife [1,3,26] for our experimental study; each comprises 
110+ trajectories and total of 9462 trajectories with data size of 688 MB. We set MaxStability = 10. To obtain the maximum 
number of stops, we set Ncoef = 3, minDuration = 0. If the stop points on an individual trajectory are in stop regions, they 
can be discovered by Algorithm 2; otherwise, they are neglected.

X = 1

n
× �n

i=1(xi − x̄)2, (4)

where x̄ = 1
n × �n

i=1(xi).
We use variance to compute the distance error of each stop region instance on a pattern, as shown in Eq. (4). We set 

a bounded error threshold, derror , to evaluate the precision; that is, in a discovered repeat travel pattern, we check the 
correctness of a region ID by considering if all the instances for this region ID are within the bounded derror meters. A small 
variance indicates that the data points tend to be very close to the mean.

All the experiments have been conducted on a workstation [Intel(R) Xeon (R) CPU E5-2620v3 (12 cores: 6 cores 2 pro-
cessors) @ 2.40 GHz, 32 GB of RAM, Windows 8.1]. The suffix tree for retrieving common sub-sequences are implemented 
in Eclipse (Java) and other algorithms are implemented in PHP.

5.2. Study of optimal parameters

We set minPts = 2. The other two parameters: eps and derror are determined by applications. Generally, we set derror =
5 × eps. So, we set eps = 10 m and derror = 50 m. We analyze the optimal cutcoef in Fig. 7. We find cutcoef should be 
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Table 6
Discovered patterns from 20 trajectory datasets of 20 moving objects.

MO ID 010 020 062 065 067 068 073 084 085 092

Npatterns 77 130 524 53 158 1244 70 971 2419 59
Precision 1 0.94 0.91 0.88 0.9 0.73 1 0.96 0.99 0.99

MO ID 096 104 112 115 126 128 144 153 163 167

Npatterns 221 10 102 260 426 1704 263 1979 574 663
Precision 1 1 0.8 1 0.9 0.85 1 0.78 0.92 0.9

Fig. 8. Near linear run time.

greater than 2, just as shown in Figs. 1 and 2. We study the optimal value of cutcoef by analysis of their correct patterns 
and precisions as shown in Fig. 7. We choose cutcoef = 3 as the optimal value, since we expect to retrieve more correct 
patterns while keeping the precision acceptable (greater than 80%).

5.3. Effectiveness

After studying the optimal parameters, we set minPts = 2, eps = 10 m, cutcoef = 3, derror = 50 m and conduct experiments 
on 20 datasets.

The results are shown in Table 6, comprising both the number of repeat stay patterns discovered (Npatterns) and their 
precisions. We can see from Table 6 that the precision is lower when Npatterns is greater, such as 068 (precision = 0.73
and Npatterns = 1244) and 153 (precision = 0.78 and Npatterns = 1979). Some examples of the detailed patterns are shown in 
Figs. 4, 5 and 6.

5.4. Efficiency

We also evaluate the efficiency of our method using the run time. We neglect the runtime of Algorithms 1 and 3, since 
the major time (over 98% of the total time) is consumed by running Algorithm 2. We can see from Fig. 8, our method shows 
a near linear run time efficiency, changing with the number of trajectories. This demonstrates that our method is efficient 
to process massive trajectory data.

6. Conclusions

In this paper, we have defined a new concept of stay stability (i.e., time dividing distance or reciprocal of speed) between 
any two GPS points and proposed a novel MRTBUSR method. In MRTBUSR, we detect stop points using a cut on a stay 
stability curve of an individual trajectory, cluster stop points into stop regions, retrieve common sequences of stop regions 
to denote common route patterns and further analyze stop durations on each stop regions to find repeat travel behaviors. 
The experiments on 20 labeled trajectories selected from GeoLife have demonstrated the semantic effect, accuracy and near 
linear efficiency of our MRTBUSR method.
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