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Abstract 
MalariaGEN is a data-sharing network that enables groups around the 
world to work together on the genomic epidemiology of malaria. Here 
we describe a new release of curated genome variation data on 7,000 
Plasmodium falciparum samples from MalariaGEN partner studies in 
28 malaria-endemic countries. High-quality genotype calls on 3 million 
single nucleotide polymorphisms (SNPs) and short indels were 
produced using a standardised analysis pipeline. Copy number 
variants associated with drug resistance and structural variants that 
cause failure of rapid diagnostic tests were also analysed.  Almost all 
samples showed genetic evidence of resistance to at least one 
antimalarial drug, and some samples from Southeast Asia carried 
markers of resistance to six commonly-used drugs. Genes expressed 
during the mosquito stage of the parasite life-cycle are prominent 
among loci that show strong geographic differentiation. By continuing 
to enlarge this open data resource we aim to facilitate research into 
the evolutionary processes affecting malaria control and to accelerate 
development of the surveillance toolkit required for malaria 
elimination.
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Introduction
A major obstacle to malaria elimination is the great capacity 
of the parasite and vector populations to evolve in response to 
malaria control interventions. The widespread use of chloro-
quine and DDT in the 1950’s led to high levels of drug and 
insecticide resistance, and the same pattern has been repeated 
for other first-line antimalarial drugs and insecticides. Over the 
past 15 years, mass distribution of pyrethroid-treated bednets 
in Africa and worldwide use of artemisinin combination ther-
apy (ACT) has led to substantial reductions in malaria preva-
lence and mortality, but there are rapidly increasing levels of 
resistance to ACT in Southeast Asian parasites and of pyre-
throid resistance in African mosquitoes. A deep understanding of 
local patterns of resistance and the continually changing nature 
of the local parasite and vector populations is necessary to  
manage the use of drugs and insecticides and to deploy public 
health resources for maximum sustainability and impact.

Current methods for genetic surveillance of the parasite 
population are largely based on targeted genotyping of specific 
loci, e.g. known markers of drug resistance. Whole genome 
sequencing of malaria parasites is currently more expensive 
and complex, particularly at the stage of data analysis, but it 
is an important adjunct to targeted genotyping, as it provides 
a more comprehensive picture of parasite genetic variation. 
It is particularly important for discovery of new drug resist-
ance markers and for monitoring patterns of gene flow and 
evolutionary adaptation in the parasite population.

The Plasmodium falciparum Community Project (Pf  
Community Project) was established with the aim of integrat-
ing parasite genome sequencing into clinical and epidemio-
logical studies of malaria (www.malariagen.net/projects). It 
forms part of the Malaria Genomic Epidemiology Network  
(MalariaGEN), a global data-sharing network comprising  
multiple partner studies, each with its own research objec-
tives and led by a local investigator1. Genome sequencing was  
performed centrally, and partner studies were free to analyse 
and publish the genetic data produced on their own samples, in 
line with MalariaGEN’s guiding principles on equitable data  
sharing1–3. A programme of capacity building for research into 
parasite genetics was developed at multiple sites in Africa  
alongside the Pf Community Project4.

The first phase of the project focused on developing simple 
methods to obtain purified parasite genome DNA from small 
blood samples collected in the field5,6 and on establishing reliable 
computational methods for variant discovery and genotype 
calling from short-read sequencing data7. This presented a 
number of analytical challenges due to long tracts of highly 
repetitive sequence and hypervariable regions within the  
P. falciparum genome, and also because a single infection can 
contain a complex mixture of genotypes. Once a reliable analy-
sis pipeline was in place, a process was established for periodic 
data releases to partners, with continual improvements in data 
quality as new analytical methods were developed. 

Data from the Pf Community Project were initially released 
through a companion project called Pf3k, whose goal was to 
bring together leading analysts from multiple institutions to 
benchmark and standardise methods of variant discovery and 
genotyping calling. A visual analytics web application was 
developed8 for researchers to explore the data. The open  
dataset was enlarged in 2016 when multiple partner stud-
ies contributed to a consortial publication on 3,488 samples  
from 23 countries9.

Data produced by the Pf Community Project have been used 
to address a broad range of research questions, both by the 
groups that generated samples and data and by the wider 
research community, and have generated over 50 previous  
publications (refs 5–55). These data have become a key resource 
for the epidemiology and population genetics of antimalarial 
drug resistance9–22 and an important platform for the discovery 
of new genetic markers and mechanisms of resistance through 
genome-wide association studies23–27 and combined genome- 
transcriptome analysis28. The data have also been used to study 
gene deletions that cause failure of rapid diagnostic tests29; to 
characterise genetic variation in malaria vaccine antigens30,31; 
to screen for new vaccine candidates32; to investigate  
specific host-parasite interactions33,34; and to describe the  
evolutionary adaptation and diversification of local parasite 
populations7,9,12,35–40.

The Pf Community Project data also provide an important 
resource for developing and testing new analytical and compu-
tational methods. A key area of methods development is quanti-
fication of within-host diversity7,41–46, estimation of inbreeding7,47, 
and deconvolution of mixed infections into individual strains48,49. 
The data have also been used to develop and test methods for 
estimating identity by descent50,51, imputation52, typing struc-
tural variants53, designing other SNP genotyping platforms54 and 
data visualisation8,55. In a companion study we performed 
whole genome sequencing of experimental genetic crosses of  
P. falciparum, and this provided a benchmark to test the accu-
racy of our genotyping methods, and to conduct an in-depth 
analysis of indels, structural variants and recombination events 
which are complicated to ascertain in these population genetic 
samples56.

Here we describe a new release of curated genome variation 
data on 7,113 samples of P. falciparum collected by 49 partner 

          Amendments from Version 1
We are grateful to the reviewers for their suggestions and 
have updated the manuscript in response. We now include 
gene IDs every time a gene is mentioned for the first time in 
the manuscript. We have replaced “complex rearrangements” 
in the results section with an explicit description of the event. 
We have added a paragraph to detail that sample collection is 
heterogeneous and due care is needed when interpreting the 
results. No changes have been made to the data or figures.

Any further responses from the reviewers can be found at 
the end of the article
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studies from 73 locations in Africa, Asia, South America and 
Oceania between 2002 and 2015 (Table 1, Supplementary Data; 
Supplementary Table 1 and 2).

Results
Variant discovery and genotyping
We used the Illumina platform to produce genome sequencing 
data on all samples and we mapped the sequence reads against 
the P. falciparum 3D7 v3 reference genome. The median depth 
of coverage was 73 sequence reads averaged across the whole 
genome and across all samples. We constructed an analysis 
pipeline for variant discovery and genotyping, including strin-
gent quality control filters that took into account the unusual  
features of the P. falciparum genome, incorporating lessons  
learnt from our previous work7,56 and the Pf3k project, as  
outlined in the Methods section.

In the first stage of analysis we discovered variation at over 
six million positions, corresponding to about a quarter of the 
23 Mb P. falciparum genome (Supplementary Data; Supple-
mentary Table 3). These included 3,168,721 single nucleotide 
polymorphisms (SNPs): these were slightly more common in 
coding than non-coding regions and were mostly biallelic. The 
remaining 2,882,975 variants were predominantly short indels  
but also included more complex combinations of SNPs and  
indels: these were much more abundant in non-coding than 
coding regions, and mostly had at least three alleles. The pre-
dominance of indels in non-coding regions has been previously 
observed and is most likely a consequence of the extreme AT  
bias which leads to many short repetitive sequences56,57.

