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Highlights 

● The fixel-based analysis framework was proposed for fibre-specific statistical analysis of 

diffusion MRI data. 

● A “fixel” represents an individual fibre population in a voxel, allowing for increased specificity 

over voxel-wise measures. 

● A state-of-the-art fixel-based analysis pipeline consists of several bespoke steps, but is 

conceptually similar to a voxel-based analysis. 

● Fixel-based analysis has seen increased adoption recently, with 75 published studies to date. 

● The framework has unique benefits and future opportunities, but specific challenges and 

limitations exist as well. 
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Abstract 

Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data 

sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than 

typical voxel sizes. The key to extracting such valuable information lies in complex modelling 

techniques, which form the link between the rich diffusion MRI data and various metrics related to 

the microstructural organisation. Over time, increasingly advanced techniques have been developed, 

up to the point where some diffusion MRI models can now provide access to properties specific to 

individual fibre populations in each voxel in the presence of multiple “crossing” fibre pathways. 

While highly valuable, such fibre-specific information poses unique challenges for typical image 

processing pipelines and statistical analysis. In this work, we review the “fixel-based analysis” (FBA) 

framework, which implements bespoke solutions to this end. It has recently seen a stark increase in 

adoption for studies of both typical (healthy) populations as well as a wide range of clinical 

populations. We describe the main concepts related to fixel-based analyses, as well as the methods 

and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers 

with practical advice on how to interpret results. We also include an overview of the scope of all 

current FBA studies, categorised across a broad range of neuroscientific domains, listing key design 

choices and summarising their main results and conclusions. Finally, we critically discuss several 

aspects and challenges involved with the FBA framework, and outline some directions and future 

opportunities. 
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Introduction 

Diffusion MRI (dMRI) has revolutionised our capabilities to study white matter (WM) microstructure 

and organisation in healthy and diseased populations (Jones, 2010; Johansen-Berg & Behrens, 2013): 

it enables us to visualise WM fibre bundles and measure properties of their microstructure non-

invasively, in-vivo and without relying on ionising radiation. Over more than 2 decades, numerous 

dMRI guided studies have demonstrated that clinical populations present with altered WM 

organisation in various specific WM fibre tracts (see reviews: e.g., Deprez et al., 2013; Hullkower et 

al., 2013; Pasternak et al., 2018; Pecheva et al., 2018). These studies have also generally reported 

significant, moderate-to-high correlations between disease symptoms and dMRI derived metrics 

sensitive to WM microstructure, with more severe changes in WM microstructure typically relating 

to more pronounced symptoms. 

The key factor enabling such studies to assess this valuable information lies in complex modelling 

techniques, which form the link between the rich diffusion MRI data and various metrics related to 

the microstructural aspects of interest (Novikov, Kiselev, & Jespersen, 2018). These include a range 

of biophysical models, such as the composite hindered and restricted model of diffusion (CHARMED) 

(Assaf & Basser, 2005) or the neurite orientation dispersion and density imaging (NODDI) (Zhang et 

al., 2012) model, which aim to model the diffusion signal as distinct microstructural compartments 

with biophysical parameters; as well as more generalised representations of the diffusion signal, 

including diffusion tensor imaging (DTI)  (Basser & Pierpaoli, 1996), diffusion kurtosis imaging (DKI) 

(Jensen et al., 2005) and diffusion spectrum imaging (DSI) (Wedeen et al., 2008). Some of the most 

commonly used approaches to date for studies of WM microstructure have been based on DTI, 

which provides general information on the local orientation of white matter fibres as well as metrics 

describing the fractional anisotropy (FA) and mean diffusivity (MD). Preprocessing, various fitting 

strategies, and post-processing for DTI are well-documented (Van Hecke, Emsell, & Sunaert, 2015; 

Mori & Tournier, 2014). Statistical analyses are often performed using region-of-interest (ROI) 

approaches, or voxel-based analysis (VBA) with statistical enhancement mechanisms such as 

threshold-free cluster enhancement (TFCE) (Smith & Nichols, 2009), but bespoke frameworks such as 

tract-based spatial statistics (TBSS) (Smith et al., 2006) have also been proposed to address specific 

challenges with registration and smoothing. However, DTI (as well as several other commonly used 

models or signal representations) is unable to correctly represent complex geometrical WM fibre 

configurations generally referred to as “crossing fibres”, leading to problems with interpretation and 

limited biological specificity of associated metrics, as well as various detrimental effects on 

processing techniques such as streamline tractography (Farquharson et al., 2013; Jones, 2010; Jones 

et al., 2013). The aforementioned statistical analysis approaches also lack mechanisms to leverage 

information from multiple distinct fibre populations within voxels. 

To address these challenges, a statistical analysis framework named “fixel-based analysis” (FBA) was 

proposed (Raffelt et al., 2015, 2017). In this context, a “fixel” refers to an individual fibre population 

within a voxel, allowing for fibre-specific metrics to quantify WM properties and changes. Unlike 

voxels, fixels relate directly to the underlying WM anatomy itself. In a typical FBA, fixels are derived 

from WM fibre orientation distributions (FODs) as computed by constrained spherical deconvolution 

(CSD) techniques (Tournier et al., 2007; Jeurissen et al., 2014; Dhollander & Connelly, 2016). A 

corresponding fixel-wise measure of apparent fibre density (Raffelt et al., 2012b), more broadly 

                  



referred to as “fibre density” (FD), can be computed directly from the FODs themselves as well 

(Raffelt et al., 2015). Apparent FD is a measure of white matter microstructure: its value is 

approximately proportional to total intra-axonal volume under certain conditions (Raffelt et al., 

2012b; Genc et al., 2020a). Interestingly, macroscopic differences of fibre-bundle cross-section (FC) 

(Raffelt et al., 2017) can also be measured on a fixel-wise level by leveraging information from 

individual subject warps to a common template space, effectively resulting in the fixel-wise 

equivalent of the traditional tensor-based morphometry (TBM) (Ashburner & Friston, 2000) 

approach. Finally, the fixel-wise analysis of a combined fibre density and cross-section (FDC) (Raffelt 

et al., 2017) measure leads to an approach very similar to the well-known voxel-based morphometry 

(VBM) (Ashburner & Friston, 2000) method. Using this entire range of techniques to its full potential 

for the first time, an example FBA study was presented in Raffelt et al. 2017, comparing a clinical 

group of patients with temporal lobe epilepsy to healthy controls. This revealed statistically 

significant reductions in both apparent FD and FC in fibre pathways of the affected temporal lobe in 

patients as compared to controls. Furthermore, the combined FDC measure enabled a more 

sensitive assessment of fixel-wise effects, with greater effect sizes detected than when testing 

apparent FD or FC alone. The core tools to implement such FBA studies (Raffelt et al., 2015, 2017) 

have been made available as part of the MRtrix3 software package (Tournier et al., 2019). Since the 

original description of the FBA framework, several FBA studies have been undertaken, with a 

particular surge in published studies in the most recent years (as can be appreciated in Figure 1). 

Despite this quickly emerging base of recent empirical work, the scope and methodological aspects 

of the FBA framework have not been critically reviewed yet. 

 

 

Figure 1: number of fixel-based analysis (FBA) studies per year. When both a preprint as well as a subsequent 

peer reviewed publication exist for a given study, this was only counted once (towards the year of publication 

of the peer reviewed work). Incomplete data for 2021 are not included in this plot. However, we found an 

                  



additional 17 FBA studies in the first two months of 2021, resulting in a total of 75 published FBA studies (see 

Supplementary Document 2). 

 

In this work, we review the FBA framework. We (1) provide an overview of the main concepts 

related to the FBA framework and describe the methods and specific steps involved in modern FBA 

pipelines, (2) include an overview of the scope of all current FBA studies, categorised across a broad 

range of neuroscientific domains and (3) critically discuss a range of aspects and challenges involved 

with the FBA framework and its various applications. 

Fixel-based Analysis (FBA): Concepts and Methods 

In this section, we provide an overview of the main concepts and methods of the FBA framework, 

and specific steps involved in a state-of-the-art fixel-based analysis (FBA) pipeline. While the FBA 

framework is unique in that it allows researchers to investigate fibre-specific properties extracted 

from diffusion MRI (dMRI) data, the pipeline otherwise relatively closely reflects the structure of a 

“traditional” voxel-based analysis (VBA) pipeline. Conceptually, the core difference lies in the 

introduction of a new type of grid element, the “fixel”, which refers to a specific individual fibre 

population within a voxel. While this may seem like a relatively simple and straightforward 

adaptation of VBA at first sight, working with fixels (and fibre orientation distributions, from which 

fixels are typically derived) rather than voxels poses various unique challenges for some of the key 

steps of a typical standard VBA pipeline. A range of works have proposed and implemented specific 

solutions to address these challenges (Raffelt et al., 2011, 2012a, 2012b, 2015, 2017), which has 

resulted in the current FBA framework. 

From voxels to fixels 

In a VBA approach, image values are analysed on a voxel-wise basis. To this end, individual subject 

images are spatially registered and warped to a common template space. Because the voxel grid for 

which the original image values are sampled is a discrete regular lattice, warping images to a 

template space requires regridding of the images to a new (common) voxel grid. This is however 

trivially enabled by various interpolation methods, which allow to sample the original image values 

for any set of 3D spatial coordinates. This then establishes spatial correspondence between voxels 

across all subject images after warping to and regridding in template space, allowing for direct 

comparison and statistical analysis at a voxel-specific level without requiring any spatial hypothesis a 

priori. Region-of-interest (ROI) type of analyses can benefit from this approach as well, as ROIs can 

be defined just once on the template for areas where image registration has aligned all images with 

sufficient accuracy. 

