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ABSTRACT Entity Resolution, which identifies different descriptions referring to the same real-world entity,
is a fundamental stage in data integration process essential for quality data analysis. Identities recognition is
important in encounter network as it defines the entities of encounters. It is usually not a problem if unique
identifier information, e.g., mobile phone number, is available. However, in the circumstances where unique
identifier is not available or in question, further investigated is required to perform the entity resolution on the
encounter dataset. Often the encounter network is a sparse network with very limited information collected
from close-range person-to-person contact reporting, as in epidemiology contact tracing or traffic collision
reports. In this paper, we provide an automatic method to resolve the ambiguity of entities in sparse encounter
network. We develop a Bayesian spatiotemporal inference system to infer the probability of entity’s visits
on places of interest. Then, we propose a hierarchical Markov logic network to tackle the inference of
the entities in the network which analyses the connection strength of network with multiple types of
entities. Experimental results on encounter networks of synthetic and commercial traffic encounter datasets
demonstrate that the proposed method achieves better accuracy than existing collective classifications.

INDEX TERMS Encounter network, entity resolution,Markov logic network, record linkage, spatiotemporal
inference.

I. INTRODUCTION
Entity resolution is a fundamental data integration stage
in a data analysis system, which ensures the input records
have unique identities. Also known as record linkage or data
disambiguation, its goal is to decide which records refer
to the same identity with different levels of confidence [1].
The history of probabilistic record linkage was pioneered in
the healthcare area when the idea of log-likelihood ratios
was introduced in the comparison of similar records in the
late 1950s. A formal mathematical framework was provided
by Fellegi and Sunter in the 1960s, in which the opti-
mality of rules under fixed upper bounds was proven [2].
A standard entity resolution system consists of five stages
including data prepossessing, blocking, comparing, classifi-
cation and evaluation as shown in Fig. 1. Over the years,
significant advancement of research has been made in the
field of entity resolution, especially in the core part of
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classification. A variety of learning methods including super-
vised, semi-supervised, active learning and unsupervised
methods have been proposed in different data context. Since
the beginning of this century, progress has been made to
compare and classify the data based on a broader scope
beyond the features of the pairwise records. Recently, col-
lective classification techniques have been proposed to make
match decisions in a collective context, which have been
shown to significantly outperform the traditional pairwise
methods. Often data set under this circumstance is organised
in a network like a bibliographical reference network or a
social media network, where the co-authorship or friendship
between nodes is used in the reference for disambiguation.
In this research, the focus of entity resolution is on the
encounter network, where entities physically encounter each
other in geographical space and thus constitute a contact
network whose spatiotemporal information can be utilised for
entity resolution. An encounter is defined as a non-planned
by-chance meeting between two or more persons or vehicles
of unexpected nature and it is referred as the co-location at
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FIGURE 1. Entity resolution system overview [3].

the same time in time geography [4]. Identities recognition
in encounter network is not a problem if an unique identifier
information like mobile phone number is available. However,
there are circumstances where entities need to be further
investigated as in the forensic cases of fake phone number or
license plates, or multiple phone numbers and vehicles used
by one person. It also applies in the circumstances where
the tracing information is discontinuous or incomplete like
segments from street CCTV monitoring, information from
multiple epidemiological contact tracing APPs, etc. In these
cases the encounter network is a sparse network with very
limited data obtained from the close-range person-to-person
contact reporting. For all these scenarios, a novel entity infer-
ence system needs to be developed to replace manual work
to help resolve the ambiguity. It is therefore of special benefit
to develop a dedicated framework of entity resolution in this
area to fill the gap at the demands of real life applications
such as forensic investigation, financial fraud detection and
epidemiologic contact tracing [5].

In this work, we first present a Bayesian spatiotemporal
inference system to infer the probability of entities’ access
pattern to places of interest. In this work, we first develop
a hybrid inference method based on Bayesian estimate and
tensor factorization to infer the posterior probabilities of
geolocation access from a power law distribution based prior
probability and encounters’ travel records. Then, we adopt
the Markov Logic Network(MLN), a special type of Markov
Random Field, to deal with the intrinsic features of the
encounter network using maximum likelihood estimation.
Experimental results on encounter networks of synthetic and
commercial traffic encounter dataset demonstrate that the
proposedmethod achieves better accuracy than existing entity
resolution methods of collective classifications.

II. RELATED WORK
A. ENCOUNTER NETWORK
Encounter network is a special kind of social network created
by human physical movement in daily lives. It is obvious that
human mobility generates encounters and even social links

as a result. It is found that long-range Levy-like distributions
best characterise the emergent social network due to human
travels in the urban space [6]. An empirical probability dis-
tribution is given by Clauset et al. [7] as

P(γ ) ∝ γ−δ. (1)

The spacial dynamic parameter has been observed as in
the best fit for δ as 2.37 and 2.45 in metropolis in New York
and Tokyo for displacement of γ within 10km [8]. People’s
whereabout accumulation, however, is far from randomwalk.
The temporal regularity and spatial structure have been fully
explored by a general gravity model [9]. By mining the
frequent travel pattern, the user mobility profile can be con-
structed in terms of location and temporal semantics [10].
The profile can then be used to measure user similarity.
It has been found that up to 30% of people’s movement in
geophysical space is motivated by their social network, and
thus the locations they share reveal the common social ties
they have [11]. It is natural to describe people’s movement
in the urban area in a set of geographic locations built with
clustering given the self-organised nature of urban districts
and neighbourhoods, and cosine similarity measurements can
be built from the vector of visits on these sites [11], [12]. It has
also been noted that people move with strong spatiotemporal
regularities or patterns and their change of mobility range is
small over time [13]. A number of methods have been put
forward to infer people’s movement from their social net-
work. A distributed localization scheme coupled with hidden
Markov model called SOMA is employed to maximize the
probability of visiting a sequence of locations given the social
encounters [13]. A two step process, STAP, is invented to
model the spatial and temporal additivity preference using
tensor factorization and context fusion framework to com-
bine the spatial and temporal preferences into one predic-
tion [14]. Also, social ties can be inferred from geographic
coincidences. The most exemplified work in this regard is
completed by Crandall et al. in which the relationship is
demonstrated in an exponential distribution using Bayes’
law [15]. Overall it has been proved that the accuracy of social
link prediction is improved by the geographical information
using a detailed data TF model, and the accuracy of location
prediction is enhanced when the social links information is
provided [16].