For the purpose of this analysis, we excluded all variants in  
subtelomeric and internal hypervariable regions, mitochondrial 
and apicoplast genomes, and some other regions of the genome 
where the mapping of short sequence reads is prone to a high 
error rate due to extremely high rates of variation56. A total 
of 1,838,733 SNPs (of which 1,626,886 were biallelic) and 
1,276,027 indels (or SNP/indel combinations) passed all 
these filters. The pass rate for SNPs in coding regions (66%) 
was considerably higher than that for SNPs in non-coding 
regions (47%), indels in coding regions (37%) and indels in  
non-coding regions (47%). Finally, we removed samples with a 
low genotyping success rate or other quality control issues. We 
also removed replicates and 41 samples with genetic markers 
of infection by multiple Plasmodium species, leaving 5,970  
high-quality samples from 28 countries (Table 1).

We used coverage and read pair analysis to determine  
duplication genotypes around mdr1 (PF3D7_0523000),  
plasmepsin2/3 (PF3D7_1408000 and PF3D7_1408100) and 
gch1 (PF3D7_1224000), each of which are associated with drug  
resistance. For each of these three genes we discovered many 
different sets of breakpoints (29, 10 and 3 pairs of breakpoints  
for mdr1, gch1, and plasmepsin 2/3, respectively), including a 
large and complex structural rearrangement involving a trip-
licated segment embedded within a duplication, in which the  
triplicated segment is inverted (“dup-trpinv-dup”)58 that to 
the best of our knowledge has not been observed before in  
Plasmodium species (Supplementary Data; Supplementary Note,  

Supplementary Tables 4–6). We also used sequence reads cover-
age to identify large structural variants that appear to delete or 
disrupt hrp2 (PF3D7_0831800) and hrp3 (PF3D7_1372200),  
an event that can cause rapid diagnostic tests to malfunction.

The population genetic analyses in this paper are based on 
the filtered dataset of high-quality SNP genotypes in 5,970 
samples. These data are openly available, together with anno-
tated genotyping data on 6 million putative variants in all 
7,113 samples, plus details of partner studies and sampling 
locations, at www.malariagen.net/resource/26.

Global population structure
The genetic structure of the global parasite population reflects its 
geographic regional structure7,9,10 as illustrated by a neighbour- 
joining tree and a principal component analysis of all samples 
based on their SNP genotypes (Figure 1). Based on these 
observations we grouped the samples into eight geographic 
regions: West Africa, Central Africa, East Africa, South 
Asia, the western part of Southeast Asia, the eastern part of  
Southeast Asia, Oceania and South America. Each of these can 
be viewed as a regional sub-population of parasites, which is 
more or less differentiated from other regional sub-populations 
depending on rates of gene flow and other factors. The differ-
ent regions encompass a range of epidemiological and environ-
mental settings, varying in transmission intensity, vector species 
and history of antimalarial drug usage. Note these regional  
classifications are intentionally broad, and therefore overlook 
many interesting aspects of local population structure, e.g. a  
distinctive Ethiopian sub-population can be identified by more 
detailed analysis of African samples12.

Genetically mixed infections were considerably more common 
in Africa than other regions, consistent with the high inten-
sity of malaria transmission in Africa (Figure 2a). Analysis 
of F

WS
, a measure of within-host diversity7, shows that most 

samples from Southeast Asia (1763/2341), South America 
(37/37) and Oceania (158/201) have F

WS
 >0.95, which to a 

first approximation indicates that the infection is dominated 
by a clonal population of parasite41. In contrast, nearly half of  
samples from Africa (1625/3314) have F

WS
 <0.95, indicating the 

presence of more complex infections. Genetically mixed infec-
tions were also common in Bangladesh (41/77 samples have 
F

WS
 <0.95), another area of high malaria transmission and the 

only South Asian country represented in this dataset, but did 
not reach the extremely high levels of within-host diversity 
(F

WS
 <0.2) observed in some samples from Africa.

The average nucleotide diversity across the global sample  
collection was 0.040% (median=0.028%), i.e. two randomly-
selected samples differ by an average of 4 nucleotide positions 
per 10kb. Levels of nucleotide diversity vary greatly across the 
genome56 and also geographically (Figure 2b). Distributions 
of values were highest in Africa, followed by Bangladesh, but 
the scale of regional differences was relatively modest, ranging 
from an average of 0.030% in Eastern Southeast Asia to 0.040% 
in West Africa (median=0.019% and 0.028% respectively; 
Figure 2b). In other words, the nucleotide diversity of each 
regional parasite population was not much less than that of 
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Table 1. Count of samples in the dataset. Countries are grouped into eight geographic regions based 
on their geographic and genetic characteristics. For each country, the table reports: the number of distinct 
sampling locations; the total number of samples sequenced; the number of high-quality samples included in 
the analysis; and the percentage of samples collected between 2012–2015, the most recent sampling period 
in the dataset. Eight samples were obtained from travellers returning from an endemic country, but where the 
precise site of the infection could not be determined. These were reported from Ghana (3 sequenced samples/2 
analysis set samples), Kenya (2/1), Uganda (2/1) and Mozambique (1/1). “Lab samples” contains all sequences 
obtained from long-term in vitro cultured and adapted isolates, e.g. laboratory strains. The breakdown by site is 
reported in Supplementary table 1 and the list of contributing studies in Supplementary table 2.

Region Country Sampling 
locations

Sequenced 
samples

Analysis set 
samples

% analysis samples 
2012–2015

South America 
(SAM)

Colombia 4 16 16 0%

Peru 2 23 21 0%

West Africa (WAF)

Benin 1 102 36 100%

Burkina Faso 1 57 56 0%

Cameroon 1 239 235 100%

Gambia 4 277 219 67%

Ghana 3 1,003 849 56%

Guinea 2 197 149 0%

Ivory Coast 3 70 70 100%

Mali 5 449 426 80%

Mauritania 4 86 76 100%

Nigeria 2 42 29 97%

Senegal 1 86 84 100%

Central Africa (CAF) Congo DR 1 366 344 100%

East Africa (EAF)

Ethiopia 2 34 21 100%

Kenya 3 129 109 55%

Madagascar 3 25 24 100%

Malawi 2 351 254 0%

Tanzania 5 350 316 85%

Uganda 1 14 12 0%

South Asia (SAS) Bangladesh 2 93 77 64%

Western Southeast 
Asia (WSEA)

Myanmar 5 250 211 71%

Western Thailand 2 962 868 24%

Eastern Southeast 
Asia (ESEA)

Cambodia 5 1,214 896 32%

Northeastern 
Thailand 1 28 20 75%

Laos 2 131 120 21%

Viet Nam 2 264 226 11%

Oceania (OCE)
Indonesia 1 92 80 73%

Papua New Guinea 3 139 121 63%

Returning travellers Various locations 0 8 5 0%

Lab samples Various locations 0 16 0 0%

Total 73 7,113 5,970 52%
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Figure 1. Population structure.  (A) Genome-wide unrooted neighbour-joining tree showing population structure across all sites, with 
sample branches coloured according to country groupings (Table 1): South America (green, n=37); West Africa (red, n=2231); Central Africa 
(orange, n=344); East Africa (yellow, n=739); South Asia (purple, n=77); West Southeast Asia (light blue; n=1079); East Southeast Asia (dark 
blue; n=1262); Oceania (magenta; n=201). The circular inset shows a magnified view of the part of the tree where the majority of samples 
from Africa coalesce, showing that the three African sub-regions are genetically close but distinct. (B, C) First three component of a genome-
wide principal coordinate analysis. The first axis (PC1) captures the separation of African and South American from Asian samples. The 
following two axes (PC2 and PC3) capture finer levels of population structure due to geographical separation and selective forces. Each point 
represents a sample and the colour legend is the same as above.
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Figure 2. Characteristics of  the eight regional parasite populations.  (A) Distribution of within-host diversity, as measured by FWS, 
showing that genetically mixed infections were considerably more common in Africa than other regions, consistent with the high intensity 
of malaria transmission in Africa. (B) Distribution of per site nucleotide diversity calculated in non-overlapping 25kbp genomic windows. 
We only considered coding biallelic SNPs to reduce the ascertainment bias caused by poor accessibility of non-coding regions. In both 
previous panels, thick lines represent median values, boxes show the interquartile range, and whiskers represent the bulk of the distribution, 
discounting outliers. (C) Genome-wide median LD (y-axis, measured by r2) between pairs of SNPs as function of their physical distance  
(x-axis, in bp), showing a rapid decay in all regional parasite populations. The inset panel shows a magnified view of the decay, showing 
that in all populations r2 decayed below 0.1 (dashed horizontal line) within 500 bp. All panels utilise the same palette, with colours 
denoting each geographic region.

the global parasite population. This is consistent with the idea 
that the global P. falciparum population has a common African 
origin and that historically there must have been significant 
levels of migration.

