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Abstract. We examine a recent proposal for data-privatization by testing it 
against well-known attacks; we show that all of these attacks successfully re-
trieve a relatively large (and unacceptable) portion of the original data. We then 
indicate how the data-privatization  method examined can be modified to assist 
it to withstand these attacks and compare the performance of the two approach-
es. We also show that the new method has better privacy and lower information 
loss than the former method. 
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1 Introduction and Background 

1.1 Data-Privatization 

Privacy preservation is an important issue in many data mining applications dealing 
with sensitive data such as health-care records. Privacy preserving data mining 
(PPDM) has become an important enabling technology for integrating data and de-
termining interesting patterns from private collections of databases, thus improving 
productivity and competitiveness for many businesses. PPDM requires data modifica-
tion which limits information loss (thus increasing utility) as it is intended that a le-
gitimate receiver of the modified data be able to recover the original data needed for a 
response. Perturbation techniques have to manage the intrinsic trade-off between  
preserving data privacy and information loss, as each affects the other. Several per-
turbation techniques [1]-[5] have been proposed for mining purposes, but in all these 
papers, privacy and utility are not satisfactorily balanced. In the research literature, 
there are two general approaches to privacy preserving data mining: the randomiza-
tion approach [1] and the secure multi-party computation approach [6]. We focus only 
on the former because it can distort data more efficiently than the latter. 

There are two major randomization methods: Random Perturbation [2] and Ran-
domized Response [5]. The former is a technique which deals mostly with numerical 
data, perturbing attribute by attribute, and concentrating on a statistical analysis of the 
data; it is a well-studied sanitization method that simultaneously allows access to the 
data by publishing them and at the same time preserving the privacy of the data. Ran-
domized Response perturbs multiple attributes rather than one at a time, and so we 
ignore this method. 
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In the literature, perturbation is of two main types: additive [1], [2] and multiplica-
tive [3], where random data (noise) is respectively either added or multiplied with  
the original data. As shown by Kargupta et al. multiplicative noise techniques  
can provide a good level of privacy (http://www.csee.umbc.edu/~hillol/PUBS/ 
kargupta_privacy03a.pdf), while additive noise perturbation techniques are more 
effective in reducing information loss [2].  

There is a growing body of literature on additive perturbation techniques which 
work by adding random noise to the data in such a way that the individual data values 
are distorted while, at the same time, the underlying distribution properties are pre-
served thus helping to reduce information loss. Agrawal and Srikant [1] proposed a 
scheme for PPDM using random perturbation in which a random number is added to 
the value of each sensitive attribute. It has been shown [1] that this scheme suffers 
from information loss, but Agrawal and Aggarwal [7] developed a novel reconstruc-
tion algorithm which minimizes the information loss of the former scheme. Liu has 
proposed a multiplicative method [3] which improves on the level of privacy achieved 
in [1] and [2], but with reduced utility. 

This leads us to the following research question: Given a data-privatization  
method which leaks data under certain attacks, can it be improved to withstand 
these attacks without affecting information loss? 

In this paper, we demonstrate that this is possible by taking a particular example of 
a data-privatization technique, showing that it leaks data under three attacks and then 
adapting it to withstand these attacks while retaining low information loss characteris-
tics. 

1.2 The Research Literature 

The usefulness of additive noise perturbation techniques in preserving privacy was 
firstly questioned by Kargupta et al. [8] who showed that attackers can derive a good 
estimation of the original dataset values from the perturbed dataset using a spectral 
filter that exploits some theoretical properties of random matrices and, as a result, the 
data privacy can be seriously compromised. Huang et al. [9] further proposed two 
data reconstruction algorithms which are efficient when the added noise is independ-
ent of the original data; one is based on Principal Component Analysis [9], the other 
one chooses Maximum Likelihood Estimation [9] to estimate the data. 

The purpose of the current paper is to test a specific additive perturbation method 
(described in Section 2) to see how well it withstands three classical additive data-
reconstruction attacks. We choose: Spectral Filtering (SPF) [8], Bayes-Estimated Data 
Reconstruction (BE-DR) [9] and Multiple Miner attack with Fusion (MDMF) [10]. 
We use the SPF method because it has a good track record in reconstructing original 
data based on additive perturbation; it is based on eigenvalues of a covariance matrix 
and the theory of random matrices [8]. We choose BE-DR for its ease of calculation 
and also because of its similarity to the calculations of SPF. The MDMF method is a 
combination of multiple data mining [10] and fusion techniques [10]; we use WEKA 
software [11] for data mining techniques in this method.  

