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Stabilizing High-Dimensional Prediction Models
Using Feature Graphs

Shivapratap Gopakumar, Truyen Tran, Tu Dinh Nguyen, Dinh Phung, and Svetha Venkatesh

Abstract—We investigate feature stability in the context of clin-
ical prognosis derived from high-dimensional electronic medical
records. To reduce variance in the selected features that are predic-
tive, we introduce Laplacian-based regularization into a regression
model. The Laplacian is derived on a feature graph that captures
both the temporal and hierarchic relations between hospital events,
diseases, and interventions. Using a cohort of patients with heart
failure, we demonstrate better feature stability and goodness-of-fit
through feature graph stabilization.

Index Terms—Biomedical computing, electronic medical
records, stability, predictive models.

I. INTRODUCTION

S TABILITY promotes reliability—in performance, estima-
tion, or interpretability. Commonly, stability relates to

robust performance against reasonable perturbations in data,
achieved through diverse methods such as Jackknife, bootstrap,
or cross validation [1]. The stability of selected features is of-
ten overlooked in prediction models—particularly, if consistent
performance alone is the goal.

But feature stability matters. Even when the prognosis perfor-
mance is robust. When building models from high-dimensional
data, feature selection algorithms choose a small subset of fea-
tures that maximizes the model performance. These features,
predictive of the prognosis, are important because they could be
hypothesis generating thus meriting further investigation [2]. In
clinical situations, explaining the prognosis is as important as
the prognosis itself. Consequently, consistent predictors in spite
of data resampling are critical for the clinical adoption. Feature
stability is crucial not only in clinical prognosis—as example,
stable biomarkers aid model reproducibility in bioinformatics
[3], [4].

Building clinical prediction models from electronic medical
records (EMR) faces serious challenges for stable feature se-
lection. EMR data are temporal, strongly correlated, and high
dimensional [5]. Each of these aspects makes this task challeng-
ing. High-dimensional data calls for sparsity inducing feature
selection [6]. However, automatic feature selection, particularly
in clinical data, has been known to cause instability in features
resulting in nonreproducible models [7]. This problem is further
aggravated by strong correlations in EMR data. Sparse models
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Fig. 1. Feature instability due to data resampling. Mean weights versus stan-
dard deviation for the top 50 features selected by a lasso-regularized logistic
regression model under bootstraps.

often pick the strongest features from the chosen sample set
[8]. Under data resampling, an alternate feature from the cor-
related pair could be selected causing significant variations to
the feature weights during each training run [9]. This problem
is illustrated in Fig. 1—the mean weights of the top 50 pre-
dictors from routine EMR data for six months readmission for
heart failure is shown. The top predictors selected by the lasso-
regularized model [10] have large variance in feature weights
under bootstraps (see Fig. 1)—thus, rendering them unusable in
a clinical setting.

Addressing the open problem of stable feature selection in
clinical settings we ask—Can we ensure the stability of predic-
tors in a linear model for prognosis using EMR data? To measure
the performance of this stability, we adopt variance in selected
model parameters across data resamplings. For prognosis, we
use a logistic regression model for six months readmission after
heart failure—a deadly and costly disease with a majority of
patients returning within a year after discharge. Automatic fea-
ture selection was achieved by the sparsity-promoting shrinkage
method of lasso. To address our problem, we hypothesize that
exploiting the inherent structures of EMR data to enforce sta-
tistical sharing may stabilize the prediction model. We consider
temporal and hierarchical structures. Since features are accumu-
lated over multiple time granularities (one month, three months,
etc.), features that lie in consecutive time periods are considered
to be related. The hierarchies are exploited through the seman-
tics in the ICD-10 tree 1 and the procedure cube (ACHI)2—codes

1http://apps.who.int/classifications/icd10
2https://www.aihw.gov.au/procedures-data-cubes/

2168-2194 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



GOPAKUMAR et al.: STABILIZING HIGH-DIMENSIONAL PREDICTION MODELS USING FEATURE GRAPHS 1045

that share similar prefix are considered to be related. We embed
these relations in a feature graph. When the feature graph regu-
larization term is added into the lasso model, weights assigned
to related features will tend to be similar.

