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1. Introduction

Planar optical devices are of great importance to optoelectronics indus-
try. Such devices typically consist of a base made of glass, and the
waveguide layer ~ a very thin layer of transparent material (Figure 1).
If the light enters the waveguide layer at a certain angle, it will remain
in the waveguide layer because of the effect of total reflection. By creat-
ing waveguide layers with specific distributions of the refractive index,
one achieves various optical effects, such as focusing the light (e.g., the
Luneburg lens [16]), which leads to the production of useful comnponents.

As a result of the manufacturing process, the refractive index n of
the waveguide layer is not constant (either by design, or otherwise).
The function n{z) which models variation of the refractive index with
the depth of the layer is called the refractive index profile. Many opti-
cal properties of the waveguide can be calculated from n. Conversely,
one can design waveguides with the required properties by varying and
adjusting n.

During the manufacturing process, one aims to obtain waveguide
layers with the specified index n. For many technological reasons, it is
virtually impossible to match the specifications exactly. Therefore, an
important post-fabrication task is to measure the resulting index profile
and compare it with the specification. There is a number of methods
of non-destructive measurement of the index (23, 22, 10, 15], most of
which are based on inverting WKB (Wentzel-Kramer-Brillouin) integral
and nonlinear least squares fit.
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Figure 1: Structure of a planar waveguide

This paper examines a new alternative method of non-destructive in-
dex profile measurement, entirely based on geometrical optics model. We
formulate a mathematical model which relates the refractive index with
the paths of thin laser beams passing across the waveguide layer (Figure
2}, and obtain the equations to compute the index profile from the per-
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formed measurements. We then examine the resulting ill-posed problem
involving a nonlinear integral equation, and present an approach to solve
it. Further we dicuss numerical solution methods, examine their perfor-
mance of several model problems, and their accuracy and sensitivity to
noise in the data.

2. Mathematical Model

Consider the following non-destructive waveguide diagnostics setup. A
set of thin laser beams passes across the waveguide layer and exits at the
opposite side (Figure 2). Since n is non-constant, the rays bend inside
the layer, and exit at different angles and positions, which are recorded
along with the entry angle §. In practice, we use just one laser beam
and perform measurements for different angles 6 one at a time, but it
is convenient to view this mathematically as a set of laser beams. We
cannot observe the paths of sampling rays inside the layer, so what we
have is the set of exterior measurements {6;, h(6;)},7 = 1,...T (Figure
3). Our goal is to use these data to reconstruct the index profile n(z).
We assumne that n does not change with z,y. We also assume n(z) is
continuous.
]
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Figure 2: Experimental setup: a set of sampling rays propagating
across the waveguide layer

In geometrical optics approximation, the propagation of light is ex-
pressed in the Eikonal equation

[VS(r)]? = n(r)?,
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where S(r) denotes the optical path and n(r) is the refractive index in
a point r = (z,y, z). Since n = n(z), we can write it in this form [9]

n fL'”

T3a7 TEm=0, 1)

where z = z(z) is the ray path parameterized by z. The solution to the
Eikonal equation in the stratified media is given by [16]

k
p(z) = —-———m,

where k is the integration constant which depends on 8, and p = z'(2).
k can be found from the initial condition

(2)

k

0) =tanf = —————o,
p(0) =ta )

from which we derive k = n(0)sin6.
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Figure 3: Sampling rays and their exit positions

Thus we can write

z dz

If the depth of the waveguide layer is a, then we can relate the entry
angles and the exit positions by

z(a) — z(0) =

hik) = k/o T/nz_%‘_iﬁ' (4)
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Equation (4) is the main equation that will be used for index profile
reconstruction. Without loss of generality we can put a = 1. Let us now
use other available information to simplify the problem. We assume
ng = n(0) to be known (since we have access to the outer boundary at
z = 0, we can measure n(0) directly, e.g., by using liquids with matching
index). We also assume the refractive index of the air and of the glass
base to be known. This way we can implicitly account for the refraction
at the boundaries z = 0 and 2z = 1 by using the law of sines, and

sin @

think of tan = lim,_,¢+ p(2), tan6; = lim, ,;- p(2). The ratio of &
gives us the ratio of %. Let us express n(z) in the units relative to
n(1) (so called effective refractive index). Consequently we have n(1) =
1. We also assume that n(z) is a monotone decreasing function (the
manufacturing process results in monotone continuous n(z)).