B. MARKOV LOGIC NETWORK
With advances in Bayesian network technology, research
topics such as Markov Random Field (MRF) and Condi-
tional Random Field (CRF) have attracted significant atten-
tion in the field of entity resolution. With the difficult of
relation based entity resolution, the use of Markov network
has drawn considerable research interest in recent years [17].
Markov Logic Network is a recent development of statisti-
cal relational learning in probabilistic graphical model put
forward by Richardson and Domingos in 2004 [18]. Since
its birth it has gained tremendous popularity in knowledge
based statistical learning with success in various fields of
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probabilistic reasoning. The motivation of Markov Logic
Network is to make full use of expert domain knowledge
in combination with the inference capabilities of the graph-
ical model. Over the years, there has seen much progress
in the applications of Markov Logic including information
extraction, entity resolution, link prediction and collective
classification [19]–[21]. The declarative expression power
and flexible probability robustness has made it naturally
advantageous in collective entity resolution and has inspired
the solution on its application in encounter network.

The advantage of Markov logic network based entity res-
olution is demonstrated in the exemplary work by Singla
and Domingos in 2006 which laid the foundation for all
future work in this field [22]. In that paper a database of
records representing mentions of bibliography is given as
a set of functions like HasAuthor(bibligraph, author) and
the goal is to find which bibliography/author/venue refer
to the same underlying entity. The equality of the atoms is
strictly realised by three rules of reflexivity, symmetry and
transitivity. Reverse predicate equivalence is applied so that
not only the same author resolution can lead to the matching
of two papers but also the match of two papers can lead to the
merge of two authors. In that solution each field is a string
composed of tokens like HasWord(field,word) and weight
can be assigned individually for each word to differentiate
the uniqueness. Field similarity is measured by frequency
of common words. The inference uses lazy grounding and
MaxWalkSAT over plausible pairs, based on a combination
of learned weights and assigned infinite weights. Scalability
issue is addressed by applying canopy approach for selec-
tion of candidates [23]. Conditional log likelihood and AUC
(Precision-recall curve) are used as performance measure-
ment on bibliographic datasets.

Since its birth, various extensions have been developed to
enhance the capabilities of MLN in entity resolution. A hier-
archical MLN model has been developed that can merge
the formulas and change the weights dynamically according
to information gained from feature engineering stage [24].
In another milestone work, a hierarchical model is developed
in a collective entity matching framework where entities are
split into neighbourhoods and covers for blocking purpose
on which two types of MLN matchers are applied [25].
Messages of matched pairs and potentially global matched
pairs are exchanged between neighbourhoods to greatly uplift
the scalability performance of collective entity resolution.
In the field of formula construction, various levels of for-
mulas have been skilfully devised to deal with similarity,
cardinality, preference and global constraints in a multipar-
tite entity resolution framework [26]. In geographical name
resolution, a two level MLN algorithm is put forward to
extract rules for three different domains in the text to perform
resolution [27]. In geographical domain extraction level, two
formulas are created to simulate the emissionmatrix and tran-
sition matrix of an essential Hidden Markov Model. In name
resolution level, the domain similarity is first resolved to
lay the foundation for the matching of the addresses which

has effectively reduced the noises. MLN can also be used
to treat unsupervised co-reference resolution with natural
language processing technique. An unsupervised learning
and inference method has been used to deal with the unknown
predicates [28]. Also, active learning can be embedded with
MLN for entity resolution on imbalanced data for update on
rules and weights [29].

All these applications show that MLN has overall compre-
hensive inference capabilities and great flexibility in dealing
with relational network data and is robust with low data
quality. This makes it a high priority choice on the entity
resolution in sparse encounter network. In our work we will
leverage some of the state-of-the-art technologies to com-
pliment our bi-level MLN framework for the task of entity
resolution in encounter networks.

III. NOTATION AND PROBLEM DEFINITION
We consider our problem in a generic encounter system,
where the input data records is represented in the format of
〈Timestamp,Location,Persons〉, from which relevant infor-
mation is converted into timeframe, geocoding and a personal
entity pi. If there is only one person involved, then it is a
check-in record type like a person’s mobile phone checking
in a hotel WIFI.

Geolocation Matrix L A site is a place where an
encounter or check-in happens like an accident scene or
a hotel. In an encounter network, sites of close range are
clustered into one location id lj with geocoding coordinates
〈Longitude,Latitulde〉. The location matrix L is the distance
symmetric matrix in which each element Lj,k measures the
Manhattan or Vincenty’s distance of locations j and k depend-
ing on the urban or rural setting.

Entity list P In the system, each identity or object in the
encounter network is denoted by a unique id pi. A candidate
list, P, is the list of the persons to be compared.

Entity Contact Cluster C The entity contact cluster,
C , is the set of entities linked by a series of contacts or
social links between the persons. For example, if person pi
encounters pj and pj has the same home address with pk , then
they are all in the same cluster, Cpi , where pi is the lowest
entity id index. L(Cpi ) is therefore all locations visited by all
members in the cluster.

