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Predators exert strong selection pressures on their prey. Prey would therefore benefit by adjusting their behaviour to
the risk of predation, while predators conversely would benefit from adjusting their behaviour to that of their prey.
Extravagant ornamentation has evolved to attract mates and/or successfully compete with conspecifics of the same
sex to secure high mating success, even if that occurs at a cost of increased risk of predation. Thus, sexually
dichromatic species may be more susceptible to predation than sexually monochromatic species, and the presence of
compensation is indicative of such species being more vulnerable. If extravagant ornamentation is costly in terms of
predation risk, then we should expect sexually dichromatic species to have longer flight initiation distances (FID)
than sexually monochromatic species. If ornamentation is acquired as a handicap with only individuals in prime
condition being able to display with the smallest viability cost, we should expect sexually dichromatic individuals to
have shorter FID than sexually monochromatic individuals. Such differences among individuals should, on an
evolutionary time scale, translate into differences in FID being related to differences in sexual dichromatism among
species. We investigated the relationship between FID and sexual dichromatism in phylogenetic analyses, while
accounting for effects of continent (Australia, North America, and Europe), body mass, the interaction between sexual
dichromatism and body mass and the interaction between sexual dichromatism and continent. In an analysis of 447
species we found shorter FID in sexually dichromatic than in sexually monochromatic species (consistent with the
handicap hypothesis because sexually dichromatic species took greater risks), especially so at large body size. FID
differed among continents and the relative difference in FID between sexually monochromatic and sexually
dichromatic species was larger in Europe than in Australia and North America. These differences among continents
may be attributed to latitudinal effects of predation. These findings are important for current ideas about the
evolution of secondary sexual characters because they imply covarying continental differences in predation, especially
for large bodied sexually dichromatic species. © 2015 The Linnean Society of London, Biological Journal of the
Linnean Society, 2015, 00, 000–000.
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INTRODUCTION

Sexual selection is the evolutionary process that
arises from mate choice or competition among indi-
viduals of the same sex for access to mates (Ander-
sson, 1994). The fitness advantages of sexual
selection are either direct material benefits in the
current generation or indirect genetic benefits that
accrue to offspring in the next generation (Ander-
sson, 1994). Genetic benefits may arise from good
genes providing resistance to parasites (Hamilton &
Zuk, 1982) or predators (Baker & Parker, 1979) or
from increased diversity of genes (Neff & Pitcher,
2005).

Sexual selection may relate to interspecific interac-
tions such as those between predators and prey
because only individuals of high quality will be able
to signal that they are unprofitable prey (Cott, 1947;
Baker & Parker, 1979; G€otmark, 1992, 1993).
Because secondary sexual characters often are condi-
tion dependent, with only healthy individuals in
prime condition being able to develop the most exag-
gerated secondary sexual traits (Andersson, 1994),
we should expect that such individuals are better
able to escape from predators, a prediction that has
been confirmed in three studies (Petrie, 1992; de
Lope & Møller, 1994; Møller & Nielsen, 1997).

Conspicuous coloration is widely used in mate
choice within species (Andersson, 1994). Neverthe-
less, several interspecific studies investigating inter-
specific differences in coloration suggest that bright
coloration is positively correlated with risk of preda-
tion (Baker & Bibby, 1987; G€otmark, 1993; Slags-
vold, Dale & Kruszewics, 1995; G€otmark & Post,
1996; Rytk€onen et al., 1998; Huhta, Rytk€onen &
Solonen, 2003; Møller & Nielsen, 2006), while others
suggest that there is a negative correlation (Baker &
Parker, 1979; Baker & Bibby, 1987). Such contradic-
tory results are commonplace in all sciences includ-
ing evolutionary biology. They may arise from
differences in methods, differences in sampling effort
and differences among localities or years.