The particular data-privatization method [12] we test is based on Chebyshev poly-
nomials of the first kind [13] which are explained in detail in Section 2. This method 
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was developed recently by a group of researchers [12] but needs testing to see if it 
withstands the classical attacks. For testing, we derive 4500 test sets and each is tested 
for reconstruction using the three attack methods just described. We show that in all 
cases, some of the original data can be recovered. In addition, for each attack, we are 
able to specify how to modify the data-privatization algorithm to make the data resis-
tant to the attack with the result that we produce a revised data-privatization method 
and show that it is resistant to these attacks.  

In Section 2, we present the Chebyshev-based data-privatization method as  
described in [12]; Section 3 presents the attacks on this method, and results of  
these attacks. Section 4 describes our revised version of the Chebyshev-based data-
privatization method and we produce the results of three attacks on it and compare the 
performance with the former method. Section 5 discusses our results. 

2 The Chebyshev Polynomial Perturbation Method 

An additive perturbation technique based on Chebyshev polynomials was presented in 
[12] and in this section we describe it in detail. The Chebyshev polynomials 
(http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html) used in 
the paper [12] are said to be Chebyshev of the first kind as opposed to Chebyshev 
polynomials of the second kind. In this paper we use the expression ‘Chebyshev Poly-
nomial’ to refer exclusively to the Chebyshev Polynomials Tn(t)  of the first kind. 

The authors of [12] propose an additive perturbation algorithm based on Cheby-
shev polynomials as described below in sub-section 2.1. 

2.1 Chebyshev Data Perturbation Algorithm (CDP) 

1. Data: In the paper [12] numerical type data for computation, such as the age of a 
patient which is common in health data, are considered. While the original data are 
commonly in matrix form, we store them in vector form. Section 2.2 provides nota-
tions. The original data set is referred to as O and the added noise data as N. These 
have the same size. 
2. Setting Parameters: m: the (square integer) number of entries in the original vec-
tor (or matrix).  
n:  the degree of the Chebyshev polynomial of the first kind, n  ≥ 2.  
l: a positive integer divisor of m, l >1.  
3. Data Perturbation: The initial values of the above parameters m, n and l, are as-
sumed to be fixed. 
a) Preparation: Derive the nth degree Chebyshev polynomial ௡ܶ.   
b) Division process: Divide the original data in vector form into intervals of length 

l; this results in ܦ ൌ ௠௟  intervals. Label the D intervals t1, t2, ...tD. The first inter-

val t1 contains the original data o11, o21, ... ol1; the second contains the next l ele-
ments ol+1 1, ol+2 1, ... o2l 1 and so on. 

c) CDP data processing: In this step we generate noise to add to the original data. If 
an element oi1, 1 ≤ i  ≤ m, of the original data set is in interval j, 1 ൑  ݆  ൑  ,ܦ 
then we add it to the corresponding element of the noise matrix defined as 
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௜ሻଵ = ௡ܶݐሺݐ݌   ቆെ1 ൅ ଵ௡ ൅ ଶቀଵିభ೙ቁ௝௟ାଵ ቇ obtaining  ݌෤௜ଵ ൌ ௜ଵ݋ ൅  .௜ሻଵݐሺݐ݌

And so, the general equation describing this method is,      ෨ܲ ൌ ܱ ൅ ܰ.                     (1) 
4. Restoration: When ݌෤௜ଵand ݐ݌ሺݐ௜ሻଵ are known, the data can easily be restored by 
using: ݋௜ଵ ൌ ෤௜ଵ݌ െ  .௜ሻଵݐሺݐ݌

Our aim is, knowing only ෨ܲ  and not O, to reconstruct the original dataset values from ෨ܲ thus breaking the privatization method of the paper [12]. For the reconstruction we 
use the three attacks mentioned in Part B of Section 1.  

2.2 Summary of Symbols and Values Used 

This sub-section provides the notation for sub-section 2.1 and subsequent parts of the 
paper.  