The FBA framework is centered around the concept of a fixel, a specific fibre population within a 

voxel (Raffelt et al., 2015), enabling analysis of individual fibre-specific properties in the presence of 

crossing fibre populations. In addition to a 3D position in the spatial domain, fixels also have a (2D) 

orientation in the angular domain. While fixels are an adequate choice of grid element for the 

purpose of mapping fibre-specific metrics, they are fundamentally different from voxels in the 

                  



context of image processing: the fixel “grid” is derived directly from modelling of the dMRI data 

themselves in each voxel (Raffelt et al., 2015). This has several notable implications (Raffelt et al., 

2015, 2017): 

1. Unlike voxels—which cover the entire spatial domain at regular positions independently of 

what is represented in the image data—the fixels’ presence and orientation is directly tied to 

white matter (WM) anatomy, as shown in Figure 2. In the angular domain, fixels can have any 

orientation. In the spatial domain, fixel positions are still limited to the discrete positions of 

an underlying voxel grid. However, fixels do not exist everywhere in space: some voxels 

contain no fixels. On the other hand, some fixels share the same space: some voxels contain 

multiple fixels. 

2. Because fixel orientations are linked to the WM anatomy and obtained from the image data 

themselves, spatial transformations of fixel-wise image data require corresponding 

reorientations of the fixels, i.e., spatial transformations imply angular transformations. For 

non-rigid transformations, these reorientations can differ for fixels in different voxels and 

even for individual fixels contained in the same voxel: the angles between fixels in the same 

voxel can change. On the upside, because fixels can have any orientation, no regridding is 

required in the angular domain: the local (forward) angular transformation can be applied 

directly to the fixel orientation. 

3. Even though the spatial positions of fixels are still restricted to those of an underlying voxel 

grid, the spatial regridding required for image transformation cannot be trivially overcome by 

interpolation methods in the same way as for voxel-wise image data: there is no implied 

notion of which fixels in neighbouring voxels “belong together”. This is made even more clear 

(and challenging) by the fact that neighbouring voxels can contain different numbers of fixels, 

and some voxels contain no fixels at all. Put differently, the fixel grid does not exist 

consistently throughout the spatial domain. 

4. Even if the spatial regridding problem would be overcome (and proper fixel reorientation be 

applied) to map individual subject fixel images to a common template space, this still does 

not establish fixel-wise correspondence across all subject images. Even though the images 

should align up to the accuracy of image registration and the voxel grid is shared, the fixel 

grids’ local presence and orientations still relate to the individual subjects’ anatomy. 

Establishing a common fixel grid is a unique challenge in and of itself. 

5. Finally, for the purpose of statistics, VBA typically relies on spatial smoothing (e.g., to boost 

signal-to-noise ratio and increase normality of residuals) and statistical cluster enhancement 

(to improve sensitivity). Both of these require a notion of local voxel neighbourhoods. While 

defining an equivalent concept for fixels poses yet another challenge, this also provides a 

unique opportunity: a cluster of fixels in a local part of a given WM tract could be in a 

neighbourhood entirely separated from the fixels of another crossing tract, even when these 

tracts overlap spatially (i.e., share voxels). 

Overall, while a fixel grid is a logical and sensible extension of a voxel grid, it is clearly not a trivial 

one. The FBA framework provides solutions to the above challenges. All FBA studies to date have 

relied on WM fibre orientation distributions (FODs) from which both fixels and fixel-wise metrics are 

                  



derived (Raffelt et al., 2015). In this context, an FBA pipeline “circumvents” the challenges related to 

points 1 and 3 above by delaying the computation of fixels from (voxel-wise) FODs until after the 

registration, warping and regridding of subject FOD images to the common template space (Raffelt 

et al., 2011, 2012a, 2015). While point 2 (reorientation) conceptually goes hand in hand with point 3 

(spatial regridding), it is then in practice separated and performed after fixels are derived in template 

space (Raffelt et al., 2017). Finally, for points 4 and 5, unique strategies are implemented (Raffelt et 

al., 2015). A common fixel grid is derived from an average FOD template and angular 

correspondence of subject fixels to the common fixel grid is established by identifying subject fixels 

within a certain angular threshold. Fixel neighbourhoods are locally derived by computing 

connectivity between fixels, informed by template-based streamline tractography. All these steps 

and solutions are evident in the structure of the state-of-the-art FBA pipeline as described below. 

 

 

Figure 2: derivation of a fixel “grid” and fixel-wise apparent fibre density (FD). Left: voxel-wise WM FODs (here 

obtained from 3-tissue CSD) serve as the source from which both the fixel grid and fixel-wise apparent FD 

metric are computed. In this image, WM FODs in a coronal slice are overlaid on an FOD-based directionally-

encoded colour map (Dhollander et al., 2015) (red = mediolateral, green = anteroposterior, blue = 

superoinferior). Middle: the fixels are obtained by segmenting the FODs into their individual “peaks”. Unlike 

the regular lattice structure of the underlying voxel grid, the fixel grid’s presence and orientations are tied to 

the WM anatomy itself. Right: apparent fibre density (FD), a fixel-wise metric, is computed as the integral of 

each FOD lobe (hot colour scale). The underlying voxel intensities show the total voxel-wise apparent FD (grey 

colour scale). Both fixel-wise and voxel-wise apparent fibre densities are expressed in arbitrary units. 

 

                  



Fixel-wise metrics and apparent fibre density 

In voxel-wise MRI data, the measurement(s) for each voxel relate to underlying properties of tissue 

within the volume of the voxel. The same holds for fixel-wise data. However, the presence of multiple 

fixels in a voxel allows an individual specific fixel-wise metric to relate to only part of the contents of 

the voxel. The specific location of these fixel-wise compartments within the voxel is typically not 

known, due to the partial volume effect. Rather, fixel-wise metrics relate to properties of the 

population of fibres along or close to the orientation of the fixel. WM axons of different crossing fibre 

populations might for instance even interdigitate within the voxel. 

Fixel-wise metrics can be obtained from advanced dMRI models. Some dMRI models or signal 

representations only estimate voxel-averaged properties: e.g., the tensor from DTI allows for the 

extraction of a single principal orientation of diffusion, and voxel-wise metrics such as FA and MD 

can be calculated (Basser & Pierpaoli, 1996). Other (typically multi-compartment) models represent 

fixels explicitly, along with corresponding fixel-wise metrics: e.g., the CHARMED model includes 

separate compartments for individual fibre populations and estimates a signal fraction for each of 

these (Assaf & Basser, 2005). Note that not all multi-compartment models are necessarily multi-fibre 

models: e.g., the NODDI model has a single intra- and extra-cellular compartment (both relating to 

only a single fibre population), as well as an isotropic free-water compartment, and yields voxel-

averaged measures of neurite density and orientational dispersion (Zhang et al., 2012). 

All FBA studies to date have relied on CSD techniques (Tournier et al., 2007; Jeurissen et al., 2014; 

Dhollander & Connelly, 2016); these estimate a WM FOD in each voxel, and some additionally 

estimate separate grey matter (GM) and cerebrospinal fluid (CSF) signal compartments. The WM 

FOD as obtained from these techniques is a free-form continuous angular function, i.e., it does not 

explicitly represent fixels and fixel-wise metrics. However, the FOD typically shows an angular 

contrast with several “peaks” clearly relating to individual fibre populations. In a quantitative 

context, the amplitude of the WM FOD is referred to as the apparent fibre density (AFD) (Raffelt et 

al., 2012b). The AFD along a given orientation of the WM FOD is mostly proportional to the dMRI 

signal perpendicular to it. Hence, the AFD is approximately proportional to the total amount of intra-

cellular volume of axons along this orientation under certain conditions, including a sufficiently long 

diffusion gradient pulse duration (e.g., ≥ 30 ms), a relatively high b-value (e.g., ≥ 3000 s/mm²) and for 

a certain scale of microstructural features (e.g., axon diameters ≤ 6 μm) (Raffelt et al., 2012b). 

Recent findings have demonstrated that the accuracy and specificity of AFD can be improved by 

using higher b-values and single-shell data (as opposed to multi-shell data, which includes lower b-

values), as these choices help to suppress extra-axonal signal (Genc et al., 2020a) (see also the later 

section on “Requirements and effects of acquisition parameters” for an in-depth discussion on this 

topic). 

In the FBA framework, fixels are derived directly from the WM FODs themselves by segmenting each 

FOD “lobe” (this refers to the shape of the FOD peaks when visualised by radial scaling of 

amplitudes) (Raffelt et al., 2015), as shown in Figure 2. The fixel-wise total AFD is obtained by 

integrating the AFD values across the corresponding lobe. The final fixel-wise metric is often referred 

to more broadly as “fibre density” (FD) (Raffelt et al., 2017). Because the apparent FD is 

approximately proportional to the total intra-cellular volume of axons within the voxel (and along 

                  



the fixel), it can not distinguish between effects specific to axon count or axon diameter(s): both 

factor into the apparent FD metric. Also note that apparent FD is largely not sensitive to myelin, as 

myelin-associated water has a very short T2 relaxation time and therefore contributes little to the 

dMRI signal (Raffelt et al., 2012b). Finally, signal related to other non-WM tissues, cells and fluids can 

be teased out from the WM FOD to render the apparent FD more specific to WM only, by using 3-

tissue CSD techniques such as multi-shell multi-tissue CSD (MSMT-CSD) (Jeurissen et al., 2014) and 

single-shell 3-tissue CSD (SS3T-CSD) (Dhollander & Connelly, 2016). 

While apparent FD is approximately (linearly) proportional to intra-axonal volume, it doesn’t provide 

a direct absolute or standardised volume measurement of it. CSD techniques in this context are 

applied to the dMRI signal without voxel-wise normalisation by the b=0 image (Raffelt et al., 2012b), 

unlike most other dMRI modelling techniques. Not only is apparent FD expressed in arbitrary units, it 

also requires correction for spatial intensity inhomogeneities (bias fields) of the dMRI data as well as 

some form of global intensity normalisation to render it comparable between different subjects 

within a study (Raffelt et al., 2012b, 2017; Dhollander et al., 2021). This is in addition to using the 

same acquisition hardware and parameters throughout any given study, as well as using a single 

common study-specific response function (per tissue) with the CSD method for all subjects to be 

compared (as reflected in relevant steps of the pipeline; see also Figure 3). 