The model was derived from feature rich EMR records
of 1 405 patients from Barwon health, a regional hospital in
Australia. The model estimation was stabilized by utilizing a
3 338 × 3 338 feature graph constructed from hierarchical rela-
tions in ICD-10 disease tree and temporal abstraction of clinical
events. We used the Jaccard Index [11] and Consistency Index
[12] to measure feature stability of the top features selected,
with and without graph stabilization. We further compared the
robustness of the features from our graph stabilized model with
state-of-the-art elastic net regularized model [8]. Both Jaccard
Index and Consistency Index confirmed better feature stability
for the feature graph-regularized model. The graph stabilized
model also resulted in better goodness-of-fit as confirmed by
the Hosmer–Lemeshow test. The validation of our model on a
held-out set resulted in an AUC of 0.66 (95%, CIs: [0.60, 0.71]),
which is competitive against existing models that predict heart
failure readmission [13], [14].

Our novelty is to identify the importance of the stable feature
selection problem in clinical settings and to propose a solution
based on additional regularization of a lasso model exploiting
knowledge about hierarchical structures in disease and interven-
tions and temporal relationships between events. Specifically,
embedding these relations reduces the fragmentation of selec-
tion in the lasso model, delivering our goal of feature stability.
The significance of our contribution is to reset the thinking of
prognosis from “model performance only” to “model perfor-
mance and feature stable models”—without these two compo-
nents, many of our advanced models will be rendered futile in a
clinical setting.

A. Related Work

Despite advances in learning models for high-dimensional
data, stability in feature selection has received limited attention.
Initial studies focused on comparing different feature selection
algorithms based on stability of feature preferences [15], [16].
Kalousis et al. [16] compared the stability of five popular feature
selection algorithms on 11 datasets taken from three different
application domains. Feature stability was investigated based on
weight-scores, rank, and selected feature subsets. No algorithm
was found to be superior and it was concluded that feature
stability depends significantly on the dataset used. Another focus
in stability studies is the development of various measures of
stability. A recent survey [4] consolidated seven metrics for
computing similarity measure of feature subsets.

Feature instability has been a serious concern to the bioinfor-
matics domain, largely due to the nature of data. Early work on
this topic proposed ensemble ranking, feature bias from prior
knowledge, and grouping redundant data [2], [17]. Recent stud-
ies utilize prior biological knowledge and pathway information
to enhance the stability of biomarkers. These information, com-
piled from many years of research, is made available through
online databases like KEGG, HPRD, Pathway Commons,

Reactome, BioCarta, and BioCyc [18], [19]. Context specific
data extracted from such databases can be used to create a graph
network with nodes as genes or gene products and edges as
interactions or relationships [18]. Such networks can be used
to stabilize learning models by either a filter-based approach or
using an embedded feature selection techniques [19].

The data in clinical prediction domain are similar to
bioinformatics—features are correlated, high dimensional, and
size of cohorts under study are usually small (p � n). A nat-
ural solution to this problem is to select a subset of features
from prior clinical knowledge. A recent study used only a sub-
set of EMR features for predicting heart failure readmission [5].
Our work is inspired from the bioinformatics domain of using
network information to stabilize high-dimensional models. We
differ from the traditional approach in feature stability by con-
structing the feature network graph from an inherent structure
and relations in the training data. The feature graph is used to
stabilize a lasso-regularized linear model for predicting heart
failure readmission in six months. We wish to emphasize that
the feature extraction process and construction of feature graphs
depend solely on the hierarchical and temporal nature of EMR
data and is not based on prior studies or predefined clinical
knowledge.

II. METHOD

We present a stabilizing method for building prediction mod-
els from EMRs. A typical EMR is very high dimensional. It
consists of demographic information (e.g., age, gender, and
postcode) and time-stamped events (e.g., hospitalizations, ED
visits, clinical tests, diagnoses, pathologies, medications, and
treatments). High-dimensional data necessitate automatic fea-
ture selection. We choose the sparsity-promoting shrinkage
method of lasso [20] as it is effective in handling very high-
dimensional variables [21]. The methods are applicable to any
member in the family of generalized linear models [22].