If sexually dichromatic species suffer from higher
risks of predation due to elevated conspicuousness to
predators (Baker & Bibby, 1987; G€otmark, 1993;
Slagsvold et al., 1995; G€otmark & Post, 1996;
Rytk€onen et al., 1998; Huhta et al., 2003; Møller &
Nielsen, 2006), we should expect such species to take
smaller risks and hence have evolved longer flight
initiation distances (FID, the predator–prey distance
at which prey begins to escape). However, longer
FIDs come at a cost because such individuals are dis-
turbed more often, and males with bright plumage
coloration need to spend more time foraging to
recover the costs. Importantly, Møller & Nielsen
(2006) showed that it was the sex difference in

plumage brightness that accounted for the higher
susceptibility to predation in sexually dichromatic
bird species in Europe, while the difference in plu-
mage brightness of males was not related to suscep-
tibility to predation, nor was the difference in
plumage brightness of females.

Møller, Christiansen & Mousseau (2011) investi-
gated six aspects of anti-predator behaviour in 80
species of birds showing that such behaviour was
indeed related to risk of predation by the two most
common predators, cats Felis catus and spar-
rowhawks Accipiter nisus. Anti-predator behaviour
was related to sexual dichromatism with a reduced
frequency of fear screams and an increased duration
of tonic immobility in sexually dichromatic species,
implying that anti-predator behaviour has evolved in
response to sexual coloration (Møller et al., 2011).
Although FID was not related to sexual dichroma-
tism in a previous study of European birds (Møller,
2009), there is evidence that secondary sexual char-
acteristics are linked to other kinds of anti-predator
behaviour, implying that sexual selection has
affected the evolution of predator–prey communica-
tion (Møller, Nielsen & Garamszegi, 2008).

Wallace (1889) emphasized the strength of inter-
specific interactions in the tropics compared with his
temperate homeland (UK). A higher biodiversity and
a longer evolutionary time scale of interspecific inter-
actions have resulted in a greater impact of biotic
compared to abiotic factors in the tropics. This obser-
vation has been consistently confirmed in numerous
studies since then (Schemske et al., 2009; D�ıaz et al.,
2013). Interspecific interactions such as those among
predator–prey, parasite–host, herbivore–plant and
pollinator–plant show consistent latitudinal variation
with more intense interactions at lower latitudes
(Schemske et al., 2009). Such interactions imply that
not only attack, but also defenses have evolved to
high levels at low latitudes. That is the case for
chemical defenses, secondary compounds of plants
and aposematic coloration (Schemske et al., 2009).
There is also evidence that anti-predator defences
are stronger at lower latitudes such as in tadpoles of
Rana temporaria in Scandinavia (Laurila, Lindgren
& Laugen, 2008), and birds of the same species in
temperate Europe and in tropical China (Møller &
Liang, 2013).

FID increases strongly with body size (Holmes
et al., 1993; Laursen, Kahlert & Frikke, 2005; Blum-
stein, 2006; Fern�andez-Juricic et al., 2006; Møller,
2008a), as expected from larger species requiring
longer time to get airborne and hence avoid capture
(Møller, 2008a; Møller, V�ag�asi & Pap, 2013). This
effect of body size may also relate to predation risk
because species of intermediate body size are pre-
ferred as prey over small species (G€otmark & Post,
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1996; Møller & Nielsen, 2006). Small species may be
easier to catch, but they will provide less food for a
given hunting effort causing the prey preference to
converge towards prey of intermediate size. It is
important therefore to consider body size as a poten-
tially confounding variable when analysing the rela-
tionship between sexual dichromatism and
susceptibility to predation.

The objectives of this study were to test: (1) if FID
is related to sexual dichromatism among species; (2)
whether FID and the strength of the relationship
between FID and sexual dichromatism differ among
species differs among continents; and (3) whether
the difference in FID between sexually monochro-
matic and sexually dichromatic species increases
with body size. We did so by analysing 17 791 FID
measurements made on 447 species, studied on three
continents – Australia, Europe, and North America.