Fixel-based Analysis pipeline 

Even though the basic components enabling the FBA framework were fully established earlier 

(Raffelt et al., 2015, 2017), the implementation of various FBA studies has since been improved due 

to the introduction of new techniques related to preprocessing and dMRI signal modelling. Of 

particular note in this context is the introduction of 3-tissue CSD techniques, which can estimate GM 

and CSF signal compartments in addition to the WM FOD (Jeurissen et al., 2014; Dhollander & 

Connelly, 2016). Other than an increased specificity of the WM FOD, it also enables a more robust 

approach to global intensity normalisation and bias field correction. The latter is then informed by 

and performed on the 3-tissue CSD derived signal compartments themselves (Dhollander et al., 

2021), rather than as a “preprocessing” step on the original dMRI data. This practice and the 

accompanying structure of the (preprocessing) pipeline have been adopted across recent FBA 

studies, as 3-tissue CSD processing has become possible for both multi-shell as well as single-shell 

dMRI data since the introduction of the SS3T-CSD method (Dhollander & Connelly, 2016). 

As mentioned, the FBA pipeline otherwise closely reflects the overall structure of a “traditional” VBA 

pipeline. Compared to VBA, most additional steps relate to either dMRI-specific preprocessing earlier 

on in the pipeline, and specific solutions to deal with the challenges of fixels and fixel-wise metrics 

later in the pipeline. The information of local deformations obtained from the spatial warps of 

subject images to template space can be used in a fixel-wise fashion as well. This yields the fixel-

based equivalents of tensor-based morphometry (TBM) via computation of the fixel-wise “fibre-

bundle cross-section” (FC), and voxel-based morphometry (VBM) (Ashburner & Friston, 2000) by 

combining FD and FC into “fibre density and cross-section” (FDC) (Raffelt et al., 2017). The core tools 

to run the FBA pipeline (Raffelt et al., 2017) have been made available as part of the MRtrix3 

software package (Tournier et al., 2019; https://www.mrtrix.org); and are often complemented with 

other tools, e.g., for motion and distortion corrections (Jenkinson et al., 2012; 

                  



https://fsl.fmrib.ox.ac.uk/fsl/) or SS3T-CSD (https://3tissue.github.io). A schematic overview of all 

steps, their relationships and the overall flow of the pipeline is provided in Figure 3. In 

Supplementary Document 1, we describe each step with a focus on its purpose, interpretation, and 

practical aspects for consideration by researchers, and we list additional software resources. 

[INSERT INLINE SUPPLEMENTARY DOCUMENT 1 HERE] 

Ultimately, the FBA pipeline yields fixel-wise statistical results and a specific p-value is assigned to 

each individual fixel (even in the presence of multiple different fixels in the same voxel). Figure 4 

shows a typical result using some of the most common visualisation techniques typically relied upon 

in published FBA studies. Notably, all these visualisations present the exact same fixel-wise result. 

While the cropped streamlines tractogram visualisation is more convenient to observe and explore 

the result as a whole, it otherwise still only shows those areas where individual fixels effectively 

reached a threshold for statistical significance. However, it’s not surprising that FBA results often 

feature some anatomical “continuity” or a pattern of “clusteredness”. On the one hand, for a range 

of biological mechanisms it makes sense that larger parts of WM tracts would be involved or 

affected, but on the other hand this is also promoted inherently in the FBA framework itself, e.g., by 

connectivity-based fixel-wise smoothing and the connectivity-based fixel enhancement (CFE) 

mechanism (Raffelt et al., 2015). 

 

                  



 

Figure 3: the FBA pipeline reflects the general structure of a VBA pipeline, but with many additional steps to 

appropriately process dMRI data (red boxes), FOD images (blue boxes) and fixel-wise image data (gold boxes). 

The left column shows the main flow of the pipeline. The FBA framework avoids problems related to spatial 

interpolation of fixel-wise image data by warping FOD images to template space instead, and delaying 

definition of fixels to a later stage in the pipeline. In the right columns, each box names a processing step and 

its resulting output. Subject-level steps are performed once per individual subject image in the study, whereas 

study-level steps are computed only once for the entire study. All steps are described in detail in 

Supplementary Document 1. Apart from the introduction of 3-tissue CSD techniques and log-domain intensity 

normalisation, this pipeline matches all steps described originally (Raffelt et al., 2017). It is also broadly in line 

with the online documentation provided with the MRtrix3 software (Tournier et al., 2019). 

 

                  



 

Figure 4: common visualisations of FBA results (these all depict the same result from one of the analyses in 

Mito et al. (2018), whereby a cohort of Alzheimer’s disease patients was tested for FDC decreases compared 

to healthy control subjects). Panel A: direct visualisation of the fixel-wise statistical results by colouring each 

fixel according to its p-value. Due to the particular choice of the (hot colour) scale bar limits, fixels with p < 

0.05 are highlighted, whereas others are black. Panel B: the same result is visualised by cropping a whole-

brain streamlines tractogram. Parts of streamlines are only shown when they intersect voxels containing fixels 

with p < 0.05, while running along an orientation close to those fixels. Colouring here was chosen similar to 

Panel A to highlight that this is merely a different visualisation of the same result. Panel C: the benefit of the 

streamlines visualisation of an FBA result is that it more easily allows to identify larger continuous patterns in 

the result, e.g., relating to known anatomy of WM tracts. Here, the cropped streamlines visualisation is shown 

in 3D for the whole brain (augmented by a glass brain volume). The researchers have additionally labelled the 

streamlines via targeted tractography approaches based on prior knowledge of WM tract anatomy. 

                  



FBA studies: Applications 

We have performed a systematic search to retrieve all currently published FBA application studies, as 

defined and detailed in Supplementary Document 2. Note we also included research preprints with 

the intention of more exhaustively sampling the current scope of applications. Since the introduction 

of the FBA framework, 75 FBA studies (66 peer-reviewed, 9 preprints) have been published. The 

adoption of the FBA framework has seen a stark increase over time (Figure 1). 

[INSERT INLINE SUPPLEMENTARY DOCUMENT 2 HERE] 

For convenience, we categorised all 75 FBA studies as follows: healthy ageing and healthy adults 

(Adab et al., 2020; Choy et al., 2020; Honnedevasthana Arun et al., 2021; Kelley et al., 2019; Kelley et 

al., 2021; Mizuguchi et al., 2019; Park et al., 2021; Radhakrishnan et al., 2020; Verhelst et al., 2021), 

typical and atypical childhood development (Barendse et al., 2020; Bleker et al., 2019; Bleker et al., 

2020; Blommaert et al., 2020; Burley et al., 2021; Chahal et al., 2021a; Chahal et al., 2021b; Dimond 

et al., 2019; Dimond et al., 2020; Fuelscher et al., 2021; Genc et al., 2017; Genc et al., 2018; Genc et 

al., 2020a; Genc et al., 2020b; Grazioplene et al., 2020; Hyde et al., 2021; Kirkovski et al., 2020; Lugo-

Candelas et al., 2020), fetal and neonatal development (Kelly et al., 2018; Kelly et al., 2020; Malhotra 

et al., 2019; Pannek et al., 2018; Pannek et al., 2020; Pecheva et al., 2019; Wu et al., 2020), 

psychiatric disorders (Grazioplene et al., 2018; Lyon et al., 2019), neurodegenerative and 

demyelinating disorders (Adanyeguh et al., 2018; Adanyeguh et al., 2021; Al-Amin et al., 2020; 

Boonstra et al., 2020; Carandini et al., 2021; Gajamange et al., 2018; Janssen et al., 2020; Li et al., 

2020; Luo et al., 2020; Mito et al., 2018; Palmer et al., 2021; Park et al., 2020; Raffelt et al., 2015; Rau 

et al., 2019; Sakamoto et al., 2020; Sanchez et al., 2020; Savard et al., 2020; Storelli et al., 2020; 

Wang et al., 2020; Xiao et al., 2021; Zarkali et al., 2020; Zarkali et al., 2021; Zeun et al., 2021), brain 

injury and insult (Egorova et al., 2020; Fekonja et al., 2021; Friedman et al., 2019; Gottlieb et al., 

2020; Verhelst et al., 2019; Wallace et al., 2020; Zamani et al., 2021), epilepsy (Bauer et al., 2020; 

Raffelt et al., 2017; Vaughan et al., 2017), and other disorders (Bishop et al., 2018; Haykal et al., 

2019; Haykal et al., 2020; Mu et al., 2018; Sleurs et al., 2018; Zanin et al., 2020). 

We summarised the main results and conclusions of each study in Supplementary Document 3. 

Finally, we also documented all key study parameters and outcomes in a comprehensive overview in 

Supplementary Document 4. 

[INSERT INLINE SUPPLEMENTARY DOCUMENT 3 HERE] 

[INSERT INLINE SUPPLEMENTARY DOCUMENT 4 HERE] 

                  



Discussion: Challenges and Opportunities 

FBA and other dMRI analysis strategies 

FBA is one amongst a range of techniques which have been used to assess and analyse white matter 

microstructure. Diffusion MRI data is also commonly analysed using voxel-based analysis (VBA) of 

various metrics derived from different diffusion and microstructure models. Another popular 

analysis framework developed specifically for dMRI data is tract-based spatial statistics (TBSS) (Smith 

et al., 2006). The majority of studies applying either VBA or TBSS on dMRI data have focused on 

metrics derived from diffusion tensor imaging (DTI) (Basser & Pierpaoli, 1996), or more recently the 

neurite orientation dispersion and density imaging (NODDI) microstructure model (Zhang et al 2012). 