All regional sub-populations showed very low levels of 
linkage disequilibrium relative to human populations, e.g. r2 
decayed to <0.1 within 500 bp (Figure 2c). As expected, 
African populations had the highest rates of LD decay, implying 
the highest levels of haplotype diversity.

Geographic patterns of population differentiation and 
gene flow
Parasite sub-populations in different locations naturally tend 
to differentiate over time unless there is sufficient gene flow to 
counterbalance genetic drift. Genome-wide estimates of F

ST
 

provide an indicator of this process of genetic differentiation, 
which is partly determined by geographic distance (Figure 3). 
For example, we observe much greater genetic differentiation 
between South America and South Asia (genome-wide 
average F

ST
 0.22) or between Africa and Oceania (0.20) than 

between sub-regions within Asia (<0.1) or within Africa 
(<0.02). 

These data reveal some interesting exceptions to the gen-
eral rule that genome-wide F

ST
 is correlated with geographic 

distance. For example, African parasites are more strongly dif-
ferentiated from Southeast Asian parasites (genome-wide 
average F

ST
 0.20) than they are from parasites in neighbour-

ing Bangladesh (0.11). If this is examined in more detail, there 
is an unexpectedly steep gradient of genetic differentiation at 
the geographical boundary between South Asia and Southeast 
Asia, i.e. parasites sampled in Myanmar and Western Thailand 
are much more strongly differentiated from parasites sampled 
in Bangladesh (genome-wide F

ST
 0.07) than would be expected 

given that these are neighbouring countries. As discussed later, 
Southeast Asia is the global epicentre of antimalarial drug  
resistance, and these observations add to a growing body of  
evidence that Southeast Asian parasites have acquired a 
wide range of genomic features that are likely due to natural  
selection rather than genetic drift23,40.

It is noteworthy that the level of genetic differentiation 
between western and eastern parts of Southeast Asia (genome- 
wide F

ST
 0.05) is greater than between West Africa and East  

Africa (0.02) although the geographic distances are much greater 
in Africa. This is likely due to the lower intensity of malaria  
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Figure 3. Geographic patterns of population differentiation and gene flow. Each point represents one pairwise comparison between 
two regional parasite populations. The x-axis reports the geographic separation between the two populations, measured as great-circle 
distance between the centre of mass of each population and without taking into account natural barriers. The y-axis reports the genetic 
differentiation between the two populations, measured as average genome-wide FST. Points are coloured based on the regional populations 
they represent: between African populations (red); between Asian populations (blue); between Southeast Asia (as a whole) and Oceania, 
Africa or South America (purple); all the rest (orange).

transmission in Southeast Asia, and in particular the presence of 
a malaria-free corridor running through Thailand, which act 
as barriers to gene flow across the region23,40.

Genes with high levels of geographic differentiation
The F

ST
 metric can also be calculated for individual vari-

ants to identify specific genes that have acquired high levels of 
geographic differentiation relative to the genome as a whole. 
This can be done either at the global level (to identify variants 
that are highly differentiated between different regions of the 
world) or at the local level (to identify variants that are highly 
differentiated between different sampling locations within a 
region).

To identify variants that are strongly differentiated at the glo-
bal level, we began by estimating F

ST
 for each SNP across 

all of the eight regional sub-populations. The group of SNPs 
with the highest global F

ST
 levels were found to be strongly 

enriched for non-synonymous mutations, suggesting that the  
process of differentiation is at least in part due to natural selec-
tion (Figure 4). After ranking all SNPs according to their  
global F

ST
 value, we calculated a global differentiation score for 

each gene based on the highest-ranking non-synonymous SNP 

within the gene (see Methods). All genes are ranked accord-
ing to their global differentiation score in the accompanying  
data release, and those with the highest score are listed in  
Supplementary Table 7 (Supplementary Data). The most 
highly differentiated gene, p47 (PF3D7_1346800), is known to  
interact with the mosquito immune system59 and has two vari-
ants (S242L and V247A) that are at fixation in South America  
but absent in other geographic regions. Also among the five 
most highly differentiated genes are gig (PF3D7_0935600, 
implicated in gametocytogenesis60), pfs16, (PF3D7_0406200, 
expressed on the surface of gametes61) and ctrp (PF3D7_0315200, 
expressed on the ookinete cell surface and essential for mosquito  
infection62). Thus, four of the five most highly differentiated 
parasite genes are involved in the process of transmission by 
the mosquito vector, raising the possibility that this reflects  
evolutionary adaptation of the P. falciparum population to the 
different Anopheles species that transmit malaria in different  
geographical regions.

It is more difficult to characterise variants that are strongly 
differentiated at the local level, due to smaller sample sizes 
and various sources of sampling bias, but a crude estimate can 
be obtained by analysis of each of the six geographical regions 
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Figure 4.  SNPs geographic differentiation. Coloured lines show the proportions of SNPs in ten FST bins, stratified by genomic regions: 
non-synonymous (red), synonymous (yellow), intronic (green) and intergenic (blue). FST is calculated between all eight regional parasite 
populations and the number of SNPs in each bin is indicated in the background histogram. The y-axis on the right-hand side refers to the 
histogram and is on a log scale.

with samples from multiple countries. F
ST

 was estimated for 
each SNP across different sampling locations within each  
geographical region, and the results for different regions were 
combined by a heuristic approach to obtain a local differentiation  
score for each gene (see Methods). A range of genes associated  
with drug resistance (crt (PF3D7_0709000), dhfr (PF3D7_
0417200), dhps (PF3D7_0810800), kelch13 (PF3D7_1343700), 
mdr1 (PF3D7_0523000), mdr2 (PF3D7_1447900) and fd 
(PF3D7_1318100)) were in the top centile of local differen-
tiation scores (Supplementary Data; Supplementary Figure 1,  
Supplementary Table 8, Supplementary Note).

Geographic patterns of drug resistance
Classification of samples based on markers of drug resistance. 
Antimalarial drug resistance represents a major focus of 
research for many partner studies within the Pf Community 
Project, and this dataset therefore contains a significant body 
of data that have appeared in previous reports on drug resist-
ance. Readers are referred to these publications for more 
detailed analyses of local patterns of resistance9–14,16–22 and 
of resistance to specific drugs including chloroquine16,21, 
sulfadoxine-pyrimethamine16,19,21 and artemisinin combination 
therapy9–11,13–15,17,18,21,22.

Here we have classified all samples into different types of drug 
resistance based on published genetic markers and current 
knowledge of the molecular mechanisms (see www.malari-
agen.net/resource/26 for details of the heuristic used). Table 2 
summarises the frequency of different types of drug resistance 
in samples from different geographical regions. Overall, we 

observed higher prevalence of samples classified as resistant in 
Southeast Asia than anywhere else, with multiple samples resist-
ant to all drugs considered. Note that samples were collected 
over a relatively long time period (2002–15) during which 
there were major changes in global patterns of drug resist-
ance, and that the sampling locations represented in a given year 
depended on which partner studies were operative at the 
time. To alleviate this problem, we have also divided the data into 
samples collected before and after 2011 (Supplementary Data; 
Supplementary table 10), but temporal trends in aggregated data 
should be interpreted with due caution.