Entity Encounter Tensor E The 3rd-order encounter ten-
sor, E , is the representation of the geolocation access of each
person relevant to each encounter and check-in site in differ-
ent time frames. Here, the first dimension of rows represents
the collection of persons and second dimension represent the
collection of geolocations. A third dimension tube represents
the time frame, in which the encounter takes place and is cate-
gorised into four segments of weekday peak hours, weekday
non-peak business hours, weekday non-business hours and
weekend hours. and node gi,j,k represents the frequency of the
visits of person pi to the location lj during the kth timeframe.
Spatiotemporal ProfileMatrixM In the entity encounter

tensor, we sum each row across all columns and tubes
to obtain a matrix, M , for each entity to represent its
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spatiotemporal presence and affinity to all sites. From two
persons’ profile matrices, M1 and M2, we can calculate
the Frobenius distance of the two matrices, FM1,M2 =√
trace ((M1 −M2) ∗ (M1 −M2)′).
Formula Set F We define the set of all formulas in the

framework as F = {f1, f2, . . . fk} with weights denoted as
w(fi) respectively.

Canopy CN A canopy is a set of entities built on a core
entity contact cluster Ci by linking personal entities in the
cluster with personal entities outside the cluster on common
spatiotemporal space.

Markov Logic Network Classifier MLN We define an
engine of entity resolution using MLN as a MLN classifier
which combines the set of formulas it has used together
with weights. The input to the classifier function is a tuple
of set of entities comparison pairs < Tm,Tp,Tu > which
corresponds to the set of matched pairs, potential matches
pairs and unmatched pairs respectively. The tuple may not
contain all the possible N × (N − 1) entity pairs as they
only contain the potential pairs among the undecided pairs
as candidates for match decisions.

The goal of this task is to first infer the spatiotemporal pro-
file preference, M , and space, Sp, from the entire encounter
network information of L,C and E . The objective of the
framework is to determine which pair of entities of the same
type (like p1, p2) matches as the same real world entity in the
comparison space γ .

IV. METHODOLOGY
The entire framework consists of two major components,
the spatiotemporal inference component and the MLN
matcher component. In the spatiotemporal inference compo-
nent, all the encounter and geolocation visits information of
all entities are summarised into encounter network tensors
E to infer each entity’s spatiotemporal pattern. This infer-
ence is implemented with Bayesian method on the power
law distribution. The second component is a bi-level MLN
matcher which performs entity matching on entity pairs in the
encounter cluster and the spatiotemporal canopy additively,
based on the results obtained from the spatiotemporal infer-
ence component. In this way, a comprehensive comparison on
all possible potential matching entity pairs is achieved with
maximum coverage and minimal computational cost.

V. SPATIOTEMPORAL AFFINITY INFERENCE
In a real encounter network, the scarcity of contact data
makes the comparison of cosine vector spatiotemporal profile
infeasible. In order to compare the spatiotemporal similarity
of the entities, it is essential to extend to the inference of the
probability of entity pi visiting site lj where its affiliated enti-
ties pj has visited, within the constraint of timeframe t [15].
The whole inference process uses collaborative filtering with
a global baseline, similar to the hybrid recommendation sys-
tem. The first step processes the input contact records into the
summarisedmatrices and tensors. The second step uses tensor
factorization to enrich the personal spatiotemporal inference.

The last step fuses the extended personal spatiotemporal ten-
sor into profile matrices for comparison.

A. BAYESIAN INFERENCE OF
SPATIOTEMPORAL DISTRIBUTION
Based on encounter tensor and spatiotemporal profile matrix,
a Bayesian inference analysis system can be established by
treating the probability of visiting a location with distance
r as a power law distribution parameter. The prior distri-
bution can have a variety of choices and here we choose
the non-informative Jeffreys prior with the density kernel of
gamma distribution to elicit the posterior parameter of the
power law distribution [30].

Pi(r) ∝ θr−θ , r > 0, θ > 0. (2)

Being a non-informative prior, it is commonly used in situ-
ations that has limited information about the parameters. It is
alsomore efficient in terms of posterior variance than uniform
and gamma priors in this case. As there may have multiple
paths between two locations visited and all the probabilities
of the paths need to be calculated for being integrated into the
Bayesian hierarchical model. The posterior distribution of r
for the given dataset x = x1, x2, . . . , xn, is

Pi(θ |x) ∝ θn−1e−θ
∑n

i=1 ln x
−1
i , (3)

where n is the number of paths between the two nodes and xi is
the observed distance value of r for each spatiotemporal path
between the person’s centroid geolocation and the visited
geolocation. High frequency visits to a geolocation would
naturally strengthen the probability of that distance.

B. GEOLOCATION MATRIX CALCULATION
To build the location matrix, L, all geocoding information of
encountering sites is collected first. Here the geocoding of
the mid-point of street information for the site whose exact
address of encounter is unclear [31]. Without referring to the
road network data, a grid cell network can be used to separate
the geographical space of urban travel area into different
cells as elements of the location matrix [15]. Alternatively,
a density based DBSCAN cluster method can be employed to
cluster the spatial data of nearby sites into locations [32]. The
location matrix can thus be built by measuring the Manhattan
distance as in an urban environment or Vincenty’s distance in
a generic setting. It is noted that only public sites are counted
as private while home addresses are not included though they
are needed to build the encounter cluster.