Of note is that several FBA studies themselves have also additionally included results based on DTI-

derived metrics, e.g., fractional anisotropy (FA): of all 75 FBA studies we included for this review, 33 

studies (44%) included additional DTI-based results via either VBA, TBSS and/or region of interest 

based analyses. Given limitations of the DTI model and problems with interpretation of derived 

metrics (Figure 5), it is somewhat surprising to see such results are still included quite often. One 

explanation might be the desire to more directly relate findings to previous studies in the same 

application area (e.g., similar clinical groups), where their conclusions typically did rely solely on DTI-

based findings. In some cases, these studies combined and directly compared FBA and DTI findings, 

for instance exhibiting larger effect sizes using the FBA framework compared to analyses based on 

DTI results (Adanyeguh et al., 2018). Others reported lower sensitivity of voxel-wise DTI metrics in 

detecting group-wise differences when compared to fibre-specific FBA results, particularly in 

crossing-fibre regions (Raffelt et al., 2015; Gajamange et al., 2018; Mito et al., 2018; Zarkali et al., 

2020). In another study, almost no overlap between significant voxel-wise DTI and fixel-wise FBA 

findings was found (Lyon et al., 2019), which is quite remarkable. Understanding these discrepancies 

remains an ongoing challenge. Their impact is relevant, as it confounds which WM structures are 

reported to be associated to specific conditions in the literature over time. 

FBA offers two key advantages over alternative dMRI analysis techniques: sensitisation to 

microstructure-specific properties independent of local fibre geometry, and specificity  of the 

analysis and results with respect to individual fibe-specific effects. While DTI metrics have proven to 

be sensitive to certain changes of white matter microstructural properties, they are inherently non-

specific to axonal properties, and conflated by extra-axonal signal contamination as well as various 

aspects of fibre geometry (e.g., crossing fibres, dispersion, etc.), rendering biophysical 

interpretations challenging, non-intuitive or even misleading (Jones et al. 2013; Bach et al. 2014; 

Beaulieu 2009). The example in Figure 5 illustrates how a genuine decrease of fibre density (FD) in 

presence of crossing fibre populations might for instance result in an increase of FA as derived from 

DTI. Typical studies of, e.g., neurodegeneration, based on DTI might not even recover such regions as 

only decreases of FA would often be hypothesised and tested for. But even when tested and 

recovered, such an effect would be counter-intuitive. Some FBA studies have incorporated DTI 

analyses to highlight these issues in areas with crossing fibres. Grazioplene et al. (2018) 

demonstrated in a schizophrenia cohort that significant group differences of FA substantially 

                  



overlapped with regions containing complex fibre architecture: they conclude that DTI findings could 

be lacking in specificity due to macrostructural complexity and thus may not necessarily reflect group 

differences in microstructural properties. Mito et al. (2018) recovered regions of increased FA in 

crossing fibre regions in Alzheimer’s disease patients, and explicitly demonstrated these to be 

misleading findings reflecting inherent issues of voxel-wise FA values. 

 

 

Figure 5: a fibre-specific decrease of apparent FD resulting in a DTI-based increase of FA, in a voxel containing 

crossing fibres (adapted with permission from Mito et al., 2018). The example depicts a voxel in the centrum 

semiovale, where the corticospinal tract, (lateral projections of) the corpus callosum and the superior 

longitudinal fasciculus (SLF) cross. Patients show a fixel-specific decrease of apparent FD in the SLF, with both 

other tracts unaffected. DTI-based analysis will yield a counterintuitive result in this scenario, whereby the FA 

is increased in such voxels. Such a change might go undetected (when increases of FA are not tested for), 

could be misinterpreted (as if a certain aspect of WM microstructure has “improved”), and cannot be 

attributed to any specific individual fibre population or combinations thereof due to lack of fibre-specificity. 

Finally, note this change has even impacted on the diffusion tensor’s main orientation, whereas no individual 

WM tract orientations had in reality been affected. 

 

Alternative multi-compartment methods, such as neurite orientation dispersion and density imaging 

(NODDI) (Zhang et al., 2012) have been proposed to quantify white matter microstructural 

properties with greater specificity to intra-cellular properties, and separate these from effects due to 

geometry. For example, NODDI incorporates a separate parameter for orientational dispersion of the 

neurite distribution, independently of (the magnitude of) neurite density. In DTI, on the other hand, 

both such effects are “entangled” in the FA metric, leading to the aforementioned problems. 

However, another distinct advantage of FBA is its ability to analyse individual fibre-specific 

properties separately, whereas VBA approaches are inherently unable to assign significant effects to 

specific fibre populations due to partial voluming. Even when models (such as NODDI) do address 

and disentangle certain fibre geometry confounds, they do not per se model individual fibre 

populations. For example, while NODDI does account for dispersion, it does not define this for 

separate fibre populations within a voxel. Hence, genuine fibre crossing configurations are fitted as a 

                  



single population with a large amount of dispersion, and neurite density is not separately quantified 

for crossing neurite populations. 

Some researchers might be interested in comparing results directly between or across different 

analysis frameworks and dMRI models. While the improved specificity of FBA relative to other voxel-

based analysis approaches has been well documented, it is typically difficult to relate the nature of 

the effects of the various other voxel-wise diffusion metrics to a given fibre-specific effect. Individual 

studies relying on different clinical populations, acquisition parameters, and image processing steps 

only add further to the complexity of such direct comparisons. Therefore we would generally caution 

users against attempting to infer intuitive or even complex relationships between results, as the lack 

of specificity of voxel-based approaches and models renders this theoretically impossible without 

strong assumptions. 

The aforementioned tract-based spatial statistics (TBSS) framework (Smith et al., 2006) constitutes 

another popular approach to analyse voxel-wise metrics (e.g., derived from DTI or NODDI). In the 

context of this review and the topic of fixel-specificity, to avoid confusion on the TBSS naming (in 

particular the term “tract-based”): this is effectively a voxel-based technique. The problems with VBA 

that TBSS aims to address are of an entirely different nature: they relate to challenges with 

alignment of subject images (due to limited precision and accuracy of image registration techniques) 

as well as the dependence of VBA on an arbitrary amount of smoothing (which does impact strongly 

on the result) (Smith et al., 2006). To put it differently: TBSS mostly addresses existing problems of 

VBA related to establishing voxel-wise correspondence between images. While FBA also implements 

a bespoke strategy towards establishing correspondence between subject data, this is rather to 

tackle new challenges introduced by the nature of fixels (see also the earlier section “From voxels to 

fixels”). Interestingly, the challenges addressed by TBSS do remain largely present for FBA in 

principle. However, due to the incorporation of FOD-based population template construction and 

registration in the pipeline, image alignment is expected to be more accurate in the first place 

(Raffelt et al., 2011, 2012a). We provide a general overview comparing the key defining aspects of 

the VBA (also covering TBM and VBM), TBSS and FBA approaches towards analysis in Table 1. For 

specific details on TBSS, we refer the reader to Smith et al. (2006) and Smith et al. (2007). All relevant 

details on the FBA framework are provided in the earlier section “Fixel-based Analysis pipeline” and 

Supplementary Document 1. 

                  



 

 Voxel-based analysis 
(VBA) 

Tract-based spatial 
statistics (TBSS) 

Fixel-based analysis 
(FBA) 

Domain of 
analysis 

Entire voxel grid 
within the brain. 

Only voxels on a mean 
(template) FA 
“skeleton”. 

Entire fixel grid: mostly 
WM, some (sub)cortical 
GM. 

Specificity Voxel-level (spatial) 
specificity. 

Voxel-level specificity; 
limited to the mean FA 
skeleton. 

Fixel-level specificity for 
individual fixels in a 
voxel. 

Alignment & 
correspondence 

Image registration to 
a common template 
space and spatial 
interpolation. 

Image registration to a 
common template space. 
 
Thinning of FA template 
to obtain a mean FA 
skeleton. 
 
Project maximum 
subject FA value 
perpendicular to mean 
FA skeleton onto the 
skeleton voxels. 

FOD-based image 
registration to a 
common FOD template. 
 
Segmentation of 
template fixels and 
subject fixels. 
 
Bespoke fixel 
correspondence criteria 
to assign reoriented 
subject fixels to template 
fixels. 

Statistics Correction for a large 
number of 
comparisons. 
 
Spatial smoothing 
and threshold-free 
cluster enhancement 
(TFCE). 

Correction for a reduced 
number of comparisons 
(less voxels on the FA 
skeleton). 

Correction for a very 
large number of 
comparisons (typically 
more fixels than voxels). 
 
Connectivity-based fixel-
wise smoothing and 
connectivity-based fixel 
enhancement (CFE). 

Table 1: Comparison of key defining aspects of voxel-based analysis (VBA), tract-based spatial statistics (TBSS) 

and fixel-based analysis (FBA). Note that tensor-based morphometry (TBM) and voxel-based morphometry 

(VBM) are regarded as a type of VBA in this context. 

 

Finally, as mentioned in the earlier section “Fixel-wise metrics and apparent fibre density”, other 

diffusion modelling and parameter estimation techniques can also yield fixel-wise measures. The 

CHARMED model estimates signal fractions for individual fibre populations in a voxel (Assaf & Basser, 

2005). Another example is the “Bayesian estimation of diffusion parameters obtained using sampling 

techniques with modelling of crossing fibres” (BEDPOSTX) technique (Behrens et al., 2007; Jbabdi et 

al., 2012), which similarly estimates fixel-wise parameters. The key difference with CSD techniques is 

that the aforementioned methods compute fixel-wise metrics directly from the dMRI data, whereas 

CSD techniques yield a free-form continuous FOD first, from which fixels are obtained later on in the 

                  



FBA pipeline (see Figure 2 for an illustration of fixel derivation from FODs, and Figure 3 for the order 

of these steps in the pipeline). This effectively makes it possible to analyse fibre-specific parameters 

obtained from other estimation strategies such as CHARMED or BEDPOSTX using the FBA framework. 