The condition that the ray entering the waveguide layer at an an-
gle 6 exits the layer at z = 1 is n(z) > k, which translates into 6 <
sin™!(n(1)/n(0)) = sin"!(1/ng) = Omes. The rays enter the layer at
z = 0. For 6 = 0 there is no refraction and h(0) = 0. Because of the
symmetry h(0) = —h(—0). Thus we consider experimental data in the
range 0 < 8 < O05-

Equation (4) naturally leads to two distinct problems, the direct
and the inverse. The direct problem consists of solving (4) for h(k)
with known n(z), i.e., computing the exit position of a ray entering the
media with known n(z) at the origin at an angle 6. It is a variant of
the ray tracing problem. We will use it later as a tool for simulating
experimental data.

The inverse problem is the one we are interested in: to invert (4) and
compute the unknown n(z) given h(k). We note that a similar problem
arises in computing the index profile of a circular symmetric optical
fibre (i.e., when n = n(r)). It was dealt with in detail in [11, 19], and
it involves Abel type integral equations. Our case is different because
equation (4) does not allow explicit inversion [17], hence we will have to
solve (4) for n numerically.

3. Solution to the Integral Equation

Let us now examine in detail equation (4). This is a nonlinear integral
equation with constant limits. Its solution is an ill-posed problem [20].
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There is no guarantee that small changes in h will result in relatively
small changes in n. Further, for the ideal case of exact measurements,
the existence and uniqueness of solution of (4) follows from the fact
that h(k) is the solution of the direct problem (i.e., there is such n(z)
that generated h(k) via (4)), and that equation (4) is not singular for
6 € [0,0,142) and the integrand is bounded [17].

However, when we consider the case of noisy data h(k) + €, the
existence of the solution of the inverse problem (4) is not guaranteed.
It is a common situation in the inverse problems [20], where neither
existence nor continuous dependence on the data do not hold.

A common approach to solution of ill-posed problems is Tikhonov
regularization [20]. It consists in minimizing the functional

||An — hl} + of|Dnl],

where A is the integral operator (4) acting on n, and D is a differentia-
tion operator. It is customary to use second derivatives, which penalize
unwarranted oscillations of n, in which case we solve the minimization
problem

min

1
+a/0 [n"(2)]%dz. (5)

1 dz
h(k) — k/o ———-——nz(z) e

Let us use a discretized representation of n through its values at
certain points in (0,1), z;,5 = 1,...,J, ie, nj = n(z;). Under our
assumption of monoctonicity of n, ng > ny > ... > ny > 1. Then we
have the approximation of the integral in the Gauss formula

/1 dz N w;
0 y/n2(z) —k? = /n§ k2

The nodes z; are chosen as zeros of Legendre polynomials, and weights
w; are then found from the standard tables [1]. Gauss integration re-
sults in a very high precision for smooth profiles, with only few nodes
required (J = 5 or J = 7). The second integral in (5) is approximated
analogously, using second order divided differences denoted n;f .

The regularization parameter ¢ is chosen according to the noise in
the data. We return to this issue in the following sections. Let us now

J
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use the set of experimental measurements {(6;, h(6;))}._,, and convert
problem (5) into

2
I J
minimize Z h(k;) — k; Z 12”—] +a Z wjn;-'z, (6)
i=1 ; j=1

/ 2

where as previously k; = ngsin(6;), and n; are restricted by the mono-
tonicity condition. Problem (6) will be solved numerically to obtain
n.