A. Feature Selection Using Lasso

Let D = {x� , y�}n
�=1 be the training dataset in which x� ∈

Rp denotes the high-dimensional feature vector of data instance
� and y� is the outcome (for example, the occurrence of fu-
ture readmission). Our aim is to model the predictive distribu-
tion P (y | x; w), where w ∈ Rp are sparse feature weights.
The weights are estimated by maximizing the lasso penalized
log-likelihood [10]

Llasso =
1
n

logL (w;D) − α
∑

i

|wi | (1)

where logL (w;D) =
∑n

�=1 log P (y� | x� , w) is the data log-
likelihood, and α > 0 is the penalty controlling the sparseness
of the feature weights. Under lasso, weights of weak features
are driven toward zeros, and thus, the resulting model is sparse.

Unfortunately, sparsity-inducing models are susceptible to
data variations resulting in loss of stability [7], [9]. For strong
but highly correlated features, lasso often chooses one of the two
[8], resulting in only a 0.5 chance for strongly predictive feature
pairs. EMR-derived features amplify this selection instability
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because of 1) the high degree of redundancy in hospital-recorded
events and 2) a large portion of features could be weakly pre-
dictive for some tasks, leading to low selection probabilities
[23].

One popular solution to the correlated features is elastic net
[8], which modifies the lasso regularization in (1) as follows:

Lelastic.net =
1
n

logL (w;D)

−α

(
λ

∑

i

|wi | + (1 − λ)
∑

i

w2
i

)
(2)

where λ ∈ [0, 1] controls the relative contribution of the lasso
term

∑
i |wi | and the ridge regression term

∑
i w2

i . This method
encourages features to have similar weights, and thus, reducing
the effect of selection by chance in pure lasso.

B. Stabilization Using Feature Graph

We propose an alternative solution by encouraging shared
statistical strength among correlated features. This is achieved
by exploiting two relational structures in the EMR data. The first
is the temporal relations that accumulates events (diagnoses and
procedures) at different time granularities (see Section II-C1).
The second is the hierarchical structures captured through the
disease classification semantics in the ICD-10 diagnosis tree
and procedures codes. An undirected feature graph is then built
with its edges representing the relations between two features.

Let A ∈ Rp×p be the incident matrix of the feature graph, i.e.,
Aij = 1 if feature i and j are related and Aij = 0 otherwise.
Sharing statistical strength between any two related features
is realized by enforcing the similarity in their weights, i.e., a
graph-regularizing term is added to (1)

LLaplacian = Llasso −
1
2
β

∑

ij

Aij (wi − wj )
2 (3)

where β > 0 is the correlation coefficient controlling the effect
of the graph-based regularization. The graph regularizer can be
simplified as

1
2

∑

ij

Aij (wi − wj )
2 =

∑

i

(
∑

k

Aik

)
w2

i

−
∑

i

∑

j

Aijwiwj

= w′Lw

where L is the Laplacian matrix of feature graph A, i.e., Lii =∑
j Aij and Lij = −Aij [24].
The Laplacian regularizer combats the instability in several

ways. First, features of the same type tend to cluster, and thus,
their weights are more difficult to vary as a whole. Weaker
features can thus borrow the statistical strength from the stronger
ones. Second, two strongly correlated features must either be
selected or jointly suppressed by the lasso.

Fig. 2. Workflow diagram of the framework for deriving graph-stabilized pre-
diction models from EMRs. Temporal feature relations and coding hierarchies
were used to construct the feature graph (see Fig. 4).

C. Model Development

We present a framework for realizing the stabilization strat-
egy described earlier. The framework consists of a training
phase using data from the past and a validation phase using
new admission data from the future (see Fig. 2 for the workflow
diagram). Our model development consists of three subphases:
1) multigranular temporal feature extraction, 2) feature graph
construction based on the temporal relations and coding hierar-
chies, and 3) model training with feature selection and feature
graph regularization.

1) Multigranular Temporal Feature Extraction: Feature ex-
traction from EMR transforms inpatient time-stamped events
(e.g., hospitalizations, clinical tests, diagnoses, and treatments)
into a high-dimensional feature vector at the index discharge.
The challenges are that recorded events are sparse and irregu-
lar. As diseases progress in different paces, it is important to
take multiple time scales into account. In addition, recent crit-
ical events carry more weight than mild conditions observed
far back in the history. To this end, we employ the one-sided
convolutional filter bank recently introduced in [25]. The fil-
ter bank summarizes event statistics over multiple time peri-
ods and granularities: (0–3), (3–6), (6–12), (12–24), (24–48),
(48–72) months.