Below we summarise the overall profile of drug resistance types 
in the regional sub-populations: this is intended simply 
to provide context for users of this dataset, and should not be 
regarded as a statement of the current epidemiological situa-
tion. The Supplementary Notes (Supplementary Data) contain 
a more detailed description of the geographical distribution of 
haplotypes, CNV breakpoints, interactions between genes, and 
variants associated with less commonly used antimalarial drugs. 
In the accompanying data release, we also identify samples with 
mdr1, plasmepsin2/3 and gch1 gene amplifications that can 
affect drug resistance.

Chloroquine resistance. Samples were classified as chloro-
quine resistant if they carried the crt 76T allele. As shown in 
Table 2, this was found in almost all samples from South-
east Asia, South America and Oceania. It was also found across 
Africa but at lower frequencies, particularly in East Africa 
where chloroquine resistance is known to have declined since 
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chloroquine was discontinued63–65. Supplementary Table 11 
(Supplementary Data) shows the geographical distribution of 
different crt haplotypes (based on amino acid positions 72–76) 
which is consistent with the theory that chloroquine resistance 
spread from Southeast Asia to Africa with multiple independent 
origins in South America and Oceania66,67. The crt locus is also 
relevant to other types of drug resistance, e.g. crt variants that are 
relatively specific to Southeast Asia form the genetic background 
of artemisinin resistance, and newly emerging crt alleles have 
been associated with the spread of ACT failure due to 
piperaquine resistance13,14,22,68.

Sulfadoxine-pyrimethamine resistance. Clinical resistance 
to sulfadoxine-pyrimethamine (SP) is determined by multiple 
mutations and their interactions, so following current practice69 
we classified SP resistant samples into four overlapping types: 
(i) carrying the dhfr 108N allele, associated with pyrimeth-
amine resistance; (ii) the dhps 437G allele, associated with 
sulfadoxine resistance; (iii) carrying the dhfr triple mutant, 
which is strongly associated with SP failure; (iv) carrying the 
dhfr/dhps sextuple mutant, which confers a higher level of SP 
resistance. As shown in Table 2, dhfr 108N was found in almost 
all samples in all regions apart from West Africa, while dhps 
437G was at very high frequency throughout most of Africa 
and Asia, and at lower frequencies in South America and Oce-
ania (see also Supplementary Data; Supplementary Table 12).  
Triple mutant dhfr parasites were common throughout Africa 
and Asia, whereas sextuple mutant dhfr/dhps parasites were at 
much lower frequency except in Western Southeast Asia. In the 
accompanying data release, we also identify samples with gch1 
gene amplifications (Supplementary Data; Supplementary Table 
4) that can modulate SP resistance70, although their effect on 
the clinical outcome and interaction with mutations in dhfr and 
dhps is not fully established.

Resistance to artemisinin combination therapy. We classi-
fied samples as artemisinin resistant based on the World Health 
Organization classification of non-synonymous mutations in 
the propeller region of the kelch13 gene that have been asso-
ciated with delayed parasite clearance71. By this definition, 
artemisinin resistance was confined to Southeast Asia but, 
as previously reported, this dataset contains a substantial 
number of non-synonymous kelch13 propeller SNPs occurring 
at <5% frequency in Africa and elsewhere9. The most common 
ACT formulations in Southeast Asia are artesunate-mefloquine 
(AS-MQ) and dihydroartemisinin-piperaquine (DHA-PPQ). 
We classified samples as mefloquine resistant if they had 
mdr1 amplification72 or as piperaquine resistant if they had  
plasmepsin 2/3 amplification25. Mefloquine resistance was 
observed throughout Southeast Asia and was most common in 
the western part. Piperaquine resistance was confined to east-
ern Southeast Asia with a notable concentration in western 
Cambodia. Elsewhere11,13 we describe the kel1/pla1 lineage of 
artemisinin- and piperaquine-resistant parasites that expanded 
in western Cambodia during 2008–13, and then spread to other 
countries during 2013–18, causing high rates of DHA-PPQ 
treatment failure across eastern Southeast Asia: since the 
current dataset extends only to 2015 it captures only the first 
phase of the kel1/pla1 lineage expansion.

HRP2/3 deletions that affect rapid diagnostic tests
Rapid diagnostic tests (RDTs) provide a simple and inexpensive 
way to test for parasites in the blood of patients who are sus-
pected to have malaria, and have become a vital tool for malaria 
control73,74. The most widely used RDTs are designed to detect 
P. falciparum histidine-rich protein 2 and cross-react with 
histidine-rich protein 3, encoded by the hrp2 and hrp3 genes 
respectively. Parasites with gene deletions of hrp2 and/or 
hrp3 have emerged as an important cause of RDT failure in a 
number of locations75–79. It is difficult to devise a simple genetic 
assay to monitor for risk of RDT failure because hrp2 and 
hrp3 deletions comprise a diverse mixture of large structural 
variations with multiple independent origins, and both genes are 
located in subtelomeric regions of the genome with very high 
levels of natural variation29,80–83. In the absence of a well- 
validated algorithmic method, we visually inspected sequence 
read coverage and identified samples with clear evidence of large 
structural variants that disrupted or deleted the hrp2 and hrp3 
genes. We took a conservative approach: samples that appeared 
to have a mixture of deleted and non-deleted genotypes were 
classified as non-deleted. 

Deletions were found at relatively high frequency in Peru (8 
of 21 samples had hrp2 deletions, 14 had hrp3 deletions and 6 
had both) but were not seen in samples from Colombia and were 
relatively rare outside South America. Oceania was the only 
other region where we observed hrp2 deletions, but at very 
low frequency (4%, n=3/80), and also had hrp3 deletions 
(25%) though no combined deletions were seen. Deletions of 
hrp3 only were more geographically widespread than hrp2 
deletions, being common in Ethiopia (43%, n=9/21) and in  
Senegal (7%, n=6/84), and at relatively low frequency (<5%) in 
Kenya, Cambodia, Laos, and Vietnam (Supplementary Data; 
Supplementary Table 13). Note that these findings might under- 
estimate the true prevalence of hrp2/hrp3 deletions, due to 
sampling bias (our samples were primarily collected from  
RDT-positive cases) and also because we focused on large 
structural variants and did not consider polymorphisms that 
might also cause RDT failure but would require more sophis-
ticated analytical approaches. There is a need for more  
reliable diagnostics of hrp2 and hrp3 deletions, and we hope that 
these open data will accelerate this important area of applied  
methodological research. 

Discussion
This open dataset comprises sequence reads and genotype 
calls on over 7,000 P. falciparum samples from MalariaGEN 
partner studies in 28 countries. After excluding variants and 
samples that failed to meet stringent quality control criteria, the 
dataset contains high-quality genotype calls for 3 million poly-
morphisms including SNPs, indels, CNVs and large structural 
variations, in almost 6,000 samples. The data can be analysed 
in their entirety or can be filtered to select for specific genes, 
or geographical locations, or samples with particular geno-
types. This is twice the sample size of our previous consortial  
publication9 and is the largest available data resource for 
analysis of P. falciparum population structure, gene flow and  
evolutionary adaptation. Each sample has been annotated to 
show its profile of resistance to six major antimalarial drugs 
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and whether it carries structural variations that can cause RDT  
failure. The classification scheme is heuristic and based on a 
subset of known genetic markers, so it should not be treated 
as a failsafe predictor of the phenotype of a particular sample. 
Our purpose in providing these annotations is to make it easy 
for users without specialist training in genetics to explore the  
global dataset and to analyse any subset of samples for key  
features that are relevant to malaria control. Samples were col-
lected by independent groups that were operative at a given time 
and in a given place with distinct objectives; while care needs  
to be taken when interpreting results spanning multiple years 
and geographical settings (e.g. aggregated trends of drug 
resistance prevalence), this heterogeneity also allows for the  
exploration of a wide range of epidemiological and transmission 
settings.