Table 1. Summary of symbols and definitions 

Symbols Definitions 
O original dataset matrix ݋௜௝ , 1 ൑ ݅, ݆ ൑ √݉  and ݋௜ଵ, 1 ൑ ݅ ൑ ݉ 

elements of the original dataset with matrix and vector indexation  

respectively ෨ܲ perturbed dataset matrix ෨ܲ ൌ ܱ ൅ పఫ,෦݌ ܰ 1 ൑ ݅, ݆ ൑ √݉  and ݌పଵ෦ , 1 ൑ ݅ ൑ ݉ 

elements of the perturbed dataset with matrix and vector indexation 

respectively 

N noise dataset matrix ݐ݌ሺݐ௜ሻj , 1 ൑ ݅, ݆ ൑ √݉    and ݐ݌ሺݐ௜ሻଵ, 1 ൑ ݅ ൑ ݉ 

elements of the noise dataset with matrix and vector indexation  

respectively ෠ܱ  estimated dataset matrix ݋పఫෞ , 1 ൑ ݅, ݆ ൑ √݉ and ݋పଵෞ , 1 ൑ ݅ ൑ ݉  

elements of the estimated dataset with matrix and vector indexation 

respectively 

mi i’th row of the matrix M ܯ௖௢௩ covariance matrix of the matrix M 

I identity matrix ߪ  and  ߪଶ standard deviation and variance of the noise matrix elements ߤெ mean vector of the matrix M ሾߣ௠௜௡, ߣ௠௔௫ሿ bounds for the eigenvalues of a matrix 

3 Description and Results of the Reconstruction Attacks 

In this section we explore the SPF, BE-DR and MDMF reconstruction methods and 
examine how well they estimate the original data. We use the same assumptions on 
data mentioned in [8] (SPF), [9] (BE-DR) and [10] (MDMF) as appropriate, and use 
the notation of Table 1. We generate 4500 matrices using the algorithm described in 
Section 2; 1500 of these were of size 400, 1500 of size 1600 and 1500 of size 6400. 
Because our data is stored in vector form, we are at liberty to decide on the matrix 
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size for the reconstruction, and since we work heavily with eigenvalues, which are 
easy to produce from square matrices, we assume that O is square.  

We use MATLAB R2009b [14] and WEKA 3.7.7 [11] for our experiment analysis. 
Using the Chebyshev Polynomial method described in Section 2 and the test matrices 
described above. (Note that because MATLAB [14] was used to generate and attack 
the vectors, we were restricted to the largest vector size it can handle, which is 6400 
elements.) We implemented all data reconstruction methods on the 4500 datasets 
mentioned above. In each case, we obtained an estimation of the original data set 
which was then compared with the original data set in terms of the success measures 
described in the papers [8], [9] and [10]. In each case, although we tested (the same) 
4500 matrices in each attack, we present the details of only one of our matrices – one 
which has 6400 entries.  

3.1 Spectral Filtering Reconstruction Method 

Test Example 
i. We calculate the eigenvalues of the covariance matrix of the perturbed matrix ෨ܲ of 
the fixed example matrix O. Then we calculate ߣ௠௜௡ ൌ 0 and ߣ௠௔௫ ൌ 0.4556 from 
which we obtain those noisy eigenvalues ߣప෩  which satisfy the inequality ߣ௠௜௡ ൑ ప෪ߣ  ൑ ߣ௠௔௫ ., that is, which are in the range (0, 0.4556). The remaining eigenvalues should 
be those of O. Now from the SPF algorithm [8] we can calculate the eigenvalues of 
the covariance matrix of the estimated matrix. In order to obtain the eigenvalues of ෠ܱ , 
we need only consider those above or equal to ߣ௠௔௫. To measure the success of the 
attack, we calculate the closeness of eigenvalues of ෠ܱ  and eigenvalues of O. We ob-
tain หߣ଺ଷ െ ଺ଷ෢ߣ ห=0, หߣ଺ସ െ ଺ସ෢ߣ ห=0,........,ห଼ߣ଴ െ ଴෢଼ߣ ห=0; all these differences are (very 
close to) zero, so an attacker can easily reconstruct the original data by using the SPF 
method.     
ii. To check the condition when values of reconstruction error increases as SNR [2] 
decreases, we give here only the average of reconstruction error values - 0.4384 while 
the value of ܴܵܰ is 0.2408. So, in this case also we achieve a successful attack. 
iii. Lower and upper bound analysis, From [2], we calculate the lower bound to be 
35.0716, and the upper bound to be 56.1346. Using [2], ฮ ෠ܱ െ ܱฮி = 37.4507. Since 37.4507 ൒ 35.0716 and 37.4507 ൑ 56.1346, both lower and upper bound condi-
tions are satisfied. 
iv. We get RMSE [2] = 0.4384. The fact that 0.4384 ൏ 1 means our estimated dataset 
is not erroneous; so the attacker has breached the privacy. 