2) Feature Graph Construction: The feature graph is built
by identifying connections between features that observe tem-
poral and structural relations. Two features are connected if they
satisfy one of the following two conditions. The first condition
is the codes are identical and the periods are consecutive. This
represents the disease progression over the time, for example,
from the period of 3–6 months to the period of 0–3 months
before the discharge. Alternatively, the periods are identical
and the codes share the first two characters. This captures the
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Fig. 3. Training and test data: Time of hospitalization (x-axis) and unique
patient id (y-axis), showing patient and temporal split. The temporal split of
training and test data is made on 1st September 2010. The test and training set
are disjoint in chosen patients.

diagnostic or therapeutic relations. For instance, two related fea-
tures are the ICD-10 code I25 (chronic ischaemic heart failure)
and I21 (acute myocardial infarction).

D. Validation Protocol

We validated the stabilization strategy on six-month un-
planned readmission prediction among patients suffering heart
failure. As it is a binary outcome, logistic regression was used
as the predictive model P (y | x;w).

1) Data: The data were collected from Barwon Health, a
regional health service provider in Victoria, Australia. Ethics
approval was obtained from the Hospital and Research Ethics
Committee at Barwon Health (number 12/83) and Deakin Uni-
versity. Patient details are stored in EMR databases. The co-
hort of inpatients with heart failure contains 1 405 unique pa-
tients with 1 885 index admissions between January 2007 and
December 2011. We identified patients as having heart failure if
they had ICD-10 diagnosis code I50. Patients of all age groups
were included. Inpatient deaths were excluded. We focused our
study on emergency attendances or unplanned admissions of
patients.

2) Temporal Validation: The model was externally vali-
dated in time [26]. That is, patients discharged prior to 1st
September 2010 were used for training, and a separate set of
those discharged afterward for testing (see Fig. 3). This valida-
tion strategy was chosen because it better reflects the common
practice of training the model in the past and using it in the
future. Model performance was evaluated using measures of
sensitivity (recall), specificity, precision, F-measure, and area
under the ROC curve (AUC) with confidence intervals based on
Mann–Whitney statistic [27]. We used a predefined threshold to
predict readmissions. The value of the threshold was chosen to
maximize the F-measure computed from the training data.

3) Measuring Goodness-of-Fit: We used the Hosmer–
Lemeshow test to measure the goodness-of-fit for our logistic
regression models. The Hosmer–Lemeshow test [28] assesses
the degree of fit by matching the observed probabilities with the
estimated probabilities. The validation set is divided into G or-
dered groups based on estimated probability of outcome events.

The Chi-squared test statistic is calculated by comparing the
expected and observed number of outcome events in each group
as

χHL =
G∑

g=1

(Og − Eg )2

Eg (1 − Eg/ng )
(4)

where Og= number of observed events in group g, Eg= number
of expected events in group g, and ng= number of observations
in group g. For an ideal test, we have G > 5, Eg > 5, and
ng = ng ′ , (g, g′) ∈ G. When the significance of χHL is less
than 0.05, we reject the null hypothesis, which states there is
no difference between estimated values and observed values. A
large value for the test statistic with small significance (p-value
<0.05) indicates poor model fit, while a small test statistic with
large significance (p-value closer to 1) indicates a better fit [29].

4) Measuring Model Stability: Models were trained K times
on K bootstraps. Model estimation stability is defined as vari-
ance in parameters. A measure is the signal-to-noise ratio (SNR)

SNR(i) =
w̄i

σi
(5)

where w̄i is the mean feature weight across bootstraps for feature
i, and σi is its standard deviation. The higher absolute SNR, the
more stable the feature is.

Feature selection stability is an alternative aspect of the model
stability. For each bootstrap, a subset of features is then formed
by selecting top k features from the ranked list. Features were
ranked by their importance. For each feature, importance was
calculated as the product of its weight and the standard devi-
ation in the training data [30]. The importance is thus scale
insensitive. We normalized the feature importance measures in
the range of [0, 100]. Finally, we obtained a list of feature sub-
sets S = {S1 , S2 , ..., SK }, where |Si | = k. To quantify selec-
tion stability, we used the Jaccard Index [11] and the Consistency
Index [12].