C. SPATIOTEMPORAL PROFILE TENSOR INFERENCE
The entity encounter tensor stores the probability values of a
person visiting locations in different time frames. To initialize
the tensor, E , the frequency of person, pi, to location node Lj
at timeframe k is written in the element, Ei,j,k , of the tensor.
For those places in the cluster locations, L(Ci), where the
person, pi, has no visiting records, we need to infer from the
other members of the encounter cluster. Initially, a default
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visit probability by the truncated power law is assigned to
serve as a global baseline prediction [33].

Pi(i, j) = (r +1r)−βe−
r
s . (4)

Here we obtain the posterior estimates of s and β from the
inverse of

∑n
i=1 ln x

−1
i and n−1 from (3) respectively. As the

tensor records the frequency counts of visits of each personal
entity to each site by each time frame, the probability needs
to be transformed to the frequency count using a scale factor
based on the person’s general travel frequency, f (i, k), at the
kth time frame. A high frequent traveller will get scaled up by
his or her relative high visit frequencies than a low frequent
traveller. This is done through the scaling equation below.

F(i, j, k) = f (i, k) ∗ P(i, j). (5)

The person’s recorded location visits time frame distribu-
tion would be applied to the time frame allocation of the
inferred frequencies.

The second step is to use Tucker decomposition to factorize
the tensor using

T =
P∑
1

L∑
1

T∑
1

Gp,l,tAp ◦ Bl ◦ Ct (6)

where A,B and C are the person-to-location, location-
to-timeframe and person-to-timeframe matrix respectively,
and G is the core tensor [34]. We use high-order
SVD(HOSVD) method to perform the tensor decomposition,
which is unfolded by each dimension into three fibers and
computes SVD on each of them [35].

A = SVDra (Ma(T )).

B = SVDrb (Mb(T )).

C = SVDrc (Mc(T )). (7)

where SVDr represents the first r left singular vectors
of the matrix. To address the high computation complex-
ity issue, we use the latest development of the HOSVD
method, the Sparse Tensor Alternating Thresholding SVD
(STAT-SVD), to truncate after each projection before
SVD and QR [36]. Then, each blank cell can be reconstructed
using

t̂i,j,k =
∑
p

∑
l

∑
t

ĝp,l,t âi,pb̂j,l ĉk,t . (8)

where p, l, and t are indices of latent factors. The whole
algorithm is detailed in algorithm 1.

D. PERSONAL SPATIOTEMPORAL PROFILE COMPARISON
Having constructed the inferred tensor using latent factor
models, we can easily retrieve any person’s spatiotemporal
travel profile,Mi, by slicing the personal id index. To compare
the distance of two persons’ profile matrices, we can use the
Frobenius distance of the two matrices:

FM1,M2 =

√
trace ((M1 −M2) ∗ (M1 −M2)′). (9)

Algorithm 1 Spatiotemporal Profile Update
1: /* Calculate Personal Centroids. */
2: for Each Person pi do
3: if pi home address is not null. then
4: ci = hi
5: else
6: ci〈Lg,La〉 =

∑n
s=1 fils
n 〈Lg,La〉

7: end if
8: Initialise a Tensor List.
9: for Each Person pj in the cluster Ci do
10: Spatiotemporal Tensor Initialisation Using

Eq. (4).
11: for Each Location lj do
12: for Each Location tk do
13: if Freq(pi, lj, tk ) > 0 then
14: Ti,j,k == Freq(pi, lj, tk )
15: else
16: Ti,j,k == |Ci−Gi,j|−δ × e−

|Ci−Gi,j|
k ×

f (i, k) Using Eq. (5)
17: end if
18: end for
19: end for
20: end for
21: end for
22: Tucker Decomposition of the Tensor T Using Eq. (6)
23: for Each blank cell Ti,j,k do
24: Ti,j,k =

∑
p
∑

l
∑

t ĝp,l,t
˙̂ai,p˙̂bj,l˙̂ck,t Eq. (8)

25: end for

A conventional cosine distance measurement can also be
calculated on the person-geolocation visit vectors obtained
by averaging on the timeframes of the Mi matrix:

cos θ =
vi · vj∣∣vi‖vj∣∣ . (10)

In both ways, a quantitative measurement of the spatiotem-
poral profile comparison can be obtained.

VI. HIERARCHICAL ENTITY RESOLUTION USING
MARKOV LOGIC NETWORKS
A. MARKOV LOGIC NETWORKS
Markov Logic Network is a straightforward way of represen-
tation of the combination of probability distribution and first
order logic with the sole requirement of finite set of objects.
In first order logic, non-logical objects are represented by
quantified variables in a set of formulas which constitutes
the Knowledge Base. First order language is comprised of a
set of formulas which are constructed by four types of sym-
bols: constants, variables, functions and predicates defined as
following [18]:
• Constants refer to a real life object like a person or a
vehicle which can be typed.

• Variables refer to any object in the domain. It is also
typed.
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• Functions refer to the mapping from objects to other
objects like owner of a vehicle.

• Predicates refer to the relationships of objects like
encounter relationship between two objects or attributes
of objects like a person being male or female.

Additional important terminology includes grounding which
is to replace all the variables in the functions and predicates
with constants and possible world which assigns true value
to each possible ground atom formula. A logical knowledge
base is a set of such hard constraints on a set of possi-
ble worlds. If we make the hard constraints soft in first
order logic network, the formulas in Markov logic network
will be soft constraints built with weights, which means
when a world violates a formula it becomes less proba-
ble but still possible, thus making the rules more flexible
to describe the real world. The weights can be efficiently
learned from optimization iteration of maximum log likeli-
hood of relation database with labelled training data. Higher
weight implies stronger constraint and lower weight values
means weaker constraint. The inference is performed via
the MCMC method on the smallest subset required to solve
the question in query predicate. Together the formulas and the
weights can be normalised to define a probability distribution
over possible states of the world which is described by the
database.