In summary, the SPF method breached the privacy of the data-privatization method. 
In fact, SPF reconstruction is known to work well against additive techniques [8]. 

3.2 Bayes-Estimated Data Reconstruction Method 

Test Example 
i. We calculate RMSE = 0.5187 ൏1; so the attacker has breached the privacy ([2]). 
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ii. We calculate the reconstruction error corresponding to every element of the data 
set in vector form: |݋ଵଵ െ ଵଵෞ݋ ଶଵ݋| ,0.015161 = | െ ଶଵෞ݋ ଷଵ݋| ,0.014837 = | െ ଷଵෞ݋ | = 
0.014654 and so on until |݋଺ସ଴଴ ଵ െ ଺ସ଴଴ ଵෟ݋ | = 0.000035037.  From the calculation we 
find that the attack has been successful ([9]). 

3.3 Multiple Data Mining and Fusion Reconstruction Method 

We use seven data mining algorithms ݏܯ, ݏ ൌ 1, … ,7. The following 7 miners, repre-
senting four different categories, were selected from the WEKA software package, 
version 3.7.7 [11], and used in the attack: Function-based: Simple linear regression 
(M1), Meta: CVParameterSelection (M2), Stacking (M3), Vote (M4); Rule-based: 
ZeroR (M5); Tree-based: DecisionStump (M6) and REPTree (M7).  

Test Example 
i. We calculate the RMSE value to be 0.4033<1, and so privacy has been breached 
([2]). 
ii. We evaluate the success of attack by calculating ݀ሺ݋௪ఫෞ , ௪௝ሻ݋ ൏ ݀ሺ݌௪ఫ෦ ,  ௪௝ሻ for all݋
1≤ w, j ≤ √m ([10]) and find that 5337 elements out of 6400 elements of the matrices 
have satisfied the inequalities. In this case, the attacker has obtained 83.39% of the 
original data and failed to recover 16.61 % of it.  
iii. The added noise is ∑ ห݌௪ఫ෦ െ ௪௝ห௢ೢೕ݋  =116.1852; the remaining noise is ∑ ห݋௪ఫෞ െ ௪௝ห௢ೢೕ݋  = 31.5011. So, we get the ratio  

௥௘௠௔௜௡௜௡௚ ௡௢௜௦௘௔ௗௗ௘ௗ ௡௢௜௦௘  = 0.2711<1. Because 

this is close to zero, the attack has been successful ([10]). 

4 Presentation of Proposed Method and Results of Attacks  

4.1 Proposed Method 

In this section, we propose a new hybrid data perturbation method with better utility 
preservation and privacy preservation than that described in Section 2. It has been 
pointed out that attacks which work on an additive data perturbation method will also 
work on a multiplicative data perturbation method as the latter can be logarithmically 
transformed into an additive data perturbation method [15]; hence we avoid a 
straightforward additive or multiplicative method. 

While the noise matrix (N) is again generated using a Chebyshev polynomial of the 
first kind, our proposed method includes an orthogonal, rotation transformation ma-
trix (R) and a translation matrix (T).  R is added because rotation transformations pre-
serve the utility of the most critical information for many classification models [3]. T 
is added to increase resilience to attack [16]. I is the √mx√m identity matrix. 
Our proposed hybrid perturbation is defined as follows: 

1. Data:  We use the format of sub-section 2.1.  
2. Setting parameters: The values m, n and l are as in sub-section 2.1. 
3. Data perturbation: Data preparation and division are as in sub-section 2.1, part 3. 
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Data Processing: In this step we generate the orthogonal matrix R to multiply by the 
original data and the translation matrix T as well as the noise to add to the original data. 
The choice of the type of R is based on observations in [3] stating “random orthogonal 
transformation seems to be a good way to protect data’s privacy while preserving its 
utility.” And, for a legitimate user, “it is possible to re-identify the original data through 
a proper rotation.” Also, as part of future work, the authors suggest that “The random 
projection-based technique may be even more powerful when used with some other 
geometric transformation techniques like … translation, and rotation.” [16; p. 105] In 
addition, the author of [3] demonstrates that a rotation matrix preserves data privacy and 
quality. Indeed, our current hybrid proposal confirms this suggestion. 

Producing R: We use MATLAB [14] to produce an orthogonal matrix [3] on input of 
the size m.  