An important function of this curated dataset is to provide 
information on the provenance and key features of samples 
associated with each partner study, thus allowing the findings 
reported in different publications to be linked and compared. 
Data produced by the Pf Community Project have been 
analysed in more than 50 publications (refs 5–55) and a few 
examples will serve to illustrate the diverse ways in which the 
data are being used. An analysis of samples collected across 
Africa by Amambua-Ngwa, Djimde and colleagues found 
evidence that parasite population structure overlaps with 
historical patterns of human migration and that the P. falciparum 
population in Ethiopia is significantly diverged from other 
parts of the continent12. A series of studies by Amato, Miotto 
and colleagues have documented the evolution of a multidrug- 
resistant lineage of P. falciparum that originated in Western 
Cambodia over ten years ago and is now expanding rapidly 
across Southeast Asia, acquiring additional resistance mutations 
as it spreads11,13,14. McVean and colleagues have developed a 
computational method for deconvolution of the haplotypic struc-
ture of mixed infections, allowing analysis of the pedigree 
structure of parasites that are cotransmitted by the same 
mosquito49. Bahlo and colleagues have developed a different 
haplotype-based method to describe the relatedness structure 
of the parasite population and to identify new genomic loci with 
evidence of recent positive selection50.

A recent report from the World Health Organization high-
lights the need for improved surveillance systems in sustaining 
malaria control and achieving the long-term goal of malaria 
eradication84. To be of practical value for national malaria 
control programmes, genetic data must address well-defined 
use cases and be readily accessible85. Amplicon sequencing 
technologies provide a powerful new tool for targeted genotyp-
ing that could feasibly be implemented locally in malaria-endemic 
countries86,87, but there remains a need for the international 
malaria control community to generate and share whole 
genome sequencing data, e.g. to monitor for newly emerging 
forms of drug resistance and to understand regional patterns of 
parasite migration. The next generation of long-read sequencing 
technologies will improve the precision of population genomic 
inference, e.g. by enabling analysis of hypervariable regions 
of the genome, and of pedigree structures within mixed infec-
tions. The accuracy with which the resistance phenotype of a 

sample can be predicted from genome sequencing data 
will also improve as we gain better functional understanding 
of the polygenic determinants of drug resistance.

Thus, the next few years are likely to see major advances in 
both the scale and information content of parasite genomic data. 
The practical value for malaria control will be greatly enhanced 
by the progressive acquisition of longitudinal time-series 
data, particularly if this is linked to other sources of epidemio-
logical data and translated into reliable, actionable information 
with sufficient rapidity to allow control programmes to moni-
tor the impact of their interventions on the parasite population 
in near real time. The Pf Community Project provides proof 
of concept that systems can be developed for groups in dif-
ferent countries to share data, to analyse it using standardised 
methods, and to make it readily accessible to other 
researchers and the malaria control community.

Methods
Here we summarise the bioinformatics methods used to  
produce and analyse the data; further details are available at  
www.malariagen.net/resource/26.

Ethical approval
All samples in this study were derived from blood samples 
obtained from patients with P. falciparum malaria, collected with 
informed consent from the patient or a parent or guard-
ian. At each location, sample collection was approved by the 
appropriate local and institutional ethics committees. The fol-
lowing local and institutional committees gave ethical approval 
for the partner studies: Human Research Ethics Committee of 
the Northern Territory Department of Health & Families and 
Menzies School of Health Research, Darwin, Australia; National 
Research Ethics Committee of Bangladesh Medical Research 
Council, Bangladesh; Comite d’Ethique de la Recherche -  
Institut des Sciences Biomedicales Appliquees, Benin; Ministere 
de la Sante – Republique du Benin, Benin; Comité d’Éthique, 
Ministère de la Santé, Bobo-Dioulasso, Burkina Faso; 
Institutional Review Board Centre Muraz, Burkina Faso; Ministry 
of Health National Ethics Committee for Health Research, 
Cambodia; Institutional Review Board University of Buea, 
Cameroon; Comite Institucional de Etica de investigaciones en 
humanos de CIDEIM, Colombia; Comité National d’Ethique 
de la Recherche, Cote d’Ivoire; Comite d’Ethique Universite de  
Kinshasa, Democratic Republic of Congo; Armauer Hansen 
Research Institute Institutional Review Board, Ethiopia; Addis 
Ababa University, Aklilu Lemma Institute of Pathobiology Institu-
tional Review Board, Ethiopia; Kintampo Health Research Centre 
Institutional Ethics Committee, Ghana; Ghana Health Service 
Ethical Review Committee, Ghana; University of Ghana Noguchi 
Medical Research Institute, Ghana; Navrongo Health Research 
Centre Institutional Review Board, Ghana; Comite d’Ethique 
National Pour la Recherché en Santé, Republique de Guinee; 
Indian Council of Medical Research, India; Eijkman Institute 
Research Ethics Commission, Eijkman Institute for Molecular 
Biology, Jakarta, Indonesia; KEMRI Scientific and Ethics Review 
Unit, Kenya; Ministry of Health National Ethics Commit-
tee For Health Research, Laos; Ethical Review Committee of  
University of Ilorin Teaching Hospital, Nigeria; Comité National 
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d’Ethique auprès du Ministère de la Santé Publique, Madagascar;  
College of Medicine Regional Ethics Committee Univer-
sity of Malawi, Malawi; Faculté de Médecine, de Pharmacie 
et d’Odonto-Stomatologie, University of Bamako, Bamako, 
Mali; Ethics Committee of the Ministry of Health, Mali; Ethics  
committee of the Ministry of Health, Mauritania; Department of 
Medical Research (Lower Myanmar); Ministry of Health, Govern-
ment of The Republic of the Union of Myanmar; : Institutional 
Review Board, Papua New Guinea Institute of Medical Research, 
Goroka, Papua New Guinea; PNG Medical Research Advisory 
Council (MRAC), Papua New Guinea; Institutional Review Board, 
Universidad Nacional de la Amazonia Peruana, Iquitos, Peru; 
Ethics Committee of the Ministry of Health, Senegal; National 
Institute for Medical Research and Ministry of Health and Social 
Welfare, Tanzania; Medical Research Coordinating Committee 
of the National Institute for Medical Research, Tanzania; Ethics 
Committee, Faculty of Tropical Medicine, Mahidol University, 
Bangkok, Thailand; Ethics Committee at Institute for the Devel-
opment of Human Research Protections, Thailand; Gambia 
Government/MRC Joint Ethics Committee, Banjul, The Gambia; 
London School of Hygiene and Tropical Medicine Ethics 
Committee, London, UK; Oxford Tropical Research Ethics 
Committee, Oxford, UK; Walter Reed Army Institute of Research, 
USA; National Institute of Allergy and Infectious Diseases, 
Bethesda, MD, USA; Ethical Committee, Hospital for Tropi-
cal Diseases, Ho Chi Minh City, Vietnam; Ministry of Health 
Institute of Malariology-Parasitology-Entomology, Vietnam.

Standard laboratory protocols were used to determine DNA 
quantity and proportion of human DNA in each sample as 
previously described7,56.

Data generation and curation
Reads mapping to the human reference genome were 
discarded before all analyses, and the remaining reads were 
mapped to the P. falciparum 3D7 v3 reference genome using bwa 
mem88 version 0.7.15. “Improved” BAMs were created using 
the Picard tools CleanSam, FixMateInformation and 
MarkDuplicates version 2.6.0 and GATK v3 base quality 
score recalibration. All lanes for each sample were merged to 
create sample-level BAM files.

We discovered potential SNPs and indels by running GATK’s 
HaplotypeCaller89 independently across each of the 
7,182 sample-level BAM files and genotyped these for each 
of the 16 reference sequences (14 chromosomes, 1 apicoplast 
and 1 mitochondria) using GATK’s CombineGVCFs and 
GenotypeGCVFs.