MATERIAL AND METHODS

FLIGHT INITIATION DISTANCE

We recorded FID for a total of 447 species during the
breeding season by using a standard procedure devel-
oped by Blumstein (2006). Eighteen of these species
occurred in two continents and one species (Pluvialis
squatarola) occurred in all three, resulting in 467 esti-
mates of mean species FID (Supporting Information,
Table S2). In Europe FID was recorded in Norway
during 2009–2010, Denmark during 2006–2015,
France during 2006–2015 and Spain during 2007–
2012 (latitude 49–58�N, longitude 5�W–10�E). In
North America, FID was recorded in the United
States during 2001–2002 (southern California and
western Colorado; latitude 33–39�N, longitude 107–
119�W). In Australia, most FIDs were collected from
southeastern Australia during 1999–2002 and 2011–
2015 (latitude 28–38�S, longitude 113–153�E). In
brief, we walked at a slow pace (~0.5 m s�1) directly
towards a bird recording the distance (measured in
number of steps, or using a Bushnell� Elite 1500
Laser Rangefinder) from the bird when we started
walking, the distance at which the birds initiated
escape, and the bird’s height in the vegetation as
judged from the height of the observer (Blumstein,
2006; Møller, 2008b, 2015; Weston et al., 2012; Guay
et al., 2013; McLeod et al., 2013). To account for the
height at which individuals were perched, FID was
calculated as the Euclidian distance between the
approaching human and the focal bird (which equals
the square-root of the sum of the squared flight dis-
tance and the squared height in the vegetation). We
also recorded starting distance (i.e. the predator–prey
distance when the approach begins), although we did
not report starting distances here for simplicity.

Observers wore neutral colored clothes and behaved
quietly as normal pedestrians. FIDs were recorded in
a representative range of habitats by searching sys-
tematically for birds in all available habitats. FID was
measured by a number of trained observers and there-
fore data were pooled for analysis because there was
little evidence of observer effects on FID estimates
(Guay et al., 2013). The FID estimates were initially
reported in Blumstein (2006), Møller (2008b), and
Weston et al. (2012). There is an extensive literature
on methodology of studies of FID showing consistency
among methods (number of steps vs. range finder),
observers, vehicles for approach and other causes of
variation in FID showing a high degree of consistency
(McLeod et al., 2013; Cooper & Blumstein, 2015; Møl-
ler, 2015). Humans are widely used to study risk
assessment because animals often perceive humans
as potential predators (Frid & Dill, 2002). We know
that FID varies according to the costs and benefits of
escape; thus, other potential predators may elicit dif-
ferent FIDs. Nonetheless, humans walking at a con-
stant pace provide a standardized stimulus with
which to study perception of predation risk.

The field studies did not involve endangered or
protected species and Blumstein (2006), Møller
(2008b), and Weston et al. (2012) provide further
details. FID data collection only required behavioural
observations and did not involve capture, collection
or sacrifice of specimens.

ECOLOGICAL VARIABLES

We selected three variables in our models:

1. Continent. All species were scored with respect to
continent (Australia, North America or Europe).

2. Sexual dichromatism. We provided bird species
with a dichotomous score of sexual dichromatism,
based on categorization of plumage coloration in
field guides. Species were given a score of zero, if
males and females could not be reliably distin-
guished based on plumage characters according
to field guides and handbooks (e.g. Cramp & Per-
rins, 1977–1994; Poole, Stettenheim & Gill, 1993–
2002; Higgins & Davies, 1996–2006; Mullarney
et al., 2000; Svensson, 2006), while all other spe-
cies were scored as 1. For example, blue tits
Parus caeruleus, that can be reliably sexed based
on the intensity of the blue coloration of the
crown, were scored as 1, whereas coal tits P. ater,
that cannot be sexed based on plumage charac-
ters, were scored as 0. We did not attempt to
quantify the magnitude of the sex difference in
coloration because we do not know how any
predators perceive such differences, nor could we
readily pool such information from different
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predators. However, our dichotomous score was
strongly positively correlated with quantitative
scores from Møller & Birkhead (1994) and Read
(1987) (Spearman r = 0.89, N = 24, P < 0.001),
suggesting that both dichotomous and continuous
scores provide similar information. Finally, we
did not consider plumage brightness of males or
females because apparent brightness to a human
may be completely cryptic depending on the envi-
ronment. Because both males and females by def-
inition live in the same environment during
reproduction, any difference in sexual dichroma-
tism is likely to reflect a difference in coloration
between the sexes independent of the environ-
ment. We did not consider ultraviolet (UV) col-
oration in this study, although avian predators
are fully capable of seeing signals in the UV (Vii-
tala et al., 1995). Previous studies using dichoto-
mous scores of sexual dichromatism have shown
predicted relationships with other variables (e.g.
Møller & Birkhead, 1994), and sexual dichroma-
tism is strongly positively related to measures of
coloration derived from models based on avian
vision (e.g. Armenta, Dunn & Whittingham,
2008; Seddon et al., 2010). We are aware of the
potential weaknesses of our approach, although
we consider that there is little evidence of human
visual scores distorting categorization of sexual
dichromatism (Armenta et al., 2008; Seddon
et al., 2010).