However, since the CSD-based FBA pipeline implements the transition from subject space to 

template space by warping FOD images to avoid the problems associated with spatial interpolation 

of fixel-wise data, a few adjustments have to be made to achieve this (Raffelt et al., 2017). Such a 

pipeline should warp the (preprocessed) dMRI data themselves directly to template space (without 

reorientation). Obtaining the fixels and their orientations as well as the fixel-wise parameters (e.g., 

applying CHARMED or BEDPOSTX) should then be performed in template space, after which fixels 

can be reoriented similarly to the original pipeline (Figure 3). A solution would also have to be 

implemented for deriving a common fixel analysis mask. Note that for this purpose, FODs obtained 

from a CSD technique could still be relied upon to build a study-specific FOD template from which a 

fixel analysis mask can be derived. However, the final fixel-wise statistics would be performed 

directly on the parameters derived from the other dMRI modelling technique (e.g., CHARMED or 

BEDPOSTX). 

Requirements and effects of acquisition parameters 

Since the main goal of FBA is to investigate fibre-specific effects, resolving individual crossing fibres 

in the first place is of course essential. In this context, so-called “high angular resolution diffusion 

imaging” (HARDI) gradient schemes are commonly employed to collect dMRI data (Tuch et al., 2002). 

As the name suggests, HARDI schemes are designed to acquire images for a large number of 

diffusion gradient directions, uniformly distributed over the angular domain, and typically at a 

constant amount of diffusion-weighting (i.e., a specific b-value, referred to as a “shell”). Hence, with 

the capacity to resolve crossing fibres in mind, two key parameters are to be considered: the number 

of diffusion gradient directions and the b-value. 

Tournier et al. (2013) have systematically investigated the required number of gradient directions to 

capture the angular contrast of dMRI data for a range of b-values, up to b = 5000 s/mm². Generally, 

while the signal (and thus also the signal-to-noise ratio (SNR)) of dMRI data decreases for higher b-

values, the angular contrast increases with b-value. However, higher angular contrast implies higher 

angular frequencies of the signal, thus also increasing the required number of gradient directions to 

capture all features of this signal well. Tournier et al. (2013) confirmed this by investigating the 

angular frequency content of the signal via a spherical harmonics (SH) representation (the angular 

equivalent of a Fourier basis). Specifically, they found that terms beyond an SH order of 8 were 

negligible for all b-values up to b = 5000 s/mm². In their b-value sampling range, the trend of 

requiring higher SH orders also levelled off around b = 3000 s/mm². The mathematical equivalent to 

sample an order 8 SH signal equals 45 diffusion gradient directions. What these results thus suggest 

is that 45 directions constitutes a sufficient HARDI sampling to capture all features in the signal, and 

that those features themselves don’t manifest much stronger beyond b = 3000 s/mm² (at least in the 

range up to b = 5000 s/mm²). 

However, in practice it might still be desirable to acquire data for more than 45 gradient directions: 

SNR at high b-values is typically very low, and hence more data points are useful for a robust fit of 

various models. On the other hand—and often overlooked—when resolving the WM FOD using a 

                  



CSD method, the non-negativity constraint on the FOD amplitude also “injects” information into the 

model fitting process, an inherent effect referred to as “super-resolved” CSD (Tournier et al., 2007). 

This effect is substantial for most FODs throughout the WM, as these are typically very sparse in the 

angular domain (i.e., large parts of the angular domain have zero FOD amplitude). In practice, this 

means reasonable quality WM FODs can be resolved with even less than 45 gradient directions 

sampled. How far this can be stretched reliably is hard to determine though, and the exact extent of 

it would also depend on the local fibre configuration (i.e., the sparsity of the FOD). In light of this and 

the aforementioned contribution of more images to the overall SNR, 45 gradient directions can still 

reasonably be argued to be a good (minimum) target to aim for when designing a HARDI protocol for 

the purpose of FBA. Of the 75 FBA studies we included, 66 studies (88%) used data with 45 gradient 

or more gradient directions (for the highest b-value), whereas 6 studies (8%) still managed to run 

FBA with 30 or less gradient directions (for the highest b-value). Overall, HARDI gradient schemes 

appear to be well adopted in practice. 

While both the number of diffusion gradient directions and the b-value thus have an impact on the 

overall qualitative aspects of the WM FODs, several FBA studies using a low number of gradient 

directions and/or low b-values have still yielded fairly encouraging results, which demonstrates that 

FBA is effectively feasible for such data as well as sensitive to significant effects. FBA is certainly 

technically compatible with a range of angular resolutions and b-values, as these parameters do not 

preclude any preprocessing steps, 3-tissue CSD reconstruction (using either MSMT-CSD or SS3T-CSD), 

intensity normalisation, template construction, fixel segmentation and reorientation, or any other 

steps in a state-of-the-art FBA pipeline (see also the earlier section “Fixel-based Analysis pipeline” 

and Supplementary Document 1). 

However, the main caveat lies in the interpretation of the apparent FD metric (see also the earlier 

section “Fixel-wise metrics and apparent fibre density”). At a sufficiently high b-value, e.g., b = 3000 

s/mm² or similar, increased specificity to the intra-axonal water signal results in more accurate 

measures of apparent fibre density that are approximately proportional to the total amount of intra-

cellular volume of axons under certain conditions (Raffelt et al., 2012b; Genc et al., 2020a). This is 

achieved due to the strong attenuation of extra-axonal water signals at such high b-values. At lower 

b-values, such as those commonly acquired for DTI processing (e.g., b = 1000 s/mm² or similar), 

signals from the extra-cellular space outside the axons will contribute to the apparent FD metric, 

undermining the intended definition of the latter and thus rendering biological interpretation 

challenging and fundamentally limited. For example, a clinical patient group may experience 

substantial changes to the extra-cellular architecture, which would be artificially reflected as a 

(group) difference in apparent FD. Furthermore, effective differences in apparent FD due to actual 

changes of intra-axonal volume are likely to induce concomitant changes to the extra-cellular volume 

and architecture. Hence, most measured apparent FD effects will effectively be biased at low b-

values. For example, a decrease of intra-axonal volume should result in a decrease of apparent FD 

reflecting it; but if this leads to a corresponding increase of the volume of the extra-cellular space, 

the signal from the latter at a low b-value would also increase and thus counteract the expected 

decrease in apparent FD. In such a scenario, apparent FD effect sizes are diminished and sensitivity 

of the FBA to apparent FD is negatively impacted. Interestingly, this also challenges the use of multi-

shell data for the purposes of quantifying apparent FD, as this introduces lower b-values as well. 

While it might be intuitively appealing to use all (or generally “more”) data to compute the WM FOD, 

                  



this is not necessarily compatible with the very assumptions on which apparent FD relies (Genc et al., 

2020a). Indeed, the MSMT-CSD equations (Jeurissen et al., 2014) apply to each b-value shell in the 

data, and thus lower b-values will weigh in, again introducing undesirable extra-cellular signal 

contributions into the apparent FD metric. Genc et al. (2020a) demonstrate this via simulations as 

well as in-vivo data in a relevant FBA scenario. Their results revealed that (1) apparent FD was 

estimated less accurately when lower b-value or multi-shell data were used and showed a larger 

dependency on extra-cellular signal, as compared to single-shell high b-value data and (2) using 

lower b-value or multi-shell data also led to reduced sensitivity (in an experiment involving age-

related patterns of development). Of all 75 studies sampled in this review, 44 studies (59%) were 

limited to data with b ≤ 2500 s/mm². Of these, 20 studies were even limited to b ≤ 1000 s/mm² data. 

While the remaining 31 studies (41%) did work with datasets with a maximal b > 2500 s/mm², 12 of 

those relied on multi-shell data and included lower b-value shells to resolve the WM FOD from which 

the apparent FD metric was estimated. Dimond et al. (2020) did have multi-shell data available, but 

for the reasons described above they chose to only use the highest b-value shell (+b=0) with SS3T-

CSD to compute apparent FD for FBA (and lower b-value data was used only for a separate analysis 

of DTI-derived metrics). Overall, we note that—in contrast to HARDI gradient schemes—higher b-

values are still relatively less well adopted. 

In conclusion, on the one hand, it is technically entirely feasible to run a state-of-the-art 3-tissue CSD 

based FBA pipeline even on data limited to, e.g., only 30 gradient directions and/or b-values as low 

as b = 1000 s/mm². This opens up possibilities for revealing fixel-specific effects in many existing 

older datasets, or for long-running studies that have already “locked in” their dMRI protocols. 

However, further work may be required to assess the reliability of specific conclusions drawn from 

data including low b-values. On the other hand, for new studies it is highly advisable to collect HARDI 

data with, e.g., ≥ 45 gradient directions and b ≥ 3000 s/mm², so as to ensure both good WM FOD 

quality (which promotes robust processing) and specificity to intra-axonal signals, enabling proper 

quantitative interpretation of the apparent FD metric at the core of a typical FBA. 

Challenges with interpretation of FD and FC 

Beyond the effects of acquisition parameters, which can complicate or limit interpretation of 

apparent FD effects as explained above (e.g., due to partial sensitisation to extra-axonal signals at 

limited b-values), other challenges with and limitations of the apparent FD metric exist. As 

mentioned in the earlier section on “Fixel-wise metrics and apparent fibre density”, apparent FD 

does not tease apart effects of axon count and axon diameters. This is an important consideration 

when interpreting apparent FD changes, as without a proper context, e.g., thinking of decreases in 

apparent FD strictly as a loss of individual axons could constitute a critical misinterpretation of 

findings. Moreover, apparent FD is largely not sensitive to myelin (Raffelt et al., 2012b), and thus 

decreases in apparent FD do not necessarily reveal demyelination (nor do apparent FD increases 

imply myelinogenesis), even though they might accompany or eventually follow it in a number of 

(biologically) realistic scenarios. Note that, while dMRI signal in general is not sensitised to myelin, it 

is still a popular choice to study myelin (Mancini et al., 2020). This is possible due to myelin changes 

indirectly affecting the geometrical architecture of the extra-axonal space, which in turn influences 

                  



parameters of certain dMRI models. However, such parameters are also affected by a range of other 

effects, so they cannot be specifically interpreted as myelin (Mancini et al., 2020). 