4. Numerical Methods

Now we address the problem of numerical solution of (6). We notice that
the vector of unknowns (ny,ns,...,ny) is restricted by the conditions
of monotonicity. By using a change of variables d; = (nj_1 — n;)/(no —
1),5=1,...,J+1, where ng and ny4; = n(l) = 1 are given, we obtain
a new vector of unknowns d restricted to the unit simplexd € S = {t €
Rt > 0,0t =1}

Further, the objective function in (6) is not necessarily convex, which
means that problem (6) may have multiple locally optimal solutions,
whereas we are interested in the globally optimal solution. The problem
of multiple local minima is well known in many fields [14, 21]. For in-
tegral and differential equations it was considered in {13, 12]. There are
several approaches to its solution, broadly classified into stochastic and
deterministic methods. Stochastic methods (such as random search, sim-
ulated annealing) converge to the global optimmum in probability, whereas
deterministic methods [14] guarantee global optima. On the other hand,
deterministic methods are computationally very expensive due to their
slow convergence. It is customary to use a combination of various meth-
ods, like to run a deterministic global optimization method for a number
of iterations, and then to rapidly improve the set of best solutions by
using a local descent method.

For a relatively small number of variables (up to 10), a new deter-
ministic global optimization method of cutting angle (CAM) has shown
the potential to solve many classes of optimization problems with Lip-
schitz objective functions on a simplex [18, 3, 4, 5, 6]. In our case, the
objective function is certainly Lipschitz (the data are registered in the
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interval [0, 0,42 ), which translates into Vi, j : n; > k;), and the domain
is the unit simplex S, so we can apply CAM to find the global minimum
of (6).

The second new optimization method we can rely on is called the dis-
crete gradient method (DG) [2]. This is a method of local non-smooth
optimization. We apply it combined with the exact penalty function
approach to penalize for violation of simplex constraints. One particu-
lar feature of DG method is its ability to “skip” through shallow local
minima, and converge to a deeper minimmum than other local methods.
We verified it experimentally in [7]. This method will be applied at the
end of the optimization procedure, to rapidly improve the best solutions
found by CAM. We refer the reader for the details of both methods to
[18, 2, 6].

Once the optimal solution to (6) is found, we reconstruct the function
n(z) by interpolating the points (z;,n;) by a polynomial of order J, for
which the Gauss integration formula is exact.

5. Simulation of Experimental Data

To verify the index reconstruction procedure, and establish the bounds
of its applicability, we need to simulate the experimental data. We
take some model index profile n(z) and solve equation (4) with respect
to h(k), for various choices of k. This way we create the set of pairs
{(#:,h(6;))},¢ = 1,... I, which represents the experimental data. Then,
by solving (6) with these data, we reconstruct nj,j = 1,...,J, and fit
it with a polynomial #(z). If the numerical solution is correct, then the
interpolating polynomial should match the model index fi(2) = n(z).

We can measure the accuracy of index reconstruction by using the
root mean squared error and the maximal error, i.e.

L 1/2
RMSE = (—M Z(n(l‘m) - ﬂ(v’L'm))2) ’

m=1

MAXERR = max [n{(zm) — #(zm)],

for a large M and z,, € [0,1]. We shall also plot n and 7 one against
the other.
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Further, we consider the case of noisy data, i.e., we will use h(6;) +
€; as the experimental data, where ¢; are independent identically dis-
tributed random values, from a normal distribution N{0, o), for various
noise levels 0. We will establish how sensitive our model is to the noise in
the data, and how the noise can be filtered out by using regularization.

Thus let us concentrate on the solution of the direct problem: given a
model index n(z), solve (4) for various k < 1. For certain algebraic forms
of n(z) we were able to solve (4) exactly. Table 1 shows various models of
n for which we obtained a closed form solution. The formulae for n were
chosen in such a way that they model various types of dependency on 2
which are likely to occur in practice. They are illustrated on Figures 4-5.
By adjusting parameters of each model (a, b, ¢), we can easily change the
shape of n, and these indices appear to be flexible enough to model a
wide range of behaviour. In choosing parameters of the models, we also
took into account the range of variation of n that is obtained in practice
(around 5%).

6. Numerical Results

We tested our method of solution of (4) on the five models from Table
1. In the case of noiseless data, numerical solution of (4) matches the
model n used to simulate the experiment almost exactly (RMSE and the
maximal error were of order of 10~° — 106, even for a small number of
experimental points I = 20, [8]). However, introduction of a small noise
dramatically changed the picture. To compensate for noise in the data,
we used a larger number of data points (I = 100 — 500), and a larger
regularization parameter.