3. Body mass. We used information on body mass of
adults relying on standard handbooks averaging
the body mass of males and females if body masses
were reported separately for the two sexes (Cramp
& Perrins, 1977–1994; Poole et al., 1993–2002;
Higgins & Davies, 1996–2006). All data for differ-
ent species in different continents are reported in
Supporting Information (Table S2).

COMPARATIVE ANALYSES

Closely related species are more likely to have simi-
lar phenotypes because of common ancestry, which
makes data points statistically dependent (Felsen-
stein, 2004). Therefore, we fitted Phylogenetic Gener-
alized Least Squares models (PGLS; Garland & Ives,
2000) to account for the phylogenetic non-indepen-
dence on the relationship between FID and the pre-
dictor variables. PGLS models were fitted using the
‘gls’ function of the R package ‘nlme’ (Pinheiro et al.,
2011). The strength of the phylogenetic signal on
residuals, measured as Pagel’s k, was optimized by
the maximum likelihood method (Freckleton, Harvey
& Pagel, 2002). The models were weighted by sample
size to account for differences in sample size among

species (Garamszegi & Møller, 2010, 2011; Garam-
szegi, 2014). Exclusion of species with less than a
certain number of observations would be arbitrary, it
could cause bias by exclusion of rare species that
may differ from the overall sample, and it could even
be considered unethical because individuals were dis-
turbed to no avail (Garamszegi & Møller, 2010, 2011;
Garamszegi, 2014). To weight the samples, we used
the inverse of the sample size as a proxy of variance
to be used in the variation function structure (argu-
ment ‘weights’ of the ‘gls’ function [Paradis, Claude
& Strimmer, 2004]).

We used the most recent avian super-tree (Jetz
et al., 2012; http://birdtree.org/) to reconstruct the
evolutionary history of the species included in our
data set. We used two phylogenetic trees in our anal-
yses to test if our conclusions were sensitive to the
choice of phylogeny: the Ericson backbone and the
Hackett backbone phylogenies (Supporting Informa-
tion, Figs S1, S2). The models presented in the main
text were yielded using the Ericson phylogeny. The
models using the Hackett phylogeny are available in
the Supporting Information (Table S1). A very short
phylogenetic distance (0.0000001 Myr) was assigned
to the same species occurring on different continents.
Although the use of only a single phylogeny in a sta-
tistical model does not account for uncertainty in the
estimate of the structure of the tree, previous studies
have reported robustness of regression estimates
from phylogenetic analyses (Rohlf, 2006; Stone, 2011;
Hadfield et al., 2014).

We evaluate the degree of support of 13 candidate
models comprising all possible combination among
the main effect of the three predictors: continent,
body mass, and sexual dichromatism. We tested for
an interaction between body mass and sexual dichro-
matism because we hypothesized that the effect of
sexual dichromatism on FID may vary with body
mass. We tested for an interaction between continent
and sexual dichromatism because we hypothesized
that the strength of the relationship between FID
and sexual dichromatism may increase at higher lat-
itudes. We also included an intercept-only model to
be used as a null model. A constant term (intercept)
was included in all models. Our candidate models
respected ‘marginality constraints’ so that models
containing interactions were not included without
their respective main effects. FID and body mass
were log10 transformed before analyses.