 

 

Figure 6: complex pitfalls when interpreting fixel-specific FD and FC changes (example similar to Raffelt et al., 

2017; but with critical corrections to the number of axons in the illustrated voxel). This example demonstrates 

how changes in one bundle of axons can explain concomitant changes in another crossing bundle. A bundle of 

crossing orange (vertical) and blue (perpendicular to this page) axons are shown, and measured in the (black) 

voxel. The orange tract suffers microscopic axon loss, followed by a macroscopic collapse (atrophy) of the 

tissue. The blue tract features no actual axon loss, but merely “joins in” the collapse of tissue due to the 

available space. Upon initial axon loss, all results are intuitive: only FD of the orange fibre population is 

decreased (and this is also reflected in its FDC), while all other properties (orange FC; blue FD and FC) are 

unaffected. However, when the tissue collapses (atrophy), a set of complex effects plays out across FD and FC 

values of both orange and blue bundles. The FD of both bundles increases (!), whereas FC jointly decreases. 

Compared to the original “healthy” setting, the effect size of FD alone underrepresents the impact to the 

orange tract, but also describes an increase (!) for the blue tract. Arguably, FDC is “easier” to interpret (only 

showing impact on the orange bundle, with the blue bundle unaffected throughout); but in turn it is not 

sensitised to the atrophy, which might itself indicate a biologically relevant stage or transition in a complex 

disease process. 

 

Apart from the aforementioned notes on the specific sensitisation of apparent FD, another challenge 

is involved with its interpretation: the mere fact that it represents a local (apparent) density metric 

has surprisingly complex implications, which could easily be overlooked or misunderstood. The local 

FD of axons provides us with a measure approximately proportional to the amount of “axonal 

matter” present per unit of volume, i.e., within a voxel (and along the fixel orientation). Hence, this 

depends not only on those axons themselves, but also on all the other (non-axonal) space or volume 

in between. For example, a decrease in FD could result from vasogenic edema (as might occur, e.g., 

after traumatic brain injury), whereby an excess of fluid accumulates in the interstitial matrix and 

causes it to expand: this might simply move the axons further apart without otherwise affecting their 

                  



individual size (i.e., diameter). Interestingly, note that several other multi-compartment dMRI 

models also involve local (voxel-wise or fixel-wise) density metrics: for example, the NODDI model 

yields a neurite density measure (Zhang et al., 2012). As such, considerations related to interpreting a 

density metric are similarly relevant. 

In the vasogenic edema example, the FD metric is sensitive to the decrease of the number of axons 

within a given voxel, even though no actual axons were lost: some were merely displaced outside the 

voxel, into other voxels. Macroscopically, a swelling of the tract might thus be observed (which 

“compensates” for the decreased FD). In the FBA framework, the latter macroscopic piece of the 

puzzle can be assessed by computing the fibre-bundle cross-section (FC) metric, which expresses this 

property for different subject images relative to a common template. This is obtained from the 

warps mapping each subject to the template space, and thus relies on accurate image registration 

(see the section “Fibre-bundle cross-section (FC) computation” in Supplementary Document 1). This 

information can then be combined with the FD metric in a strategy akin to VBM (Ashburner & 

Friston, 2000), resulting in the fibre density and cross-section (FDC) metric (Raffelt et al., 2017). In our 

edema example, the FD decrease would be offset by a similar FC increase (i.e., the swelling), 

resulting in an unchanged FDC. The latter would then ultimately reflect the fact that no actual axons 

were lost in the overall bundle. However, FDC would indeed not be sensitive to the vasogenic edema 

effect, even though it might still be of critical biological relevance. Ultimately, the complete picture is 

only provided by assessing FD, FC and FDC and jointly considering their individual decreases or 

increases. This leads to many different possible combinations of effects, of which we have provided a 

range of basic examples and more complex scenarios in the “Combined fibre density and cross-

section (FDC) computation” section in Supplementary Document 1. Yet another more complex 

example involving crossing fibre tracts is presented in Figure 6. The latter illustrates that effects 

within one bundle can result in (surprising) concomitant effects in another crossing bundle. We 

should note, however, that these examples do not demonstrate any technical limitations of the 

framework. Rather, they illustrate that reasoning about density and/or cross-sectional effects is not 

as straightforward as it might seem at first sight, and interpreting such results requires careful 

consideration of any possible underlying scenario that might explain these. 

Finally, even the specificity in separating FD and FC effects is not entirely clear-cut in practice: it is 

limited by the accuracy and precision with which image registration is able to map subject images to 

the common template space and as such establish spatial (or fixel-wise) correspondence between 

them. The effects of registration on density and volume assessments have been known and well 

described since the introduction of VBM (Ashburner & Friston, 2000), but are sometimes overlooked 

in practice. In the context of FBA, these imply that part of what “should have been” an FC effect can 

be underestimated and partially transfer into an FD effect instead when image registration does not 

entirely bridge the spatial gap between images. This will for certain anatomical structures always be 

the case up to an extent, because non-rigid registration algorithms rely on spatial regularisation to 

robustly produce a sufficiently smooth mapping between images. Moreover, the amount of 

“transfer” of such FC effects to FD will depend on the size of the anatomy, and generally be more 

pronounced for thinner structures (in particular those approaching the acquisition voxel size) (Raffelt 

et al., 2017). The opposite is possible as well, when strong intensity differences due to pronounced 

FD effects might induce a non-linear deformation (and thus FC effect), especially when using a sum 

of squared differences metric to drive registration. Because the specificity to distinguish FD and FC 

                  



effects thus depends on spatial resolution, sizes of different anatomical structures and a range of 

image registration parameters (e.g., regularisation or smoothness of the warp) which are under 

arbitrary control of researchers, FD and FC effect sizes can not be meaningfully directly compared. 

FD is often said to relate to microstructural effects, while FC reflects macrostructural effects. This is a 

useful intuition to introduce and explain complex combinations of FD, FC and FDC effects and 

motivate researchers to carefully consider various biological scenarios that might explain their 

results. However, we conclude that caution is advised, as the “separation” between FD and FC is less 

clear-cut due to practical limitations of methods. 

Multimodal studies 

Combining complementary information from different (MRI) contrasts or modalities may allow for 

more comprehensive and insightful conclusions than reporting FBA (or other dMRI analysis) results 

in isolation (for reviews, see Damoiseaux and Greicius, 2009; Straathof et al., 2015; Suarez et al. 

2020). This is particularly important when studying brain injured patients whereby white matter 

damage is not occurring in isolation from other brain alterations, such as GM atrophy, changes in 

functional connectivity, and neuroinflammation. Of the 75 studies sampled in this review, 22 

employed multimodal data and analysis techniques in combination with FBA of dMRI data. However, 

only 9 of these multimodal MRI studies quantified the relationship between fixel-wise metrics and 

other (e.g., structural or functional) MRI metrics (Adanyeguh et al., 2018; Boonstra et al., 2020; 

Gajamange et al., 2018; Luo et al., 2020; Mizuguchi et al., 2019; Park et al., 2021; Sanchez et al., 

2020; Savard et al., 2020; Vaughan et al., 2017). For example, Luo et al. (2020) reported that 

apparent FD of the fornix column and body, and FC of ventral cingulum correlated with composite 

amyloid and tau levels in Alzheimer’s disease patients. As another example, Savard et al. (2020) 

observed that the amount of grey matter atrophy was strongly related to reduced apparent FD and 

FC in patients with fronto-temporal dementia. Multimodal studies can also improve interpretation of 

findings with regards to structure-function relationships, e.g., progression of disease with reference 

to cognition and behaviour. Savard et al. (2020) were able to dissociate the contribution of apparent 

FD, FC and GM volume to semantic symptoms and executive dysfunction in fronto-temporal 

dementia, adding to our understanding of differing pathophysiological paths to both types of 

impairment and suggesting targets for therapy. 

Despite encouraging findings, some multimodal MRI studies combining FBA results with other 

modalities show a number of common limitations. In many of these studies, the reported 

correlations between fixel-wise metrics and other measures were still just weak to moderate. Also, 

appropriate correction for multiple comparisons was not always performed. Sometimes uncorrected 

thresholds and trends were reported for correlation analyses between fixel-wise and other metrics. 

Such issues are not specific to FBA studies or underlying methodology though: these are very 

common among multimodal studies in general, and this problem has only recently started to attract 

more attention (Alberton et al., 2020). Generally, studies should aim to employ p-values adjusted for 

multiple comparisons; not only for the number of fixels, but also for the testing of multiple contrasts 

(within FBA) as well as for multiple experiments involving (combinations of) different modalities 

(Alberton et al., 2020). While this would better ensure the validity of statistical results, trends can 

still be reported to help motivate future (multimodal) imaging studies. Unambiguous documentation 

                  



of which results are supported by what kind of correction(s) is key, and the choice of words and 

language used in results, discussion and conclusion sections should be carefully considered 

accordingly. 

Not all studies have found significant relationships between fixel-wise metrics and other measures. 

For example, Adanyeguh et al. (2018) reported no significant correlations between fixel-wise metrics 

and atrophy scores in patients with cerebellar ataxia. Failure to detect significant correlations could 

be explained by a more complex, non-linear relationship between both metrics. However, not all 

intuitively formulated hypotheses of this nature are necessarily valid in the first place (i.e., a 

correlation might genuinely not exist even when two effects are independently observed or 

described in a particular cohort). Regardlessly, studies would generally benefit from more advanced 

statistical analyses to reveal potentially non-linear relationships between fixel-wise and other brain 

metrics. Due to the magnitude and nature of FD and FC metrics (respectively volumetric and related 

to surface area), various non-linear transformations (e.g., a logarithm) arguably present as sensible 

candidates. 

Researchers have also explored associations between various brain measurements and fixel-wise 

metrics, affording researchers greater freedom to pinpoint effect locations across the brain with 

increased specificity. Mizuguchi et al. (2019) reported that resting state functional connectivity 

between right lateral prefrontal cortex and left striatum was positively correlated with FC in the right 

anterior corona radiata. Boonstra et al. (2020) found that cerebellar decrease of FDC in multiple 

sclerosis (MS) patients was associated with cerebellar white matter atrophy and lesion load. Savard 

et al. (2020) observed in fronto-temporal dementia patients that reductions of apparent FD and FC in 

tracts of a fronto-temporal network were strongly linked to the amount of GM atrophy of peak 

nodes within this network. 