This strategy was successful, and even relatively large noise in the
data o = 0.01 did not prevent accurate computation of n. The recon-
structed index is plotted against the model on Figures 4-5. Table 2
shows that the accuracy of 1072 can be achieved in the case of noisy
data. Thus we conclude that the proposed method of index profile re-
construction can be used with real experimental data with these noise
levels.

An unknown with Tikhonov regularization is the regularization pa-
rameter a. Large values of a may result in oversmoothened profile, while
too small values do not completely filter out the noise. For this reason
we performed a study of sensitivity of our model to . Figure 6 shows
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Figure 4: Reconstructed and model indices for model 2 (left) and
model 3 (right). Points (z;,n;) are denoted by crosses

a typical plot of RMSE as the function of noise o and regularization
parameter a.

Our experiments revealed that the numerical solution of (6) is not
very sensitive to large values of a. In some cases a varied three orders of
magnitude with a marginal effect on the accuracy of the reconstructed
index. Thus the value of a could be chosen from a large interval.

We also computed optimal values of « for various levels of noise
in the data (i.e., the values leading to the smallest RMSE). They are
presented in Table 2. This table can serve as a guide for choosing «
when processing real experimental data: for a given noise level and the
number of experimental points, we choose the value in Table 2. Not
knowing the true n(z), there is no way to establish whether such « is
the optimal choice, but taking into account little sensitivity of the result
to the exact value of a, such choice would be the best one.

Model n(z)
1 az+b
2 b — ae®
3 iz +b
4 c—av1+bz
S Ll v e 2= )

Table 1: Model index profiles for simulating experiment
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Figure 5: Reconstructed and model indices for model 4 (left) and
model 5 (right). Points (z;,n;) are denoted by crosses
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Figure 6: RMSE as a function of the noise in the data and regular-
ization parameter, for model 4. Minimizing such function allows
one to find the optimal regularization parameter for a given level
of noise.
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Model | Level | Number | RMSE | MAXERR | Optimal
of noise | of data | (x107%) | (x1073) o

1 0.001 a0 0.027 4.25 215
0.001 100 0.013 3.56 125
0.001 200 0.007 5.10 130
0.01 50 0.11 5.68 112
0.01 100 0.043 9.26 102
0.01 200 0.016 7.29 63

2 0.001 50 0.35 5.54 0.021
0.001 100 0.21 4.10 0.04
0.001 200 0.20 1.96 0.03
0.01 50 3.77 10.1 0.006
0.01 100 1.14 8.35 0.035
0.01 200 0.95 9.35 0.013

3 0.001 50 0.36 9.84 0.3
0.001 100 0.066 4.68 0.033
0.001 200 0.082 3.99 0.016
0.01 50 0.50 9.26 0.31
0.01 100 0.58 8.50 0.023
0.01 200 0.58 10.1 0.02

4 0.001 50 0.47 4.65 0.017
0.001 100 0.36 3.64 0.03
0.001 200 0.37 3.61 0.02
0.01 50 4.1 9.64 0.004
0.01 100 1.12 7.49 0.02
0.01 200 0.96 9.52 0.008

5 0.001 50 0.39 4.15 0.019
0.001 100 0.25 5.04 0.1
0.001 200 0.20 4.96 0.082
0.01 50 2.3 7.63 0.09
0.01 100 1.3 6.18 0.015
0.01 200 0.98 5.55 0.011

Table 2: Accuracy of index reconstruction as a function of noise
and the number of observations, and the optimal regularization
parameter o
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7. Conclusion

We presented a mathematical model of the refractive index profile re-
construction, in which the unknown index profile is related to the ex-
perimental data in a nonlinear integral equation. Numerical solution of
such integral equation is an ill-posed problem. We applied the method -
of Tikhonov regularization, and computed the index profile with high
accuracy.

As a tool in numerical solution of the integral equation, we used two
new methods of global and non-smooth optimization, the cutting angle
and discrete gradient methods. These methods have allowed us to find
the best solution in the presence of multiple local optima.

We also performed a study of the accuracy of the solution as a func-
tion of the noise in the data, the number of data and the regularization
parameter. We found optimal values of the regularization parameter
for given noise and number of data points. These values give guidance
for choosing regularization parameter when processing real experimental
data.
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