We used an information-theoretic approach based
on Akaike’s criteria corrected for small sample size
(AICc) to evaluate the set of candidate models. AICc

is a measure of distance of putative model from full
reality (Burnham & Anderson, 2002). The candidate
models were ranked by their AICc values, and mod-
els with the lowest AICc values are the best models
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(Burnham & Anderson, 2002). Models with
DAICc < 2 are considered equally good as models
with the lowest AICc. Given the high relative likeli-
hood of our best model as indicated by its Akaike
weight (wi = 0.89; Table 1), we did not employ multi-
model inference based on model averaging as recom-
mended by Burnham & Anderson (2002).

We assessed the importance of each predictor in
the best model based on effect sizes calculated as
partial correlation coefficients, quantifying the effect
of a given predictor while controlling for the effects
of other covariates included in the model (Nakagawa
and Cuthill 2007). We emphasize that there was no
strong collinearity among predictor variables, and
hence effect sizes were unbiased. We followed crite-
ria listed by Cohen (1988) for small (r = 0.10,
explaining 1% of the variance), intermediate (r = 0.3,
explaining 9% of the variance) or large effect sizes
(r = 0.5, explaining 25% of the variance). All analy-
ses were conducted using the R programing language
(R Development Core Team, 2011).

RESULTS

The results of model selection searching for the best
model to explain variation in FID are presented in
Table 1. The full model had the highest weight
among the candidate models (i.e. that model included
the three main effects, the interaction between sex-
ual dichromatism and body mass, and the interaction

between sexual dichromatism and continent; Table 2).
All other models only had marginal support accord-
ing to Akaike weight and AICc (Table 1). The best
model (Table 2) indicated that FID was consistently
shorter for sexually dichromatic compared with sexu-
ally monochromatic species with an intermediate
effect size (Fig. 1). FID increased with body mass
with a large effect size (Fig. 2, Table 2). Yet, the rel-
ative difference in FID between sexually monochro-
matic and sexually dichromatic species increased
with body mass with a small to intermediate effect

Table 1. Intercepts, continent, species body mass, sexual dichromatism, species body mass by sexual dichromatism, and

continent by sexual dichromatism as predictors of flight initiation distance according to Phylogenetic Generalized Least

Squares models

Intercept Continent

Body

mass

Sexual

dichromatism

Sexual

dichromatism:

continent

Sexual

dichromatism:

body mass AICc DAICc wi

0.625 + 0.231 + + + 166.40 0 0.89

0.608 + 0.238 + + 170.49 4.09 0.11

0.591 + 0.252 + + 195.24 28.84 < 0.001

0.583 + 0.254 + 198.38 31.99 < 0.001

0.560 0.251 + + 204.37 37.98 < 0.001

0.560 + 0.266 210.56 44.17 < 0.001

0.546 0.262 + 219.91 53.51 < 0.001

0.523 0.274 231.93 65.53 < 0.001

1.099 + + + 366.52 200.13 < 0.001

1.093 + + 377.12 210.72 < 0.001

1.092 + 401.57 235.18 < 0.001

1.070 + 403.90 237.50 < 0.001

1.066 427.76 261.36 < 0.001

The AICc, DAICc and Akaike weight (wi) are shown for each model. ‘+’ Symbol indicates factors with more than one

level.

Table 2. The best Phylogenetic Generalized Least

Squares model to explain variation in flight initiation dis-

tance in species from three continents (Europe, Australia,

and North America)

Predictor d.f. F P

Effect

size

Intercept 1 7092.59 < 0.001

Sexual dichromatism 1 46.02 < 0.001 0.30

Continent 2 24.10 < 0.001 0.22

Body mass 1 238.10 < 0.001 0.58

Sexual

dichromatism*body
mass

1 32.07 < 0.001 0.25

Sexual

dichromatism*continent
2 4.19 0.016 0.09

d.f., F-statistic, P-value, and the partial correlation coeffi-

cients (r) as measures of effect sizes are shown.
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size (Fig. 2, Table 2). Finally, FID showed a consis-
tent geographic pattern: FID differed among conti-
nents, and this effect had a small to intermediate
effect size (Fig. 3, Table 2). However, the relative dif-
ference in FID between sexually monochromatic and
sexually dichromatic species was larger in Europe
than in Australia and North America with a small
effect size (Fig. 4, Table 2).