1) The Jaccard Index measures similarity as a fraction be-
tween cardinality of intersection and union feature sub-
sets. Given two feature sets Si and Sj , the pairwise Jaccard
Index reads as

JC (Si, Sj ) =
|Si ∩ Sj |
|Si ∪ Sj |

. (6)

The Jaccard Index evaluating all K subsets was computed
as follows:

JS =
2

K(K − 1)

K−1∑

i=1

K∑

j=i+1

JC (Si, Sj ). (7)

Jaccard Index is bounded in [0, 1].
2) The Consistency Index corrects the overlapping due to

chance. Considering a pair of subsets Si and Sj , the pair-
wise Consistency Index IC is defined as

IC (Si, Sj ) =
rd − k2

k(d − k)
(8)

in which |Si ∩ Sj | = r and d is the number of features
(see Section II-A). Taking the average of all pairs, the
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TABLE I
TRAINING AND VALIDATION COHORTS CHARACTERISTICS

Derivation Validation

Number of admissions 1 415 369
Unique patients 1 088 317

Gender:
Male 541 (49.7%) 155 (48.9%)
Female 547 (50.2%) 162 (51.1%)

Mean age (years) 78.3 79.4

Length of Stays:
1–4 days 668 (61.4%) 209 (65.9%)
5 or more days 420 (38.6%) 108 (35.1%)

Fig. 4. Feature subgraph of top risk factors. Numbers in brackets are time in-
tervals, measured by months, before the index discharges. Factors selected are:
Male;recent length of stay (LOS));heart failure (I50, Comord_CHF); recent is-
chaemic heart diseases (angina pectoris (I20), acute myocardial infarction (I21),
chronic ischaemic heart disease (I25)); any time rare diagnoses (Rare_DIAG);
time stayed in emergency department (EDTIME); frequencies of emergency
attendance (ED), unplanned admissions (EDWARD, EDADMIT), admissions
(ADMIT), diagnoses (DIAG) and procedures (#PROC); and disorders of lipopro-
tein metabolism (E78) .

overall Consistency Index is

IS =
2

K(K − 1)

K−1∑

i=1

K∑

j=i+1

IC (Si, Sj ). (9)

The Consistency Index is bounded in [−1, +1].

III. RESULTS

The characteristics of the training and validation cohort are
summarized in Table I. The feature extraction process (see
Section II-C1) resulted 3 338 features. The lasso-regularized
regression model (see Section 1) resulted in 142 risk factors,
which are positively predictive of unplanned rehospitalization
following heart failure discharges.

The graph-based regularization (see Section II-B) results in
subgraphs being selected as a whole, as shown in Fig. 4. The

TABLE II
PERFORMANCE OF MODEL FOR VARIOUS SETTINGS OF

LASSO-REGULARIZATION TERM (α) AND LAPLACIAN REGULARIZATION TERM

(β) AFTER MODEL AVERAGING FROM 50 BOOTSTRAPS

Hyperparam. Sens./Rec. Spec. Prec. F-Meas. AUC

α = β = 0 0.49 0.59 0.54 0.51 0.54

α = .001
β = .00 0.41 0.79 0.62 0.51 0.62
β = .01 0.42 0.79 0.62 0.51 0.66
β = .03 0.44 0.76 0.66 0.53 0.66

α = .002
β = 0.0 0.49 0.73 0.66 0.55 0.65
β = .01 0.49 0.73 0.65 0.55 0.65
β = .03 0.48 0.72 0.62 0.54 0.64

α = .003
β = 0.0 0.46 0.76 0.64 0.54 0.62
β = .01 0.46 0.76 0.64 0.54 0.62
β = .03 0.45 0.75 0.63 0.53 0.62

α = .004
β = 0.0 0.44 0.77 0.66 0.53 0.63
β = .01 0.44 0.77 0.66 0.53 0.63
β = .03 0.43 0.78 0.65 0.52 0.63

α = .005
β = 0 0.46 0.81 0.69 0.55 0.63
β = .01 0.46 0.81 0.69 0.55 0.63
β = .03 0.45 0.82 0.69 0.55 0.63

Fig. 5. Effect of graph stabilized lasso regularization on AUC. β = 0 reduces
to the baseline lasso.

question is how does it affect model performance and feature
stability against data resampling?

A. Model Performance

The model performance was measured for different values of
the lasso-regularization term α and the Laplacian-regularization
term β. Table II reports other measures (sensitivity, specificity,
precision, F-measure, and AUC). Overall, the discriminative
measures were not sensitive of the Laplacian factor β but de-
pended critically on the lasso factor α. Fig. 5 displays the AUC
in finer details for α. A good discrimination was achieved at
α = 0.001 and β = 0.01, where external validation resulted in
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Fig. 6. Comparing ROC plots.