Producing T: Again, MATLAB produces a translation matrix on input of m.  
Each element of the noise vector ݐ݌ሺݐ௜ሻଵ as generated in (c) of Part 3, sub-section 2.1, 

and          ෨ܲ  ൌ ோைమଵ଴଴ ൅ ܱ ൅ ܶ ൅ ܰ                                                                               (2) 

where ෨ܲ, O and N are as in Table 1. We divide by 100 to bring the values of the per-
turbed matrix within the range of values of the original data. 

We test this hybrid method with the three additive attacks used to test the earlier 
method described in Section 2. As in the earlier testing, for all tests we choose 4500 
‘original’ matrices of three different sizes, but this time, derive the perturbed matrices 
from (2). The experiment followed the methods of Section 3 and the attacker fails 
with respect to each of the reconstruction methods. Due to space limitations, we 
merely summarize the experimental results in Table 2 to three decimal places. 

Table 2. Comparative analysis between additive method [12] and our proposed method 

Recon-
struction 
attack 
methods 
And 
informa-
tion loss 

Additive Method [12] Our Proposed Method 

Size of 
matrices 

 
Measure-
ment 
factor 

400 

size 

 

1600 

size 

6400 

size 

Level of privacy   

(VoD) 

400 

size 

 

1600 

size 

6400 

size 

Level of privacy  

(VoD) 

E[D] Var [D] E[D] Var [D] 

SPF SNR 0.213 0.230 0.241 0.203 0.151 34.247 35.65 36.59 48.44 16.235 
RMSE 0.314 0.386 0.438 42.364 46.434 47.758 
PoS 80.28 78.63 76.86 0.115 0.091 0.042 
PoF 19.72 21.37 23.14 99.89 99.91 99.96 

BE-DR RMSE 0.387 0.469 0.519 0.496 0.023 38.93 42.03 43.95 44.65 16.12 
PoS 73.68 71.85 69.27 0.493 0.454 0.441 
PoF 26.32 28.15 30.73 99.51 99.55 99.56 

MDMF RMSE 0.369 0.389 0.403 0.505 0.061 40.01 44.49 45.78 46.35 16.66 
PoS 87.45 85.79 83.39 0.428 0.416 0.304 
PoF 12.55 14.21 16.61 99.57 99.58 99.70 
Relative 
Noise/ 
Added 
Noise 

0.189 0.258 0.271 10.27 14.36 15.851 
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5 Summary and Discussion 

5.1 Level of Privacy and Information Loss 

First, we calculate success and failure of the attacker attack by attack, averaged over 
all the matrices of the same size and for each of the old additive method of Section 2 
and the new proposal of Section 4. Table 2 indicates that the results do not depend on 
matrix size. Success (PoS) measures how much of O is reconstructed successfully by 

the attacker and is measured by 
ே௨௠௕௘௥ ௢௙ ௘௟௘௠௘௡௧௦ ሺ|ை෠ିை|ழ|௉෨ିை|ሻ௡௨௠௕௘௥ ௢௙ ௘௟௘௠௘௡௧௦ ௢௙ ை  [17] as a percentage; 

the Failure (PoF) [17] is defined as 100 minus this value.  The actual values are given 
in Table 2.  

We also use a variance-of-difference (VoD) method [3] for measuring privacy in 
order to compare the two methods discussed in this paper. VoD measures privacy of 
matrices column-wise and we can calculate it with no knowledge of the original data. 
The perfect estimation will have zero mean and variance. We define VoD for all 1 ൑  ݅  ൑  ݉ as ܦ௜ ො௜ଵᇱ݋ =  െ ௜ܦ the mean of all [௜ܦ]௜ଵ, and calculate E݋  and var [ܦ௜] the 
variance of all ܦ௜ . The average values are shown in Table 2. The fact that the mean 
and variance of the ܦ௜ are higher than 1 means that the attacker cannot estimate the 
original data; lower than 1 indicates a breach of privacy. 

The level of information loss is measured by using a dissimilarity function [2] be-
tween the original dataset O and the perturbed dataset ෨ܲ. This dissimilarity function is 
denoted by Diss (O, ෨ܲ) and lies in [0,1]. A value of Diss (O, ෨ܲ) near 0 denotes low 
information loss. We calculate average information loss for our proposed method as 
0.004310 which is very low. We also calculate the dissimilarity function for the addi-
tive method [12] obtaining Diss (O, ෨ܲ) = 0.864534.   So, average information loss for 
our proposed method is 0.4310% and for the additive method of [12] is 86.4534%. 
We conclude that our proposed method has achieved low information loss in com-
parison with the additive perturbation method of equation (1).  