A Markov logic network N is defined as a set of pairs
(Fi,wi) where Fi represent a set of first-order logic rules
and wi represent the respective weights to the respective
rules [18]. The rules are defined on a finite set of constants
C = {c1, c2, . . . , cn} which together define a Markov net-
work MN ,C . For each possible grounding of each predicate
in N there is one binary node in the network. Also for each
possible grounding of formula there is one binary feature in
N as well associated with weights. The implementation of
Markov logic network is to construct aMarkov network using
the Markov logic network N as a template which turns it into
a ground Markov network. The probability distribution over
possible worlds X on the ground Markov network MN ,C is
listed as [18]:

P(X = x) =
1
Z
exp

(∑
i∈F

wini(x)

)
=

1
Z

∏
i∈F

φi
(
x{i}
)ni(x) .

(11)

Here ni(x) stands for the number of true groundings of
Formula Fi and x{i} is the state of truth of all the atoms
in Fi and Z is the normalization constant. As represented
in a Markov random field φi

(
x{i}
)
= ewi is a potential

function normalised by Z the partition function given by
Z =

∑
x∈X

∏
k φk

(
x{k}

)
. The inference of Markov logic

network consists mainly of two types which are maximum
likelihood of theworld with existing evidence and conditional
probability of one formula given existing evidence. The first
inference task can be defined as [37]

argmax
y

P(y | x) == argmax
y

∑
i

wini(x, y). (12)

FIGURE 2. Matching complexity comparison.

This is equivalent to finding the set of truth values for the
relevant variables so that the weights of the clauses achieve
the maximum value.We use theMaxWalkSATmethod which
combines random and greedy steps to approximately solve
this NP-hard problem [18]. The conditional probability is
computed using the following:

P (F1 | F2,L,C) = P
(
F1 | F2,ML,C

)
=

∑
x∈XF1∩XF2

P
(
X = x | ML,C

)∑
x∈XF2

P
(
X = x | ML,C

) ,

where XFi is the sets of truth values of variables that satisfy
formula Fi [37]. Due to the scalability problem of atomic
grounding, a slice sampling based MCMC method MC-SAT
is devised to approximate the probability [38]. The weights of
Markov logic network can be assigned manually or learned
via maximum log likelihood of the database. As the com-
putation of the true groundings is intractable, an alternative
method of pseudo-log-likelihood is often used instead [37].

logP∗w(X = x) =
n∑
l=1

logPw (Xl = xl | MBx (Xl)) . (13)

Here MBx (Xl) stands for the Markov blanket of Xl in the
database which only includes the truth values of the ground
atoms in the relevant ground formulas. This method, however,
may suffer from unsatisfactory result in long chains of infer-
ence. Instead, discriminative weight learning is employed
by optimising the conditional likelihood probability of the
weights of the query atoms based on the evidenced atoms
as [37]

P(y | x) =
1
Zx

exp

∑
i∈FY

wini(x, y)

 . (14)

Here ni(x, y) stands for the number of true grounding of the
ith formula in the database and Zx is the normalization value
over all possible worlds consistent with evidence x.

The design process of a Markov logic network is shown
in Fig. 2.

B. MLN FRAMEWORK METHODOLOGY OVERVIEW
This part zooms into the detail of the MLN framework which
consists of two levels of MLN entity matchers, including
the encounter cluster level and spatiotemporal canopy level.
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FIGURE 3. Encounter clusters and spatiotemporal canopies.

The cluster is constructed by linking the entities based on
the encounter relationship as well as geolocation inference
information like sharing vehicle, mobile and address. The
canopy is built by linking each entity of the cluster with
entities in the same spatiotemporal space outside the cluster
as demonstrated by the blue and red circles in Fig. 3.

The two level partitioning method serves to reduce the
amount of comparison pairs for probabilistic entity resolu-
tion while maximizing the capture of potential matches. The
overall algorithm is listed in the high level algorithm 2.

Algorithm 2 Bi-Level MLN Framework
1: Data preprocessing including rule-based de-duplication

to create a complete dataset for entity resolution.
2: Build the encounter network clusters C .
3: Perform spatiotemporal inference calling algorithm 1.
4: for Each Ci ∈ C do
5: for pair of entity of the same type do
6: Calculate connection strength calling

algorithm 3.
7: end for
8: Perform cluster level MLN Matcher on Ci.
9: Expand the cluster Ci to Canopy CNi.
10: Perform canopy level MLN Match on CNi with out-

put from cluster matcher.
11: while Matching pair has entity outside the cluster Ci

do
12: Expand the cluster Ci to include the new entities.
13: Perform cluster level MLN matcher on Ci.
14: Expand the cluster to a canopy CNi.
15: Perform canopy level MLN matcher on CNi.
16: end while
17: Remove the cluster entities from the dataset.
18: end for
19: Return matched result.

In the data preprocessing stage, a round of de-duplication
is needed to remove the obvious duplicated records by the
exact matching of features through simple rule based entity
resolution to enhance linking quality in the construction of the
encounter clusters. MLN cluster classier MLNcl at this level
makes use of similarity of entity features as well as network
connection strength features. Once the entity resolution has
been completed on each cluster at this level, the matched
entities are merged and the respective spatiotemporal tensors

FIGURE 4. Encounter network linked by encounters, cars, mobile and
home.

and distance matrices are updated. A canopy level Markov
logic network classifierMLNcp will be run on the canopies to
generate newmatches on the extended evidence of the entities
in the spatiotemporal space. If any merging happens on the
entity pair from both inside and outside the cluster, the cluster
will expand to include the new entities and will undergo
a new round of MLNcl classification until no new member
is added to the cluster. The present cluster will be deleted
from the graph network once its matching process has been
completed. This process repeats on every encounter cluster in
the queue as the core of the canopy until the queue becomes
empty. This approach of canopy and iterative blocking has
been proven to be superior in terms of accuracy, runtime
performance as well as scalability comparing with single
blocking methods [23], [39], [40].