SNPs and indels were filtered using GATK’s Variant Quality 
Score Recalibration (VQSR). Variants with a VQSLOD 
score ≤ 0 were filtered out. Functional annotations were 
applied using snpEff90 version 4.1. Genome regions were anno-
tated using vcftools version 0.1.10 and masked if they were 
outside the core genome. Unless otherwise specified, we used 
biallelic SNPs that pass all quality filters for all the analysis.

We removed 69 samples from lab studies to create the release 
VCF files which contain 7,113 samples. VCF files were  

converted to ZARR format and subsequent analyses were mainly 
performed using scikit-allel version 1.1.18 and the 
ZARR files.

We identified species using nucleotide sequence from reads map-
ping to six different loci in the mitochondrial genome, using 
custom java code (available at https://github.com/malariagen/
GeneticReportCard). The loci were located within the cox3 gene 
(PF3D7_MIT01400), as described in a previously published 
species detection method91. Alleles at various mitochondrial 
positions within the six loci were genotyped and used for clas-
sification as shown in Supplementary Table 14 (Supplementary 
Data).

We created a final analysis set of 5,970 samples after removing 
replicate, low coverage, suspected contaminations or mislabelling 
and mixed-species samples.

Genotyping of drug resistance markers and samples 
classification
We used two complementary methods to determine tandem 
duplication genotypes around mdr1, plasmepsin2/3 and gch1, 
namely a coverage-based method and a method based on position 
and orientation of reads near discovered duplication breakpoints. 
In brief, the outline algorithm is: (1) Determine copy number 
at each locus using a coverage based hidden Markov model 
(HMM); (2) Determine breakpoints of identified duplications 
by manual inspection of reads and face-away read pairs around 
all sets of breakpoints; (3) for each locus in each sample, initially 
set copy number to that determined by the HMM if ≤ 10 CNVs 
discovered in total, else consider undetermined; (4) if face- 
away pairs provide self-sufficient evidence for the presence or 
absence of the amplification, override the HMM call; (5) for 
each locus in each sample, set the breakpoint to be that with 
the highest proportion of face-away reads.

We genotyped deletions in hrp2 and hrp3 by manual inspection 
of sequence read coverage plots.

The procedure used to map genetic markers to inferred resist-
ance status classification is described in detail for each 
drug in the accompanying data release (https://www.malariagen.
net/resource/26).

In brief, we called amino acids at selected loci by first deter-
mining the reference amino acids and then, for each sample, 
applying all variations using the GT field of the VCF file. The 
amino acid and copy number calls generated were used to clas-
sify all samples into different types of drug resistance. Our 
methods of classification were heuristic and based on the 
available data and current knowledge of the molecular mecha-
nisms. Each type of resistance was considered to be either  
present, absent or unknown for a given sample.

Population-level analysis and characterisation
We calculate genetic distance between samples using biallelic 
SNPs that pass filters using a method previously described9. In 
addition to calculating genetic distance between all pairs of 
samples from the current data set, we also calculated the genetic 
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distance between each sample and the lab strains 3D7, 7G8, 
GB4, HB3 and Dd2 from the Pf3k project.

The matrix of genetic distances was used to generate  
neighbour-joining trees and principal coordinates. Based on these 
observations we grouped the samples into eight geographic 
regions: South America, West Africa, Central Africa, East Africa, 
South Asia, the western part of Southeast Asia, the eastern part 
of Southeast Asia and Oceania, with samples assigned to region 
based on the geographic location of the sampling site. Five sam-
ples from returning travellers were assigned to region based 
on the reported country of travel.

F
WS

 was calculated using custom python scripts using the  
method previously described7. Nucleotide diversity (π) was cal-
culated in non-overlapping 25 kbp genomic windows, only 
considering coding biallelic SNPs to reduce the ascertainment 
bias caused by poor accessibility of non-coding regions. LD 
decay (r2) was calculated using the method of Rogers and Huff 
and biallelic SNPs with low missingness and regional allele 
frequency >10%. Mean F

ST
 between populations was calculated 

using Hudson’s method.

Allele frequencies stratified by geographic regions and sam-
pling sites were calculated using the genotype calls produced by 
GATK. F

ST
 was calculated between all 8 regions, and also 

between all sites with at least 25 QC pass samples. F
ST

 between 
different locations for individual SNPs was calculated using  
Weir and Cockerham’s method.

We defined the global differentiation score for a gene 

as 1
( )

N

max N
− , where is the rank of the non-synonymous SNP 

with the highest global F
ST

 value within that gene. To define the 
local differentiation score, we first calculated for each region 
containing multiple sites (WAF, EAF, SAS, WSEA, ESEA and 
OCE) F

ST
 for each SNP between sites within that region. For 

each gene, we then calculated the rank of the highest F
ST

 non- 
synonymous SNP within that gene for each of the six regions. 
We defined the local differentiation score for each gene using 
the second highest of these six ranks (N), to ensure that the 
gene was highly ranked in at least two populations, i.e. to mini-
mise the chance of artefactually ranked a gene highly due to a 
single variant in a single population. The final local differen-
tiation score was normalised to ensure that the range of possible 
scores was between 0 and 1, local differentiation score was 

defined as 1
( )

N

max N
− .

An earlier version of this article can be found on bioRxiv 
(DOI: https://doi.org/10.1101/824730).

Data availability
Underlying data
Data are available under the MalariaGEN terms of use for the 
Pf Community Project: https://www.malariagen.net/data/terms-
use/p-falciparum-community-project-terms-use. Depending on the 

nature, format and content of the data, appropriate mechanisms 
have been utilised for data access, as detailed below.

This project contains the following underlying data that are  
available as an online resource: www.malariagen.net/resource/26. 
Data are also available from Figshare.

Figshare: Supplementary data to: An open dataset of Plasmodium 
falciparum genome variation in 7,000 worldwide samples. https://
doi.org/10.6084/m9.figshare.1338860392.  

•    Study information: Details of the 49 contributing partner 
studies, including description, contact information and key 
people.

•    Sample provenance and sequencing metadata: sample 
information including partner study information, location 
and year of collection, ENA accession numbers, and QC 
information for 7,113 samples from 28 countries.

•    Measure of complexity of infections: characterisation of 
within-host diversity (FWS) for 5,970 QC pass samples.

•    Drug resistance marker genotypes: genotypes at known 
markers of drug resistance for 7,113 samples, containing 
amino acid and copy number genotypes at six loci: crt, 
dhfr, dhps, mdr1, kelch13, plasmepsin 2–3.

•    Inferred resistance status classification: classification of 
5,970 QC pass samples into different types of resistance  
to 10 drugs or combinations of drugs and to RDT detection: 
chloroquine, pyrimethamine, sulfadoxine, mefloquine, 
artemisinin, piperaquine, sulfadoxine- pyrimethamine 
for treatment of uncomplicated malaria, sulfadoxine- 
pyrimethamine for intermittent preventive treatment in 
pregnancy, artesunate-mefloquine, dihydroartemisinin-
piperaquine, hrp2 and hrp3 genes deletions.

•    Drug resistance markers to inferred resistance status: 
details of the heuristics utilised to map genetic markers 
to resistance status classification.

•    Gene differentiation: estimates of global and local 
differentiation for 5,561 genes.

•    Short variants genotypes: Genotype calls on 6,051,696  
SNPs and short indels in 7,113 samples from 29 countries, 
available both as VCF and zarr files.

Extended data
This project contains the following underlying supplementary  
data available as a single document download: www.malari-
agen.net/resource/26. Extended data are also available from  
Figshare. 

Figshare: Supplementary data to: An open dataset of Plasmodium 
falciparum genome variation in 7,000 worldwide samples. https://
doi.org/10.6084/m9.figshare.1338860392.

‘File9_Pf_6_supplementary’ contains the Supplementary Note, 
Supplementary Tables and Supplementary Figure: 

•    Supplementary Note

○    Analysis of local differentiation score
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○    The classic 76T chloroquine resistance mutation in 
crt is found on multiple haplotypes

○    Suplhadoxine-pyrimethamine resistance is widespread 
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This manuscript from the MalariaGEN consortium, a data-sharing community of teams working on 
Plasmodium falciparum genomic epidemiology, presents the new release of curated P. falciparum 
genomes from isolates collected in 73 locations in Africa, Asia, South America and Oceania. 
  