In summary, we have shown how a data perturbation method can be attacked by 
several reconstruction methods and then adjusted to withstand the attacks. 

References 

1. Agrawal, R., Srikant, R.: Privacy-Preserving Data Mining. In: Proceedings of the ACM 
SIGMO Conference on Management of Data, pp. 439–450. ACM Press, Dallas (2000) 

2. Datta, S.: On Random Additive Perturbation for Privacy Preserving Data Mining. Thesis 
report (2004) 

3. Liu, K.: Multiplicative Data Perturbation for Privacy Preserving Data Mining. Thesis re-
port (2007) 

4. Singh, K., Zhong, J., Batten, L., Bertok, P.: An Efficient Solution for Privacy Preserving, 
Secure Remote Access to Sensitive Data. In: International Conference of Advanced Com-
puter Science and Information Technology, pp. 173–191 (2012) 

5. Du, W., Zhan, Z.: Using Randomized Response Techniques for Privacy-Preserving Data 
Mining. In: Proceedings of The 9th ACM SIGKDD International Conference on Know-
ledge Discovery and Data Mining, Washington, DC, USA, pp. 505–510 (2003) 



 An Attack-Resistant Hybrid Data-Privatization Method with Low Information Loss 271 

 

6. Du, W., Atallah, M.: Secure Multi-Party Computation Problems and Their Applications: A 
Review and Open Problems. In: New Security Paradigms Workshop, pp. 11–20 (2001) 

7. Agrawal, D., Aggarwal, C.: On The Design and Quantification of Privacy Preserving Data 
Mining Algorithms. In: Proccedings of the 20th ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, California, USA, pp. 247–255 (2001) 

8. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On The Privacy Preserving Properties 
of Random Data Perturbation Techniques. In: Proc. of the 3rd Int’l Conf. on Data Mining, 
pp. 99–106 (2003) 

9. Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data. In: Pro-
ceedings of the 2005 ACM SIGMOD Conference, Baltimroe, MD, pp. 37–48 (June 2005) 

10. Sramka, M., Safavi-Naini, R., Denzinger, J.: An Attack on The Privacy of Sanitized Data 
That Fuses the Outputs of Multiple Data Miners. In: PADM, pp. 130–137 (2009) 

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA 
Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009) 

12. Singh, K.: Recovering Private Data: A Comparision of Three Methods. In: Poster in Pro-
ceedings of ATIS 2012, pp. 24–25 (2012) 

13. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Prentice Hall, SIAM (2002) 
14. Franco-Pereira, A.: An introductory course in MATLAB: MATLAB for beginners. Un-

iversidad Carlos III de Madrid (2010),  
http://webs.uvigo.es/alba.franco/eng/Tutorial_completo.pdf 

15. Pandya, B., Singh, U., Bunkar, K., Dixit, K.: An Overview of Traditional Multiplicative 
Data Perturbation. International Journal of Advanced Research in Computer Science and 
Software Engineering 2(3), 424–429 (2012) 

16. Liu, K., Kargupta, K., Ryan, J.: Random Projection-Based Multiplicative Data Perturba-
tion for Privacy Preserving Distributed Data Mining. IEEE Transaction on Knowledge and 
Data Engineering 18(1), 92–106 (2006) 

17. McMullen, C.: Probability Theory. Harvard University (2011),  
http://www.math.harvard.edu/~ctm/papers/home/text/class/ 
harvard/154/course/course.pdf 


	An Attack-Resistant Hybrid Data-Privatization Method with Low Information Loss
	1 Introduction and Background
	1.1 Data-Privatization
	1.2 The Research Literature

	2 The Chebyshev Polynomial Perturbation Method
	2.1 Chebyshev Data Perturbation Algorithm (CDP)
	2.2 Summary of Symbols and Values Used

	3 Description and Results of the Reconstruction Attacks
	3.1 Spectral Filtering Reconstruction Method
	3.2 Bayes-Estimated Data Reconstruction Method
	3.3 Multiple Data Mining and Fusion Reconstruction Method

	4 Presentation of Proposed Method and Results of Attacks
	4.1 Proposed Method

	5 Summary and Discussion
	5.1 Level of Privacy and Information Loss

	References