An important assumption of this hierarchical MLN frame-
work is the monotonicity of the match results that would
not degenerate as a result of iterative entity resolution at the
canopy level. The definition is given here [25].
Definition 1: AMLN classifier with output is monotone if

for input E, < Tm,Tu > and alternative input E ′, < T ′m,T
′
u >

such that E ⊆ E ′ and Tm ⊆ T ′m and Tu ⊆ T ′u the following
output O would hold:

• O(E, < Tm,Tu >) ⊆ O(E ′, < Tm,Tu >)
• O(E, < Tm,Tu >) ⊆ O(E, < T ′m,Tu >)
• O(E, < Tm,Tu >) ⊆ O(E, < Tm,T ′u >)

Themonotonicity is maintained by the check against the Tu
in this model. The entire framework is expounded in detail
below on a generic traffic incident encounter network with
entities and features modestly adjusted to fit in experiment
scenarios.

C. NETWORK CONNECTION STRENGTH MODEL
The contact networks for MLN inference are constructed
with each cluster as an undirected graph G(V ,E) shown
in Fig. 4. To infer the matching of two entities in the cluster,
we consider embedding a network structure model within the
MLN framework for two reasons. First, the MLN formulas
are binary predicates and thus difficult to express quantitative
values like frequency of encounters. Secondly, the entities
in the cluster graph may be several hops away and thus
require very complicated composite formulas to capture that
long distance relationship. Therefore, we propose a network
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TABLE 1. Weights of cluster edges.

connection strength evidence predicate to incorporate all
these factors. The connection strength in the encounter net-
work is related to a number of factors including the number
of simple paths from node u to v, the length and type of the
edges of each simple path, the node degrees in the path and the
shared sub-paths of these paths. After comparing a number
of existing connection strength models including diffusion
kernels, PageRank and weight-based models [41], we decide
to build a novel weight based model that incorporates all the
factors mentioned above and their interplay. We first find the
subgraph that contains only the simple paths between the two
nodes using standard DFS algorithm. Each edge in the graph
has a type which represents the relationship and is assigned
a type weight as listed in table 1. The encounter type edge
has a weight of 1 − 1

en where n is the number of encounters
experienced between the two people. Zero encounter would
have aweight of zero and high encounter would have aweight
close to 1.

Then we convert the subgraph into a directed graph and
store all the distinctive edges that makes all the simple paths
from node u to node v into two sets, with one set containing
the end edges with the end point being node v and the rest of
edges in the intermediate edge set. The connection weight of
an end edge is defined as the product of the edge weight and
the reverse of less than one node degree the edge end point
which is defined in (15).

CW (a, b) = W (Edge(a, b))×
1

degree(b)− 1
. (15)

We then sum the log of the product of the connection
weight for all the intermediate edges and edge weight of the
end edges to get the connection strength of two nodes in the
graph.

CS(u, v) =
∑

p∈SInterE

log10 CW (p)+
∑

q∈SEndE

log10W (q). (16)

The basic idea behind the algorithm is to set the spa-
tiotemporal inference information loss as a log-distance pass
model. The longer the path, the less stable the link is and the
more connections the node has, the less connection strength
is between the two nodes [42]. This strength value decays
quickly along long paths so there is no need to set path length
limit as in a general walk model [43].

And the adaptive weighted connection strength algorithm
is shown in the algorithm 3.

Here IE stands for the set of end edges.

Algorithm 3 Get CS Between Two Nodes in Graph
1: Derive the subgraph between the pair of nodes and con-

vert it to directed graph.
2: Separate the distinctive edges in the subgraph into sets of

Intermediate IE and End EE .
3: c = 1
4: for Each edge e ∈ SubgraphIE do
5: i← GetPathType(e)
6: if e ∈ IE then
7: c← c× wi × 1

degree(p2)−1
Using Eq. (15)

8: else
9: c← c× wi
10: end if
11: end for
12: Sum to get CS(u, v) using Eq. (16).

D. ENCOUNTER CONTACT CLUSTER MLN MATCHER
A set of evidence predicates are defined below to be used in
the MLN formulas:
• Type(entity,type!) indicates which type the entity
belongs to. The ! symbol indicates mutually exclusive
and exhaustive as used in Alchemy.

• Linked(person,entity) indicates the person has rela-
tionswith the entities of types of vehicle/mobile/address.

• Encounter(person,person) indicates the encounter
relationship of persons and vehicles.

• PersonSim(person,person) The personal features
include full name, gender and age and returns true if the
JaroWinkler distance of full name is within a threshold
with equal gender and exact age.

• EntitySim(entity,entity)A set of similarity comparison
relations which compare similarity of entities of the
same type with their respective features of string type.
It returns true if the Levenshtein distance of the string
value is less than two.

• ConnStrength(entity,entity) Calculates the connec-
tion strength of two entities in the undirected graph
derived from the encounter cluster and canopy as in the
algorithm 3. It returns true if the log value is above a
threshold Tcs which is set to -0.65 as a standard.

These matching predicates are defined below to be used in
the MLN formulas for both query and evidence predicates.
• SamePerson(person,person) queries if the entity pair
of two persons refer to the same person.

• SameEntity(entity,entity) queries the same entity of
two non-persons entity.