TABLE III
MEASURING GOODNESS-OF-FIT FOR LOGISTIC REGRESSION

(DF = DEGREE OF FREEDOM)

Hosmer–Lemeshow test

Model regularization χ2 df Significance

Lasso 26.50 8 0.0009
Lasso + Laplacian 7.23 8 0.513
Elastic Net + Laplacian 6.25 8 0.619

Small χ2 values with large significance (p > .05) indicate
better fit.

an AUC of 0.66 (95%, CIs: [0.6, 0.71]). For the validation co-
hort, the Laplacian stabilized model was able to detect more
true readmissions (sensitivity = 42.22 %) than lasso-regularized
model (sensitivity = 38.33 %). The overall classification accu-
racy for the Laplacian stabilized model was 59.6% as opposed
to 57.9 % for the lasso-regularized model.

1) ROC Curve Analysis: The AUC (or c-statistic) can be
used to compare different models fitted to the same data. As
shown in Fig. 6, the application of Laplacian stabilization
marginally improved the AUC over the lasso model. However, a
combination of elastic net and Laplacian was not able to improve
the model discrimination.

2) Goodness-of-Fit Statistics: We now compare the
goodness-of-fit of models using Hosmer–Lemeshow (HL) test
statistic. We divided our validation cohort into ten groups de-
fined by an increasing order of the estimated risk. Nine groups
contained 37 observations, while one group contained 36. The
expected frequencies in each group was more than five. Hence,
all conditions for reporting the HL test statistic was met [31].
Both Laplacian and combination of elastic net and Laplacian
regularization resulted in small values of HL test statistic with
p > .05 suggesting that these models fit the data quite well (see
Table III).

B. Stability Against Data Resampling

During this experiment, the lasso regularization term was
fixed at α = .001, corresponding to the value for maximum
AUC of the model. Thus, feature stability through graph regu-

Fig. 7. Effect of Laplacian regularization on feature stability for varying β ,
with α = .001, and subset size of 100.

larization is entirely controlled by the hyperparameter β in (3).
The effect of β on feature stability is demonstrated in Fig. 7.
Both Consistency Index and Jaccard Index confirmed improve-
ments in feature stability with increasing graph penalty.

Next, we compared the stabilizing effect of regularization
schemes. The feature graphs were applied not only for the lasso
but also for the elastic net, thus creating four alternatives—lasso
(baseline, no stabilizing), elastic net, Laplacian graph, and the
combined elastic net + Laplacian graph. The hyperparameters
were α = .001, β = .03, and λ = 0.1 for elastic net.

1) For Model Estimation Stability, the SNR of top individ-
ual feature weights are presented in Fig. 8(a). Elastic net
and Laplacian regularization both reduce weight variance
significantly over the baseline lasso, and the Laplacian
performs slightly better. With the combination of the elas-
tic net and Laplacian, the effect is greatly amplified. At
95% CIs (approximately ±1.96 std), lasso regularization
identified 2 features, Laplacian identifies 12, elastic net
16, and the combination of Laplacian + elastic net regu-
larization identified close to 50 features. Fig. 8(b) and (c)
shows a finer visual representation of the effect, clearly
demonstrating the reduction in weight variance using the
graph regularization.

2) For Feature Selection Stability, Consistency Index and
Jaccard Index are reported in Fig. 9. Feature graph reg-
ularization consistently outperformed elastic net regular-
ization for the top ranked features. Again, the combination
of feature graph and elastic net resulted in the most stable
set of features for all subset sizes.

IV. DISCUSSION AND CONCLUSION

Although stability in feature selection is gaining importance
[4], [7], [16], measuring the robustness of selected features in
clinical prediction models has not been studied extensively. Fea-
ture stability facilitates reproducibility between model updates
and generalization across medical studies. This is especially
important in EMR-derived models due to its high-dimensional,
dynamic, and implementation-dependent nature. In practice, a
stable model will allow the clinician to have more confidence
on the selected features and their predictive importance.
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Fig. 8. Model estimation stability as measured by SNR of feature weights (a). High value of SNR indicates more stability. (b) and (c) elaborate the variances in
more details.