Based on robust and perfectly detailed methods (ranging from the treatment of the blood 
samples, the DNA extraction, the Illumina and computational platforms developed to produce 
genome sequencing for variant discovery and genotype calling), they analyzed 7000 P. falciparum 
genome sequences and provided numerous exciting data. For instance, they found that variations 
(SNPs and indels) in P. falciparum genome affected about a quarter of the 23 Mb genome (and 
mostly coding regions), or that duplication genotypes are frequent around mdr1, plasmepsin2/3 
and gch1, which are known to be associated with antimalarial drug resistance (including 
mefloquine, piperaquine and sulfadoxine/pyrimethamine). 
Moreover, population genetic analyses conducted on this largest available data resource, depict a 
comprehensive picture of P. falciparum parasite populations globally and sub populations at 
continental level. In the results, a large section is devoted to the description of the geographic 
patterns of validated molecular markers (SNPs and CNVs) associated with antimalarial drug 
resistance. By compiling data on all samples collected from 2002–2015, they present clear profiles 
of drug resistance by regional sub-populations for the most used antimalarial drugs. Finally, they 
reveal a global landscape regarding a major challenge for malaria elimination, that are deletions 
in hrp2 and 3 genes linked with false negative results of HRP2-based malaria RDT. 
  
Written in a very clear way, it must be point out that the authors have made huge efforts so that 
these data are understandable for a general audience, especially for the non-experts in genomics 
or for policy makers in malaria endemic countries. Their data effectively depict the main 
challenges currently encountered in the fight against malaria: the monitoring of the strategies 
deployed by the assessment of the impact on P. falciparum parasite populations, the geographical 
evolution of antimalarial drug resistances and the effectiveness of diagnostic tools used in malaria 
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endemic areas (i.e. malaria RDT). 
  
Of note, the authors fairly expose the main issues and drawbacks related to the methods used (i.e. 
the analytical challenges due to long tracts of highly repetitive sequence and hypervariable 
regions within the P. falciparum genome, and the challenges of studying a complex mixture of 
genotypes from polyclonal infections), 
  
Although, I am impressed by the work done by the consortium, I have several minor comments 
that could improve the manuscript:

Sample collection - P. falciparum samples investigated are not from systematic sampling 
collections dedicated to this study but rather from multiple studies conducted by groups 
with different objectives and from heterogeneous populations (patients living in malaria 
endemic areas, travelers, etc.) . I think this issue should be discussed in the manuscript. 
 

○

Likewise, the long time period covering the samples collection (2002–2015) is also a major 
bias which can alter the final results. 
 

○

I guess that all samples were collected from symptomatic patients seen at health facilities 
level? Unfortunately, this makes that data presented capture only P. falciparum populations 
infected this population. With the rise of new technologies, I am wondering whether the 
MalariaGEN consortium could investigate samples collected from asymptomatic individuals 
and explore the genomic profiles of this hidden reservoir but representing the major 
parasite biomass? 
 

○

I am aware that the authors have performed a difficult and complex exercise by providing 
high quality genomic data and comprehensive description of their data for a large audience. 
The major challenge that is not addressed in the manuscript is how these important data 
can be translated into concrete actions in the field by health providers. 
 

○

Last comment regarding the database. It will be helpful to provide for each sample/genome 
sequence, the location (country) and the date of collection.

○
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We thank the reviewers for the extremely positive and supportive feedback. In their 
comments and suggestions both reviewers have well captured the spirit of this data 
resource and of the large collaborative network behind it. We are pleased to submit detailed 
responses and a revised version of the manuscript that addresses their comments. 
 
2.1) Sample collection - P. falciparum samples investigated are not from systematic 
sampling collections dedicated to this study but rather from multiple studies conducted by 
groups with different objectives and from heterogeneous populations (patients living in 
malaria endemic areas, travelers, etc.). I think this issue should be discussed in the 
manuscript. 
 
Thanks for raising this point. On one hand, the heterogeneity of sampling approaches 
offers a unique opportunity to investigate questions in a variety of epidemiological settings 
in a systematic way. Specifics of each study are provided in 
ftp://ngs.sanger.ac.uk/production/malaria/pfcommunityproject/Pf6/Pf_6_partner_studies.pdf 
and users of the resource can contact individual investigators for further details. At the 
same time, we agree that this can also act as a confounder in some analysis, which is why 
we’ve devoted significant time to the curation of the dataset to make it “analysis ready”. 
 
As suggested, we have amended the manuscript in version 2 to include the considerations 
above in the paragraph: “Samples were collected by independent groups that were 
operative at a given time and in a given place with distinct objectives; while care needs to be 
taken when interpreting results spanning multiple years and geographical settings (e.g. 
aggregated trends of drug resistance prevalence), this heterogeneity also allows for the 
exploration of a wide range of epidemiological and transmission settings.” 
 
2.2) Likewise, the long time period covering the samples collection (2002–2015) is also a 
major bias which can alter the final results. 
 
This is an important point in particular for interpreting drug resistance results, and one we 
explicitly bring out in the paragraph: “Note that samples were collected over a relatively 
long time period (2002–15) during which there were major changes in global patterns of 
drug resistance, and that the sampling locations represented in a given year depended on 
which partner studies were operative at the time. To alleviate this problem, we have also 
divided the data into samples collected before and after 2011 (Supplementary Data; 
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Supplementary table 10), but temporal trends in aggregated data should be interpreted 
with due caution.”. Following the reviewer’s suggestion, we have now stressed this point 
further in our reply to point (2.1) above. 
 
2.3) I guess that all samples were collected from symptomatic patients seen at health 
facilities level? Unfortunately, this makes that data presented capture only P. falciparum 
populations infected this population. With the rise of new technologies, I am wondering 
whether the MalariaGEN consortium could investigate samples collected from 
asymptomatic individuals and explore the genomic profiles of this hidden reservoir but 
representing the major parasite biomass? 
 
Asymptomatic infections are indeed an incredibly significant reservoir that needs to be 
explicitly considered to achieve a complete and accurate picture of the transmission 
landscape. The development of new technologies has begun to dig deeper and deeper in 
this area and initial results seem to be very encouraging that good quality data can indeed 
be obtained from asymptomatic and/or low parasitemia subjects. MalariaGEN would 
certainly be supportive of this kind of effort and we have indeed active collaborations with 
partners exploring these questions. To the best of our knowledge, though, some of these 
methodologies are still of limited sensitivity and in part experimental and will require 
further work in order to be deployed on the large scale required by this scientific question, 
but that is certainly an area for future investigation. 
 
2.4) I am aware that the authors have performed a difficult and complex exercise by 
providing high quality genomic data and comprehensive description of their data for a 
large audience. The major challenge that is not addressed in the manuscript is how these 
important data can be translated into concrete actions in the field by health providers. 
 
This data resource represents a clear step towards the ultimate objective of translating 
genomic surveillance outputs into actionable actions, although it is fair to say that this is a 
long journey with many different components. The ability for multiple groups to share data, 
to analyse it using standardised methods, and to make it readily accessible is the 
foundation for translational impact to reach maturity. 
 
In the discussion we highlighted a series of future translational directions which have been 
and will be facilitated by resources like this one (and future ones) but it is certainly true that 
these results require careful interpretation due to the caveats highlighted in the paper and 
by the reviewer, which inevitably limit their impact. At the same time this dataset does 
create a systematic framework to enact and contextualize future discoveries of that nature 
and, indirectly, contributes to them. 
 
Ultimately, the practical value for malaria control will be greatly enhanced by the 
progressive acquisition of longitudinal time-series data and their integration with other 
sources of epidemiological data which will allow control programmes to monitor the impact 
of their interventions on the parasite population in near real time. 
 