• SameType(entity,entity) queries if the entity pair is of
the same type. It is used as evidence predicate in the
MLN formula set.

Entity type assignment is in the unit clause in the base rules
with ! indicates mutual exclusivity. Similarity of features
and closeness in network will cause entities of same type
to be matched. The exception is on two entities that actu-
ally encounter each other which cannot be the same person
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by logic. Matching process can be transitive and covers the
scenario if two persons are matched, their vehicle, mobile
and address entities should be matched as well. The matching
result comes as the likelihood of the best world. The corre-
sponding rows in the entity encounter tensorE and spatiotem-
poral space S need to be merged for the matched pair entities.
To update the spatiotemporal profile matrix M , we just add
the profilematrices of the two corresponding personal entities
M1 +M2.
• Base Rules:

Type(e, t!), type ∈ { Person,Vehicle,Address,Mobile }

• Similarity Rules:

Type(e1, t1) ∧ Type(e2, t2) ∧ (t1 = t2)

⇒ SameType (e1, e2)

PersonSim (e1, e2) ∧ ConnStrength (e1, e2)

⇒ SamePerson (e1, e2)

EntitySim (e1, e2) ∧ ConnStrength (e1, e2)

∧ SameType (e1, e2)⇒ SameEntity (e1, e2) (17)

• Hard Exclusive Rules:

Encounter (e1, e2) ∧ Type(e1,Person)

∧Type(e2,Person)⇒ ¬SamePerson (e1, e2)

Encounter (e1, e2) ∧ Type(e1,Vehicle)

∧Type(e2,Vehicle)⇒ ¬SameEntity (e1, e2)

• Transitivity Rules:

SamePerson (e1, e2) ∧ SamePerson (e2, e3)

⇒ SamePerson (e1, e3)

SameEntity (e1, e2) ∧ SameEntity (e2, e3)

⇒ SameEntity (e1, e3)

• Dependency Rules:

SamePerson (e1, e2) ∧ Linked (e1, e3)

∧ Linked (e2, e4) ∧ SameType(e3, e4)

⇒ SameEntity (e3, e4)

E. CANOPY MLN MATCHER
After the merge process of each cluster has completed,
we expand the cluster to the canopy level by joining entities
in other clusters by the spatiotemporal distance within user
defined threshold as illustrated in Fig. 5. In the figure we can
see some of the personal entities in the encounter cluster have
shared spatiotemporal space with some entities outside the
cluster indicated by the red line. Together with their direct
encounter and owned entities they form a canopy around the
cluster. The major difference of our approach with McCal-
lum’s canopy clustering method is that our canopy is built
around encounter network clusters while the original canopy
is built on randomly selected data points [23].

The canopy level MLN formulas are listed in the rule set
below. Equation (17) has been replaced by (18) in the canopy

FIGURE 5. Encounter network linked by encounters, cars, mobile and
home.

network with additional constraint as in the network connec-
tion strength values have been greatly incremented due to the
new paths formed in the canopy network. The inCluster pred-
icate is pertaining to the current local cluster in computing
in the algorithm. Only personal entities are matched in the
canopy MLN matcher here but other types of entities can be
included if there is sufficient spatiotemporal information to
compare. The edge weight for the spatiotemporal distanced
link is still set to 0.4 as above and connection strength calcu-
lation now extends to the canopy level as shown in Fig. 3. The
entity resolution is performed on entities both within the orig-
inal cluster and between the entity pairs in the original cluster
and outside the cluster. SpatioSim(person,person) compares
similarity of spatiotemporal profile by the Frobenius distance
of their respective profile matrices and returns true if below a
preset threshold Tf . This new evidence predicate which com-
pares the spatiotemporal profile is used to negate the pairs that
do not have common spatiotemporal space in the canopy. All
the other rules in the cluster level are automatically inherited
at the canopy level.
• Base Rules:

InCluster(e)

• Similarity Rules:

InCluster(e1) ∨ InCluster(e2)

⇒ WithinCluster (e1, e2) (18)

PersonSim (e1, e2) ∧ ConnStrength (e1, e2)

∧ WithinCluster (e1, e2)⇒ SamePerson (e1, e2)

(19)

• Hard Exclusive Rules:

¬SpatioSim (e1, e2)⇒ ¬SamePerson (e1, e2)

Given the set of formulas, we learn their weights dis-
criminatingly by maximizing the conditional likelihood the
query predicates Same (ea, eb) given the evidence atoms [22].
The training set is retrieved from the top N largest contact
networks and the weights of all the soft formulas are learned
from gradient descent as in (20).

∂

∂wi
logPw(y | x) = ni(x, y)− Ew [ni(x, y)] , (20)

where Ew [ni(x, y)] is the expected number of true groundings
of the formula fi [22]. The learned weights are transferred to
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TABLE 2. Number of clusters in NY and TK.

all the other contact networks and canopies. The MAP state
is then found withMaxWalkSAT algorithm. The result comes
out as a binary outcome instead of log likelihood by assigning
a threshold equivalent to the smallest probability likelihood of
an entity matching pair according the true labelled data.

VII. EXPERIMENT
A. DATASETS
we evaluate our model on one simulated dataset and one
commercial dataset using Alchemy 2.0 software [44]. The
simulated dataset comes from fraction sampled Foursquare
dataset of LBSN services [14]. For the Foursquare dataset
we simulate the data by randomly blanking 50% of the visit
records to create a sparse encounter network. The definition
of encounter of users is sharing location at least 5 minutes
within one hour with distance within 100m. The processed
data has the number of encounter clusters as shown in the
table 2.