Behavioural relevance of FBA results 

Several FBA studies have investigated associations between fixel-wise metrics and behavioural 

scores as a secondary aim, e.g., Adab et al. (2020) studied bimanual coordination performance, and 

Verhelst et al. (2019) looked at verbal working memory. Others incorporated clinical outcomes, e.g., 

via Mini-Mental State Examination (Luo et al., 2020). These studies often examined such associations 

using correlation analyses between fixel-wise metrics and the relevant outcomes of interest across 

populations. For example, Choy et al. (2020) found significant negative correlations between age and 

fixel-wise metrics across multiple tracts in healthy adults, while Pannek et al. (2020) observed 

developmental improvements in cognitive and motor performance to be positively associated with 

fixel-wise metrics in infants. It should be noted that the majority of correlation coefficients of fixel-

wise metrics with behavioural outcomes were often weak to moderate in strength across those 

studies implementing such analyses. Remarkably, Verhelst et al. (2019) found correlations between 

traditional DTI metrics and verbal working memory which were not present for the fixel-wise 

metrics. As mentioned in previous sections, interpreting disparate results between FBA and analysis 

of voxel-wise DTI metrics remains an ongoing challenge, due to the non-specific nature of DTI and its 

derived metrics (see also the earlier section “FBA and other dMRI analysis strategies”). 

                  



Whilst correlational analyses are important to understand brain-behaviour relationships, some 

studies have employed other advanced analytical approaches, including multivariate profile analysis 

(Genc et al., 2018) and mediation analyses (Adab et al., 2020). For example, the mediation analyses 

performed by Adab et al. (2020) revealed that FDC partially mediates the relationship between age 

and bimanual coordination in the splenium and genu of the corpus callosum. Similar to the 

challenges of multimodal studies (see the earlier section “Multimodal studies”), it might be relevant 

to also explore non-linear relationships between fixel-wise metrics and behavioural metrics. 

With increasing numbers of fixel-wise metrics and behavioural measures, the number of 

combinations and thus statistical tests (or “contrasts”) can easily grow. Without careful 

consideration, this can increase the prevalence of type 1 errors (Alberton et al., 2020). However, 

properly correcting for these will then impact on the overall statistical power of studies. In this 

context, FBA in particular already faces a challenge due to the large numbers of individual fixels that 

are often analysed; even though it implements the connectivity-based fixel enhancement (CFE) 

mechanism to partially address this (see also the earlier section “FBA and other dMRI analysis 

strategies”). Other strategies include using fixel regions of interest, either obtained from significant 

results of a prior FBA contrast (e.g., Mito et al., 2018) or by defining tracts of interest using an a 

priori anatomical hypothesis (e.g., Adab et al., 2020). 

Longitudinal FBA studies 

The majority of FBA studies thus far have primarily focused on revealing cross-sectional group 

differences of fixel-wise metrics. However, it is often of clinical interest to examine longitudinal 

changes in brain microstructure, particularly in response to development, aging, disease, or training 

interventions. Of the 75 studies reviewed, we identified 14 that have investigated changes in fixel-

wise metrics over time. On the one hand, these changes were often assessed within one specific 

group of participants, and statistical analyses were performed comparing metrics between different 

time points (e.g., Mizuguchi et al., 2019; Verhelst et al., 2019; Rau et al., 2019). On the other hand, 

e.g., Genc et al. (2018b) and Kelly et al. (2020) directly analysed the changes in fixel-wise metrics 

over the time period that each subject was studied, and assessed the relationship between such 

changes and developmental factors. This was in practice achieved by precomputing the difference in 

fixel-wise metrics between different time points for each participant, reflecting a measure of change 

over time. Those were then analysed in turn via a whole-brain FBA, either cross-sectionally to 

determine whether the change over time was different between groups, or to test whether changes 

over time were associated with phenotypic and clinical characteristics. 

An important consideration for researchers relates to the definition and precomputation of changes 

in fixel-wise metrics over time. In certain studies, the actual time difference between “time points” 

might vary to a certain extent across subjects due to how these “time points” are defined or when 

data could be acquired from the subjects. In these cases, it might be sensible to quantify change per 

unit of time, i.e., by normalising the precomputed change in fixel-wise metric by the time difference. 

Whether this is desirable or not, however, depends on the kind of change that is studied (or 

hypothesised). In this context, selecting time points for acquisition of data and modelling changes of 

FD and FC over time can prove highly challenging and involves a priori assumptions on the biological 

and biophysical processes. Note for example the surprisingly complex effects of atrophy (see the 

                  



section “Combined fibre density and cross-section (FDC) computation” in Supplementary 

Document 1) or vasogenic edema (see the earlier section “Challenges with interpretation of FD and 

FC”) on the FD and FC metrics, whereby they might (non-monotonically) go up and down over time. 

Being able to measure this, critically depends on sampling particular time points in the first place. 

Another challenge many longitudinal studies are facing, involves missing data for some time point(s) 

of certain subjects. These scenarios call for statistical analyses which can more appropriately deal 

with this, such as mixed effects modelling. Some FBA studies have computed (average) fixel-wise 

metrics in a range of white matter pathways, in order to accurately model mixed effects due to 

missing data at the tract level rather than fixel level (Dimond et al., 2020; Genc et al., 2020b). More 

generally, for particularly complex statistical challenges it might be useful to extract tract-wise or 

fixel ROI-wise metrics and process these in dedicated advanced statistical software packages. The 

results of such advanced statistical analyses can often also be visualised in bespoke ways (using 

specialised plots), which might otherwise not be possible for many individual fixels (or it would at 

least defeat the purpose of a clear and thus useful visualisation). Similarly, it might help to avoid 

overinterpretation of complex results. 

Finally, another methodological aspect that is frequently brought up when implementing 

longitudinal FBA studies relates to the construction of the study-specific (FOD) template. Generally, 

the considerations in this context are not different to those for cross-sectional analyses, or non-FBA 

(e.g., VBA or VBM) studies (see the section on “Study-specific FOD template construction” in 

Supplementary Document 1). The FOD template serves as a common reference point for the study: 

for example, while the FC metric values are locally expressed relative to the template (by virtue of 

being calculated from the subject-to-template warps), they scale to it equally across all images of 

subjects and time points. Hence, relative FC effects between subjects or time points are not affected 

by the choice of a (common) template, even though the actual FC values themselves are (Raffelt et 

al., 2017). 

Dealing with WM lesions in FBA studies 

Many clinical populations, such as patients with traumatic brain injury (TBI), stroke, multiple sclerosis 

(MS), dementias, stroke and other neurodegenerative diseases are clinically heterogeneous due to 

the presence of lesions in variable (and often widespread) locations and of different types and sizes. 

These include large focal lesions, diffuse axonal injuries, white matter (T2) hyperintensities (WMHs), 

inflammation, and edema. Even in healthy elderly subjects, lesions can present in a similarly 

challenging fashion. The specific effects lesions have on FBA—both processing steps and results—is 

relatively unexplored in the literature. Due to the complex nature of the FBA pipeline and its many 

different interacting steps (see also the earlier section “Fixel-based Analysis pipeline” and 

Supplementary Document 1), rigorous quality assessments are highly recommended at most stages 

of the pipeline (including preprocessing steps to deal with artefacts and motion, brain mask 

estimation, response function estimation, 3-tissue CSD, etc.) towards the estimation of the relevant 

fixel-wise metrics, especially in populations where large focal lesions, inflammation and edema are 

present. The reasons for this stem mostly from the fact that lesions can severely alter image 

intensities, but also geometry. For example, such lesions could affect the accuracy and precision of 

image registration and even the construction of a study FOD template itself. Several aspects of 

                  



lesions and how they impact on 3-tissue modelling and metrics have been studied outside of the FBA 

framework, e.g., by Mito et al. (2019) and Khan et al. (2020, 2021). Generally, it is important for FBA 

studies to take an appropriately cautious approach when lesioned subject populations are included. 

One typical practice for studies is to actively exclude participants with such extensive amounts of 

lesioned tissue that it would otherwise lead to specific problems with the processing or statistical 

analysis. For example, Verhelst et al. (2019) chose to only examine TBI patients with diffuse axonal 

injuries and excluded those with larger focal lesions. While on the one hand it makes sense to 

specifically study a TBI subpopulation with a focus on deficits more likely caused by white-matter 

disconnections, on the other hand being restricted to such an approach has inherent limitations in 

other scenarios. Consistently excluding participants might sometimes result in non-representative 

samples across the literature describing particular populations. One avenue to address this challenge 

was recently suggested: to enable more specific insights into rare or heterogeneous populations, a 

shift from group studies to single-case approaches could be considered (Attye et al., 2021; 

Chamberland et al., 2020). Defining robust pipelines for single-case FBA inspired approaches could 

be an interesting direction for future research. In this context, to the best of our knowledge, only 

Fekonja et al. (2021) implemented a modest initial attempt at subject-specific analysis of two 

randomly selected cases from their study on corticospinal tract impairment in patients with tumours. 

Some studies have attempted to address challenges due to lesions by performing analyses within 

subdivisions of cohorts, e.g., based on shared lesion characteristics, which can as such limit the 

amount of heterogeneity. Wallace et al. (2020) performed an FBA that combined a largely 

heterogeneous sample of mild, moderate, and severe TBI patients. While descriptions of exclusion 

criteria were not provided, they performed subgroup analyses separately for mild TBI and moderate-

severe TBI participants. As another example, Egorova et al. (2020) performed a whole-sample FBA of 

a cohort of stroke patients, but additionally also analysed right hemisphere stroke and left 

hemisphere stroke patients separately (all three analyses as a cross-sectional comparison with 

healthy controls). Note the latter example showcases an aspect that is relevant beyond lesions 

specifically: lateralized pathologies. These are particularly challenging to study, as fixel-wise apparent 

FD, FC and FDC show widespread and non-trivial laterality even in the healthy brain 

(Honnedevasthana Arun et al., 2021; Verhelst et al., 2021). Notably, Verhelst et al. (2021) urged 

caution with the typical approach of flipping brain images that is sometimes relied upon for studying 

lateralized pathology, as this might lead to false positive findings unrelated to the effect of interest. 