Fig. 9. Feature selection stability as measured by the (a) Consistency Index and (b) Jaccard Index for six-month prediction. The plot compares the similarity in
feature subsets generated by models with and without different stabilization under data variations. Larger indices imply more stability.

In this paper, we have introduced feature graphs and Lapla-
cian regularization to regression models to enhance the stability
in feature selection. Laplacian feature graphs have been used
in bioinformatics [18], [19] to improve the feature stability, but
with important differences. First, lasso was not used as an em-
bedded feature selection method. Cun and Frohlich [19], for
example, employed a filter-based method, where the feature se-
lection does not occur during learning of model parameters.
Second, feature graphs were often constructed based on prior
knowledge of interaction between features (e.g., genes). In our
method, the model estimation is stabilized using a feature graph
constructed from latent clinical structures in the training data.
Our work stands unique in the following aspects: 1) generic con-
struction of feature graphs from commonly available attributes
in the medical database and 2) extensive numerical validation
of the model stability in both model estimation and feature
selection.

Our experiments confirm that the stability of a high-
dimensional linear clinical prediction model can be improved
by using temporal and structural relations in EMR database. The
combination of Laplacian regularization with existing state-of-
the-art binary elastic net resulted in most stable features without
hurting the model discrimination. Thus, with Laplacian regular-
ization, more features can be confidently selected for prediction
[see Fig. 8(a)]. This is useful in the EMR setting because each
patient typically has limited number of active features despite
the huge number of features across the database. Having more

confident features would make explanation for individual pre-
diction easier.

With regards to performance, Laplacian regularization along
with binary elastic net resulted in a model with a better fit against
the validation cohort (as per Table III). The marginal increase
in sensitivity and classification accuracy in Laplacian regular-
ization can be attributed to grouping of correlated features.

With regards to the feature stability, the improvement upon the
elastic net demonstrates that the feature graph is complementary
to ridge regression. This could be explained by the fact that while
ridge regression tends to encourage all weights to be similar
and regressed toward zero, graph regularization only requires
pairwise smoothness.

Our EMR-derived model achieved a discriminatory capac-
ity (AUC = 0.66 for six months) comparable with or better
than existing prediction models for rehospitalization following
heart failure discharges [13], [14]. The model is derived from
free available administrative and medical data, making it read-
ily implementable into existing EMR systems. Interestingly, the
top predictors discovered by our model are consistent with the
existing clinical studies. Our model ranked male gender high-
est on the importance scale [32]–[34]. Looking at the medical
factors, the strong predictors include prior history of hospitaliza-
tion (past emergencies, past emergency attend time), which are
consistent with those in [32]–[36]. The comorbidities observed
were occurrence of coagulopathy in the past year and occur-
rence of complicated diabetes in the past three months. Other
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major predictors for the heart failure rehospitalization are heart
failure [32], [33], [35], [36], lipoprotein metabolism disorders,
angina pectoris, cataract, and chronic ischaemic heart diseases.
Past number of procedures in a period of three months to two
years was also ranked high.

The discrimination power, the automatic feature selection,
and stability control capacity suggest that the model can be
used as a fast and inexpensive screening tool to select patients
and risk factors for more in-depth clinical investigation. For
example, through selected feature subgraphs, related risk factors
can be collapsed to achieve more generality. It could serve as
a first step in bridging the translational gap between bench and
bedside [34] . We wish to emphasize that the entire prediction
process is transparent as the model is capable of explaining what
risk factors are involved in a risk estimate.

A. Study Limitations

We acknowledge the following limitations in our study. First,
since our main focus was on stabilizing a high-dimensional
model, we did not concentrate on improving the accuracy. In
our experiments, graph regularization contributed very little to
improving model discrimination. Second, we did not investigate
more complex relationship between variables in EMR data when
building feature graphs. It is possible that exploiting structures
like billing codes and lab tests may further enhance sharing of
statistical strength between correlated features. Third, the model
evaluation was not tested independently by other researchers.
However, we have used temporal validation on unique patients,
and it matches the common practice of learning models using
past patients and predicting outcomes for future patient. Fourth,
clinical measurements had a high degree of missingness, and
hence, were discarded. In review of the these limitations, we
believe our derived model is conservative and may have under-
estimated the AUC of the validation cohort.