The Foursquare dataset is anonymous with only user ids
to distinguish each user. Therefore we assign each user with
distinctive masked name and mobile number converted from
a commercial customer database with some names and num-
bers closely related. We then randomly select 10% of the
users for tampering by adding one extra leading character
to create one Levenshtein distance difference on half of the
records. This minor change is supposed to be detected by
the similarity functions in the MLN model so it would be
used for the validation of entity resolution. As there is no
other feature or type of entities, we simplify the MLN model
by reducing the number of types to two. We use F1 score
as the performance measurement since the data is highly
imbalanced between positive and negative samples.

The commercial dataset in this experiment is converted
from sources of a commercial vehicle insurance claims sys-
tem and road regulatory incident database with locations con-
fined to the metropolitan cities in Australia. The combined
dataset has a collection of approximately 120,000 personal
entities forming over 2,000 encounter clusters of size from
2 to 64 entities. The data is transformed into two basic
types of format. The first type is the encounter information,
which records pairwise encounter information in a specific
spatiotemporal space consisting of geolocation and time seg-
ments in the format of < p1, p2, loci, tj >. Notice that
an encounter cluster of N persons can be converted to

(n
x

)
pairwise records. The second type is the attribute information
which shows the three features of person including vehicle
license plate, phone number and address. A gold copy of
labelled data is obtained by a legacy rule based system plus
clerical review. We use about 12% of the data for training and
the rest for testing.

FIGURE 6. MLN traffic incident dataset matching results.

B. EXPERIMENT SETUP
The experiment is performed on a Linux VM with 32 cores
and 128GB memory using alchemy 2.0 as the MLN soft-
ware [44]. For the Foursquare dataset we run the bi-level
MLN framework in comparison with the conventional
rule-based model and F-S model. For the traffic encounter
dataset, we first run F-S model followed by spatiotemporal
enhanced F-S model. We then run the encounter network
layer MLN followed by the canopy level MLN for illustration
on the power of iterative canopy blocking methods. Apart
from entity resolution on the persons we also performed
entity resolution on the vehicles using similarity weights on
license number. In each dataset we use 25% for training, 25%
for validation and the rest 50% for test.

C. COMPARISON RESULTS
We first test our proposed MLN method on the simulated
Foursquare dataset described in table 2. The experiment result
on Foursquare dataset from the result table 3 clearly shows
that MLN framework has a overall advantage of F1 scores on
both datasets of New York and Tokyo due to the enhanced
detection capability of link analysis and spatiotemporal link-
age. The slight drop of precision score in Tokyo dataset
against rule-based model is due to the dense encounter
network.

On the traffic encounter network dataset, we performed
three rounds of tests using rule based model of single
field similarity tolerance as bench mark and F-S model
with threshold to cover all the true matches and finally the
MLN model. Then, most importantly, we performed our
two MLN based methods (Cluster level MLN model and
bi-level MLN model) on the same dataset. Apart from entity
resolution on the persons we also performed entity resolution
on the vehicles using similarity weights on license number.
Table 4 has shown the a significant improvement of MLN
network in the metrics of recall, precision and F1 score
over two traditional model even with the assistance of the
spatiotemporal features because feature based comparison
cannot recognise the underlying network structure between
entities and therefore will not give preference to the nodes
within the same encounter cluster. It also shows the improve-
ment of precision and overall F1 score of bi-level MLN
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TABLE 3. Simulated foursquare encounter network entity resolution.

TABLE 4. Commercial road encounter system entity resolution.

model thanks to the expansion of comparison using common
spatiotemporal space as shown in Fig. 6.

VIII. CONCLUSION
In this paper we have demonstrated the bi-level Markov logic
network framework for heterogeneous entity resolution in
encounter network. Experiments on simulated and commer-
cial encounter network datasets have proven the promise of
Markov logic network in the field of entity resolution in a
relationship context. The first contribution we have made
is the inference of the spatiotemporal profile which greatly
extends the scope of detection and is the foundation of further
logic inference of upper layers. Secondly, two sets of MLN
formulas are constructed which has simplified the computa-
tion and inference process while maintaining the accuracy at
acceptable level compared with building a separate frame-
work for each type. Lastly, a novel data matching mechanism
has been devised which integrates both iterative blocking
and network connection strength has resulted in the great
simplification of the first order logic structure and message
passing between different segments of the data. This ensures
maximum scalability of the framework to an encounter net-
work of up to 300 entities within reasonable time.

In the future, we will extend our research in both the design
and the experiment. The first aspect is related to the similarity
based deduction in the first order formulas. In almost all of the
MLN work on entity resolution the basic similarity feature
comparison is a requirement which may invalidate possible
matches in forensic scenarios. In the anti-fraud scenario, for
example, many fraudsters would completely change their
names and birthdate before taking the next offence such that
it is impossible to detect the linkage of two entities by these
similarity based formulas. Spatiotemporal profile can help
but is not sufficient for identification. Advanced network
clustering method is needed to identify the underlined links
between these entities in order to perform more intelligent
discovery. The second aspect is about the time series analysis
of the spatiotemporal statistics. All encounter events occur
with a timestamp and their inference power decays as time
goes by. An exponential compensating component is needed
to offset this effect. The third aspect is regarding the entity

resolution of heterogeneous types of objects. Apart from the
elegant way of dealing with the heterogeneous entity resolu-
tion in one batch, an iterationmethod similar to EM algorithm
could be used to fix all the other types at a time and perform
entity resolution on one type of objects per batch. In this
way, higher accuracy could be achieved as the problem of
mutual dependency could be solved. Finally, we may apply
the proposedMLNmethod to epidemiological contact tracing
database to verify the effectiveness of entity inference in a
critical scenario with time constraint.
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