They formulated a range of caveats and advice in this context, concluding that it might often be 

preferable to avoid the brain flipping strategy altogether for this purpose and analyse the (differently 

lateralized) patient groups separately, as was done in Egorova et al. (2020). More broadly, 

pathological tissue might affect nearby (or more remote) WM structure and function differentially, 

depending on its specific location. 

Some FBA studies have assessed lesion load or volume measurements, as derived from other MRI 

modalities such as fluid-attenuated inversion recovery (FLAIR) or susceptibility-weighted imaging 

(SWI) data (Boonstra et al., 2020; Egorova et al., 2020; Gottlieb et al., 2020). In these studies, lesion 

volumes have typically not been integrated in the FBA itself, e.g., as a covariate of non-interest or 

variable of interest. Instead, they were reported or analysed separately. Some studies, e.g., Boonstra 

                  



et al. (2020), have furthermore (visually) inspected the lesion segmentations and nearby regions for 

the purposes of quality assessment of certain steps, e.g., image registration. 

Finally, particular studies in MS (Gajamange et al. 2018), stroke (Egorova et al., 2020; Gottlieb et al., 

2020), and mild cognitive impairment and Alzheimer’s disease (Mito et al., 2018) have computed 

WM FODs using SS3T-CSD. By including additional isotropic signal compartments for other tissues 

and fluid in the model, 3-tissue CSD techniques resolve WM FODs that are more specifically 

sensitised to the anisotropic signal from axons. Critically, this allows for resolving and preserving the 

angular contrast of the WM FODs in presence of infiltrating pathology (Aerts et al., 2019). 

Preservation of the aforementioned angular contrast of WM FODs in turn enables FOD-guided 

population template construction and registration of subject FOD images to this template to result in 

better spatial alignment (similar to how 3-tissue CSD techniques increase the same contrast for 

axonal projections into the cortical GM). Furthermore, accurate fixel segmentation is then also 

possible in lesioned regions or those infiltrated by pathological tissue. Ultimately, it also enables 

more accurate and specific apparent FD measures by removing signal contributions unrelated to the 

intra-axonal space. However, note that the use of high b-values is additionally recommended to 

further suppress extra-axonal signal contributions (Raffelt et al., 2012b; Genc et al., 2020a) (see also 

the earlier sections on “Fixel-wise metrics and apparent fibre density” and “Requirements and 

effects of acquisition parameters”). 

Limitations and future challenges 

The FBA framework has introduced a unique capability, where the partial volume effect between 

different crossing fibre populations has been largely tackled. Yet this still does not represent the 

“ultimate” specificity to disentangle effects for all relevant distinct fibre populations. Several WM 

bundles in the brain “funnel” together along substantial portions of their length. This can not be 

overcome by modelling at the local voxel-level or even fixel-level alone: it is effectively an inherent 

limitation to the dMRI measurements in isolated voxels. This also causes major problems, e.g., for 

fibre tractography and might even be the most important reason it is challenged by large amounts of 

false positive connections (Maier-Hein et al., 2019). For FBA, this becomes a challenge when 

interpreting results in terms of known anatomy. The increased fibre-specificity might even impose a 

false sense of confidence in labelling those results, with a bias towards larger or more commonly 

known bundles (with a further risk of relating these to the wrong cortical regions or even functions). 

An opportunity exists to develop objective labelling strategies, based on carefully curated prior 

knowledge. 

Another challenge lies in the obvious complexity of the FBA framework (e.g., see Figure 3). 

Compared to VBA, many additional steps are necessary to appropriately address the unique nature 

of dMRI data, FOD images and fixel-wise image data. While several of these steps are relatively 

straightforward for researchers, in the sense that they are largely automated, others do introduce 

new user-defined parameters or choices and a need for specialised quality assessments at various 

stages in the pipeline. With so many complex interactions between steps, it can be hard to anticipate 

how certain choices early on in the pipeline might ultimately impact on the final result. For some of 

the bespoke mechanisms, default parameters do exist: e.g., Raffelt et al. (2015) determined 

reasonable choices for the smoothing extent and CFE parameters. However, it is unknown to what 

                  



extent these generalise beyond those initial experimental findings. Similarly, the practice of spatial 

upsampling has been adopted for its benefits towards improving image contrast (with further 

downstream benefits for other pipeline steps, e.g., image registration), but a systematic investigation 

of upsampling resolutions and their effect on FBA study results has not been performed to date. Yet 

other user-defined choices exist, e.g., in determining appropriate thresholds or criteria to derive the 

common fixel analysis mask and its spatial (fixel) extent. Most current FBA studies have adopted 

existing parameters and choices without further questioning whether these could be improved or 

tailored to fit their research questions better. This might be addressed in the future by more 

systematic investigations of the effects of certain FBA pipeline parameters and choices. 

Reproducibility studies could play another key role in increasing our understanding of the strengths 

of the framework, but might also reveal possible pitfalls for researchers undertaking FBA studies. 

While there exists some evidence on good test-retest reliability and long‐term stability of 3-tissue 

CSD methods (Newman et al., 2020), the same has not been pursued yet for derived fixel-wise FD, FC 

or FDC values (note that this additionally depends on registration steps, fixel definition, and fixel 

correspondence computation). Furthermore, beyond the preprocessing and complexities involved 

with computing these metrics, the FBA framework as a whole includes many other steps. Future 

studies should look into the test-retest reliability of the more final steps and outputs of the FBA 

pipeline. Reproducing entire FBA study outcomes, either using the same data, newly acquired data 

of the same subjects, or an entirely new sample of subjects, would also help to further establish the 

robustness of the framework. Finally, more tools and guidance to assist researchers in assessing the 

quality of FBA results could prove to be of added value. We have provided recommendations and 

state-of-the-art best practices in Supplementary Document 1 for all individual steps of the FBA 

pipeline. These should help to ensure high quality accurate FBA results by allowing researchers to 

perform diligent quality checks at each stage of the pipeline. However, assessing the quality of the 

final result remains a difficult challenge. 

While analysing fibre density and fibre-bundle cross-section using the FBA framework provides more 

(fibre) specific white matter assessments, relating these to the real underlying biophysical and 

biological mechanisms is also still challenging. More studies and validation are essential to provide 

further insights and validate specific FBA results against gold standard histological measurements, in 

order to better understand the cellular mechanisms underlying fixel-wise effects in white matter (Al-

Amin et al., 2020; Malhotra et al., 2019; Wu et al., 2020). Despite some FBA studies effectively 

incorporating other multimodal MRI data and analysis strategies (e.g., Adanyeguh et al., 2018; 

Boonstra et al., 2020; Luo et al., 2020; Mizuguchi et al., 2019; Vaughan et al., 2017), there still exists 

scope for improved integration of information derived from different modalities (when available) 

with FBA results. Specifically, in order to extract relevant information from various brain 

measurements, it has been suggested to validate these against different parameters of another 

framework, such as connectome embedding (Rosenthal et al., 2018). Of particular interest might be 

other modalities sensitised to myelin, especially given that apparent FD itself is not (directly) 

sensitive to myelin. A good candidate might for instance be relaxometry, from which a myelin water 

fraction can be obtained that correlates relatively well with histology (Mancini et al., 2020). An 

interesting opportunity in this context relates to a technique developed by De Santis et al. (2016), 

which combines dMRI and relaxometry to resolve fibre-specific values for the longitudinal relaxation 

                  



time (T1). Such fibre-specific measurements could be analysed directly with the FBA framework, 

either to compare or relate to apparent FD, or to augment it. 

Most current FBA studies performed group-based analyses, which may prove insufficient to further 

our understanding of the pathophysiology and management of rare conditions. Group analyses are 

unable to reflect individual differences between patients and cannot entirely account for between-

subject heterogeneity, e.g., in lesion topography (Attye et al., 2021; Chamberland et al., 2020). Given 

this, there is a relevant need for a paradigm shift from groupwise comparisons (e.g., a group of 

patients, compared to a group of controls) to more individualised profiling (i.e., a single patient, 

compared to a group of reference controls) of fixel-wise and other metrics, which would aid in 

conceptualising both microstructural and macrostructural changes in white matter across rare or 

clinically heterogeneous populations. Continued work in this area will hopefully allow fixel-wise 

metrics to be used as diagnostic or prognostic biomarkers (Atkinson et al., 2001), providing new and 

increased value for both researchers and clinicians alike. 

Conclusion 

We reviewed the FBA framework for the analysis of whole-brain fibre-specific properties of white 

matter micro- and macrostructure, as typically derived from diffusion MRI data. Similar to voxel-

based analysis, FBA enables analysis of the whole brain without a priori hypothesis as to which parts 

or structures of the brain might show (significant) effects of interest. However, it allows for this in a 

truly fibre-specific manner where effects can manifest individually even for different fibre 

populations within a single voxel. This brings a range of unique challenges, for which the framework 

implements bespoke solutions. Since its original development, the framework has seen a stark 

increase in adoption across diverse application areas, yielding unique and valuable insights into 

various clinical populations as well as healthy subjects. However, limitations and challenges remain, 

in particular related to validation and translation. Interpretation of results—while greatly improved 

over other approaches due to fibre-specificity—should still be performed cautiously and is not 

always trivial due to the complex nature of and interactions between microstructural properties of 

WM tissue. 

Data and Code Availability Statement 

There are no relevant data related to this review paper, apart from the parameters and details 

sourced directly from the 75 FBA studies. These are all included in the table in Supplementary 

Document 4. 
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