DISCUSSION

Flight initiation distance was consistently shorter in
sexually dichromatic than in sexually monochromatic
species, this difference increased with body mass, and
both FID and the strength of the relationship between
FID and sexual dichromatism differed among conti-
nents. These findings are broadly consistent with the
handicap hypothesis: sexual dichromatism is a reli-
able indicator of escape ability by prey. The findings
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also suggest a latitudinal trend in predation risk.
These findings are inconsistent with the alternative
hypothesis that species with sexual dichromatism are
unprofitable prey, and they provide no support for a
compensation hypothesis that would have predicted
that more vulnerable prey compensates for increased
risk of predation by initiating flight at greater dis-
tances (e.g. Hensley et al., 2015). If FID in sexually
dichromatic species simply reflected the risk of preda-
tion, we should have found sexually dichromatic spe-
cies to have shorter FID than sexually monochromatic
species, as we actually found.

Predation has been hypothesized to play a role in
the evolution of unprofitable prey that signal the dif-
ficulty of capture to the predator and hence their
unprofitability (Cott, 1947; Baker & Parker, 1979;
G€otmark, 1992, 1993). Here we have shown that
sexually dichromatic species have shorter FID than
sexually monochromatic species. Thus sexually
dichromatic species should be easier to catch, select-
ing for reduced susceptibility to predation caused by
increasing FID (Møller et al., 2008). Indeed, individ-
uals with more exaggerated secondary sexual charac-
ters less often fall prey to predators implying that
they are of superior quality (Petrie, 1992; Møller &
Nielsen, 1997), consistent with the handicap hypoth-
esis (Zahavi, 1975). Moreover, the significant interac-
tion between body mass and sexual dichromatism
implies that risk of predation is higher in species
with larger body mass (Møller, 2008a). Comparative
analyses have shown that sexual dichromatism is
associated with reduced adult survival rate (Promis-
low, Montgomerie & Martin, 1992, 1994), and that is
even the case when controlling for parental effort
(Promislow et al., 1994). Hence, the present paper
adds to this evolutionary scenario by proposing a
possible mechanism emphasizing a reduction in FID
in sexually dichromatic species at large body masses.

The difference in FID between sexually monochro-
matic and sexually dichromatic species was the
largest in Europe (by 2.78 m on average) compared
to 2.61 m in Australia and 1.08 m in the North
America. It may merit discussion whether such small
differences of a few meters will make a difference in
terms of survivorship. In fact the difference between
life and death is often a question of a few metres or
less. Barn swallows Hirundo rustica that fell prey to
sparrowhawks had an average FID that was 7 m
shorter than that of survivors (Møller, 2014), even
when controlling for a range of potentially confound-
ing variables. Likewise, Møller et al. (2008) showed
for birds in Europe that susceptibility to spar-
rowhawk predation was strongly negatively related
to FID adjusted for body size, implying that suscepti-
bility to predation and anti-predator behaviour are
negatively correlated.

This study has important implications for future
studies of FID. Because nest predation on eggs and
nestlings plays a key role in the evolution of life
histories (Martin, 1995), and because predation on
adult birds apparently plays an equally important
role as judged from the present and previous stud-
ies (Møller & Liang, 2013), there is scope for fur-
ther synthesis. In particular, the relative role of
nest predation and predation on adults, as reflected
by anti-predator behaviour such as FID, in struc-
turing the evolution of life histories remains to be
assessed. We suggest that effects of predation and
anti-predator behaviour would have stronger
impact on vital rates in Australia than in North
America and especially in Australia than in Eur-
ope.

In conclusion, we have shown that: (1) sexually
dichromatic species have shorter FID than sexually
monochromatic species; (2) this difference is more
pronounced in species with relatively large body
masses; (3) mean FID decreases with increasing lati-
tude; and (4) the strength of the relationship
between FID and sexual dichromatism is stronger in
Europe than in Australia and North America.
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