2.5) Last comment regarding the database. It will be helpful to provide for each 
sample/genome sequence, the location (country) and the date of collection. 
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This information is included in the “Sample provenance and sequencing metadata” file 
available at the resource page https://www.malariagen.net/resource/26  
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The analysis of whole-genome sequences obtained from Plasmodium falciparum is particularly 
challenging due to the presence of hypervariable regions, highly repetitive sequences, and 
frequent mixture of parasites due to multiple infections of the host. The authors of this study 
describe a curated list of over three million high-confidence polymorphisms obtained from the 
genome sequence analysis of more than 7000 samples of P. falciparum collected by several studies 
in 73 locations in Africa, Asia, South America and Oceania. 
 
This work, reporting a laudable effort to substantially enrich publicly available genome data of P. 
falciparum worldwide, is of paramount importance for the field. The contribution goes in line with 
authors' previous consortia publications, extending largely the number of available data that can 
be analysed via web with powerful data analysis pipelines. By providing open access to a curated 
list of polymorphisms based on reproducible and high-quality protocols for the sequencing and 
analysis of P. falciparum genomes this study is likely to decrease the difficulties that have delayed 
the research on genomic epidemiology and population genomics of P. falciparum. Among other 
advances, studies in this area are likely to have important implications for a better understanding 
of the evolution towards drug resistance of the different global parasite populations ultimately 
contributing for a better control of this devastating disease. The manuscript is very well written 
and clear. It presents eight genetically distinct populations of parasites each endemic to different 
word regions, including South America, West Africa, Central Africa, East Africa, South Asia, West 
Southeast Asia, East Southeast Asia and Oceania. An interesting genetic and geographic 
characterization of the eight parasite populations is also shown. Of note, the finding of higher 
within-host diversity in the parasite populations endemic to Africa, the identification of single 
nucleotide polymorphism with high levels of geographic differentiation, and further 
characterization of geographic patterns of drug resistance and polymorphisms with potential 
impact in rapid diagnostic tests. We do not have major criticisms of the study. 
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Our minor suggestions for the improval of the manuscript focus on:
Increasing the accessibility of the table listing polymorphisms in supplementary data. The 
authors do provide the data in VCF and zarr files, which are not very user friendly nor allow 
a fast search of a specific polymorphism. We understand that developing a web interface for 
this purpose would be a challenge beyond this research article but possibly exporting the 
VCF file data into tables that could be available in online repositories. 
 

○

Add to the supplementary file 4, describing the drug resistance markers genotype, the 
PfMDR1 N86Y. This SNP is a well-known modulator of antimalarial response and considered 
a risk factor for the treatment of artemether-lumefantrine. 
 

○

Add the ID of the genes most mentioned in the main article. The gene ID (PF3D7_xxxxxxx), 
is provided in supplementary file 7, but to clarify the reader, we recommend to add it also in 
the main article when first describing the genes. 
 

○

In the results section, when describing gene amplification and different sets of breakpoints, 
the authors describe complex rearrangements that have not been observed before in 
Plasmodium species. In regards to pfmdr1 duplication events has been described to vary in 
size while spanning different genes in different parasites1,2,3,4. In a genome walking like 
approach, it has been described different amplicon sizes containing the pfmdr1 in clinical 
isolates from Southeast Asia where they also investigated if the type (i.e., which genes are 
included) and size of the amplicon influence drug susceptibility phenotypes5.

○
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Author Response 06 Jul 2021
Richard Pearson, Wellcome Sanger Institute, Hinxton, UK 

We thank the reviewers for the extremely positive and supportive feedback. In their 
comments and suggestions both reviewers have well captured the spirit of this data 
resource and of the large collaborative network behind it. We are pleased to submit detailed 
responses and a revised version of the manuscript that addresses their comments. 
 
1.1) Increasing the accessibility of the table listing polymorphisms in supplementary data. 
The authors do provide the data in VCF and zarr files, which are not very user friendly nor 
allow a fast search of a specific polymorphism. We understand that developing a web 
interface for this purpose would be a challenge beyond this research article but possibly 
exporting the VCF file data into tables that could be available in online repositories. 
 
We thank the reviewer for this important feedback on how to increase the reach of this 
resource. Since the publication of this article, we have been working on an initial web 
interface that allows users to navigate some aspects of the data: please see 
https://www.malariagen.net/apps/pf6. The current version mainly focuses on 
epidemiologically relevant data and emphasises the community behind the project and at 
the moment doesn’t provide access to the genomic variation information, which will require 
further work. 
 
Of course accessibility is a relative criteria and as such it requires balancing out different 
priorities. In the past we have provided tabular versions of the data (
www.malariagen.net/data) but the benefits have been very limited. For example, handling 
multiallelic and non-SNP variations requires somewhat arbitrary encoding decisions that 
significantly affect the simplicity and intuitiveness of the tabular format. Increasing the 
sample size has made these variations more common (e.g. in this release there are about 
50% non-SNP variants and 50% multiallelic variants) to the point that there was no real 

 
Page 29 of 31

Wellcome Open Research 2021, 6:42 Last updated: 19 JUL 2021

https://www.malariagen.net/apps/pf6
http://www.malariagen.net/data


advantage in maintaining the format. The decision of primarily utilising the VCF format 
comes from the recognition that these files are the standard de facto in the genomic 
community, which in turn has developed a large ecosystem of tools to handle them: please 
see the README at 
ftp://ngs.sanger.ac.uk/production/malaria/pfcommunityproject/Pf6/Pf_6_README_20191010.txt 
for some examples, e.g. to subset the data. 
 
However we agree this might still be limiting for some use cases and we are working 
towards a more integrated solution. As an example of our direction of travel, please see 
https://malariagen.github.io/vector-data/landing-page.html, which presents some 
simplified data access workflows for the MalariaGEN Anopheles gambiae 1000 Genomes 
Project. 
 
1.2) Add to the supplementary file 4, describing the drug resistance markers genotype, the 
PfMDR1 N86Y. This SNP is a well-known modulator of antimalarial response and considered 
a risk factor for the treatment of artemether-lumefantrine. 
 
We recognise that there is growing evidence of the role of PfMDR1 N86Y in artemether-
lumefantrine resistance. In particular, multiple studies have shown that lumefantrine 
appears to select for N86. Despite that, WHO still reports markers of resistance to 
lumefantrine as “Yet to be validated” (p. 22 - 
https://www.who.int/publications/i/item/9789240012813). In this release, 
supplementary file 4 only contains validated markers so it would be inconsistent to add the 
markers. However, we will consider adding putative markers in future releases where 
appropriate. 
 
1.3) Add the ID of the genes most mentioned in the main article. The gene ID 
(PF3D7_xxxxxxx), is provided in supplementary file 7, but to clarify the reader, we 
recommend to add it also in the main article when first describing the genes. 
 
We have implemented the recommendation and added gene IDs every time a gene is 
mentioned for the first time in the manuscript version 2. 
 
1.4) In the results section, when describing gene amplification and different sets of 
breakpoints, the authors describe complex rearrangements that have not been observed 
before in Plasmodium species. In regards to pfmdr1 duplication events has been described 
to vary in size while spanning different genes in different parasites1,2,3,4. In a genome 
walking like approach, it has been described different amplicon sizes containing the 
pfmdr1 in clinical isolates from Southeast Asia where they also investigated if the type (i.e., 
which genes are included) and size of the amplicon influence drug susceptibility 
phenotypes5. 
 
The complex rearrangements that have not been observed before which we were referring 
to here are “dup-trpinv-dup” rearrangements that to the best of our knowledge have only 
previously been described in human data (see ref 58). This complex and large structural 
rearrangement involves a triplicated segment embedded within a duplication, in which the 
triplicated segment is inverted. We recognise that the original wording in the text was 
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ambiguous and we’ve replaced “complex rearrangements” with an explicit description of the 
event.  
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