B. Conclusion

In this study, we tackle the seldom studied but notorious
problem of the feature instability in clinical prediction models.
Stable model features translate to proper understanding of risk
factors, and hence, better confidence in prognosis. Our approach
consists of a novel technique to mitigate the problem by utiliz-
ing feature graphs that link similar conditions/interventions and
the same condition/intervention over multiple time periods. Our
extensive experiments in predicting six-month readmission in
a heart failure cohort confirm that the application of feature
graphs increases the stability of the selected feature subset and
reduces the variation in feature weights. The performance of the
readmission models derived from administrative hospital data is
competitive against existing models developed on clinical data.
Further, since our approach is based on commonly available ad-
ministrative attributes, models can be readily implemented on
top of existing EMR systems and portable across cohorts and
institutions using similar EMR databases. We believe our stabi-
lizing framework provides the first proof of concept in utilizing
feature graphs in clinical setting and numerically validating the
stability for a clinical prediction model. Future work includes

applying the same technique for a variety of cohorts and sites
and prospective evaluation in practice.
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[23] N. Meinshausen and P. Bühlmann, “Stability selection,” J. Roy. Stat. Soc.,
Series B, vol. 72, no. 4, pp. 417–473, 2010.

[24] F. R. Chung, Spectral Graph Theory, vol. 92. Providence, RI, USA: Amer-
ican Mathematical Society, 1997.

[25] T. Tran, D. Phung, W. Luo, R. Harvey, M. Berk, and S. Venkatesh, “An
integrated framework for suicide risk prediction,” in Proc. ACM Int. Conf.
Knowl. Discovery Data Mining, 2013, pp. 1410–1418.



1052 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 3, MAY 2015

[26] D. G. Altman, Y. Vergouwe, P. Royston, and K. G. Moons, “Prognosis
and prognostic research: Validating a prognostic model,” Brit. Med. J.,
vol. 338, no. 7708, pp. 1432–1435, 2009.

[27] Z. Birnbaum, “On a use of the Mann-Whitney statistic,” Tech. Rep., DTIC
Document, 1955.

[28] D. W. Hosmer Jr., S. Lemeshow, and R. X. Sturdivant, Applied Logistic
Regression. New York, NY, USA: Wiley, 2013.

[29] F. C. Pampel, Logistic Regression: A Primer, vol. 132. Newbury Park, CA,
USA: Sage, 2000.

[30] J. H. Friedman and B. E. Popescu, “Predictive learning via rule ensembles,”
Ann. Appl. Statist., vol 2, no. 3, pp. 916–954, 2008.

[31] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to logistic
regression analysis and reporting,” J. Edu. Res., vol. 96, no. 1, pp. 3–14,
2002.

[32] M. Chin, H. Marshall, and M. Goldman, “Correlates of early hospital
readmission or death in patients with congestive heart failure,” Am. J.
Cardiol., vol. 79, no. 12, pp. 1640–1644, 1997.

[33] H. M. Krumholz, E. M. Parent, N. Tu, V. Vaccarino, Y. Wang, M. J.
Radford, and J. Hennen, “Readmission after hospitalization for conges-
tive heart failure among medicare beneficiaries,” Archives Internal Med.,
vol. 157, no. 1, p. 99, 1997.

[34] R. Amarasingham, B. J. Moore, Y. P. Tabak, M. H. Drazner, C. A. Clark,
S. Zhang, W. G. Reed, T. S. Swanson, Y. Ma, and E. A. Halm, “An
automated model to identify heart failure patients at risk for 30-day read-
mission or death using electronic medical record data,” Med. Care, vol.
48, no. 11, pp. 981–988, 2010.

[35] H. M. Krumholz, Y.-T. Chen, Y. Wang, V. Vaccarino, M. J. Radford,
and R. I. Horwitz, “Predictors of readmission among elderly survivors of
admission with heart failure,” Amer. Heart J., vol. 139, no. 1, pp. 72–77,
2000.

[36] G. M. Felker, J. D. Leimberger, R. M. Califf, M. S. Cuffe, B. M. Massie,
K. F. Adams Jr, M. Gheorghiade, and C. M. O’Connor, “Risk stratification
after hospitalization for decompensated heart failure,” J. Cardiac Failure,
vol. 10, no. 6, pp. 460–466, 2004.

Authors’ photographs and biographies not available at the time of publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


