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ABSTRACT Facial expressions have been proven to be the most effective way for the brain to recognize
human emotions in a variety of contexts. With the exponentially increasing research for emotion detection
in recent years, facial expression recognition has become an attractive, hot research topic to identify various
basic emotions. Happy emotion is one of such basic emotions with many applications, which is more
likely recognized by facial expressions than other emotion measurement instruments (e.g., audio/speech,
textual and physiological sensing). Nowadays, most methods have been developed for identifying multiple
types of emotions, which aim to achieve the best overall precision for all emotions; it is hard for them to
optimize the recognition accuracy for single emotion (e.g., happiness). Only a few methods are designed to
recognize single happy emotion captured in the unconstrained videos; however, their limitations lie in that
the processing of severe head pose variations has not been considered, and the accuracy is still not satisfied.
In this paper, we propose a Happy Emotion Recognition model using the 3D hybrid deep and distance
features (HappyER-DDF) method to improve the accuracy by utilizing and extracting two different types
of deep visual features. First, we employ a hybrid 3D Inception-ResNet neural network and long-short term
memory (LSTM) to extract dynamic spatial-temporal features among sequential frames. Second, we detect
facial landmarks’ features and calculate the distance between each facial landmark and a reference point on
the face (e.g., nose peak) to capture their changes when a person starts to smile (or laugh). We implement
the experiments using both feature-level and decision-level fusion techniques on three unconstrained video
datasets. The results demonstrate that our HappyER-DDF method is arguably more accurate than several
currently available facial expression models.

INDEX TERMS Facial landmarks, facial expression recognition, long short termmemory, multi-layer neural
networks, happy emotion recognition.

I. INTRODUCTION
Emotion recognition has become a hot, attractive research
area, which has a wide range of applications. For example,
it can be utilized for an emotional understanding of customers
in the advertising industry. Lie detection can be eased by
facial expression recognition and physiological states in the
crime and court domain [1]. It can be useful in diagnos-
ing some diseases like anxiety and Parkinson’s in medi-
cal applications [2], [3]. In the web and connected world,
we can also employ the emotion recognition systems for
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specifying the spectators’ feelings and moods to recommend
the music [4], videos [5], or even products in virtual recom-
mender systems [6], [7].

There are several types of emotion recognition systems
based on different cues for detecting human emotion states
such as facial expression recognition (FER) [8], speech emo-
tion recognition [9], physiological emotion recognition [10];
also, they can be combined into multimodal systems [11],
[12] to detect human emotions. Among them, non-verbal cues
like facial expressions play a more critical role in determining
emotions than others [13]. The traditional FER systems were
developed to recognize only the facial expressions on the
lab-controlled datasets with high accuracy of over 97% when
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the participants were asked to pose an emotion. By apply-
ing these methods on more complicated, real-world datasets
captured frommovies or TV series, the accuracy was reduced
to a very low accuracy [14]; for example, the best was 40%
[8] for the Acted Facial Expressions in the Wild (AFEW)
dataset. Many factors, such as various backgrounds, severe
head pose variation, illumination changes, and different kinds
of occlusions and noises, introduce disparities between emo-
tion recognition systems’ accuracy.

Smile or laugh is known as themost common facial expres-
sion among human communications during daily life. Similar
to FER systems, many applications can also be defined by
utilizing a happy emotion recognition module. For instance,
investigating a smile as a genuine or posed may lead to
anticipate further traits and behaviors [15], [16]. Although
some outstanding approaches with a relatively-high aver-
age accuracy are developed for recognizing all six basic
emotions (happiness, surprise, disgust, anger, sadness and
fear), the separated accuracy of single emotion detection is
not high enough for real-world applications. In this paper,
we aim to practice recognizing only the happy expression
from the unconstrained videos for intensively improving the
accuracy using focused optimal strategies for a single emo-
tion. With further study in this field, we have found a few
robust standalone methods for happy emotion recognition
from videos. However, the videos captured in the wild com-
prise human images with significant variations in head poses;
this challenges the existing techniques which were designed
to process the ideal faces captured in the laboratories, and
they cannot be extended to real-world scenarios. Different
view angles for capturing human faces significantly chal-
lenge the process for extracting facial features, such as the
facial landmarks and textural features, due to incomplete
availability of the face. Hence, it is essential to develop
methods capable of emotion detection in any circumstances
from the unconstrained videos that are naturally captured in
the wild.

In this paper, we propose a Happy Emotion Recognition
using the 3D hybrid deep and distance features (HappyER-
DDF)method, which utilizes visual information by extracting
two different types of deep features. First, if considering
incomplete human faces captured from arbitrary view angles,
only textured features are not enough to distinguish the
expressions. And facial landmarks are needed, which has
been proven to play a critical role in expression recognition
systems [17]. Hence, this paper considers the complementary
information from both facial texture and landmarks. Second,
borrowing the techniques of deep neural networks used in
computer vision, we extract textured and spatial-temporal
features from sequential frames in the videos using a hybrid
deep neural network containing 3D Inception-ResNet and
long short term memory (LSTM). Moreover, a convolutional
neural network (CNN) is employed to process the facial
landmarks. It captures the detailed facial change from the
time series produced by computing the distance between the
landmarks ofmouth (or eyes) and a reference point on the face

(e.g., nose peak). The landmarks-based facial change time
series track the muscle movements among sequential frames
and can effectively demonstrate the changes while an emotion
occurs. After extracting these discriminative features, we fuse
them at both feature and decision levels to evaluate the sys-
tem performance. The feature-level fusion is conducted to
form the final feature vector, and a fully connected layer
classifies the videos into happy and non-happy classes. The
decision-level fusion utilizes an SVM with radial basis func-
tion kernel as a classifier to recognize the emotions and a
weighted sum based on the genetic algorithm and weighted
mean for concatenating the decisions [18].

The FER systems most related to ours recognize all six
basic emotions [17], [51]. Our proposed scheme aims to
demonstrate the single (e.g., happy) emotion recognition
using specific optimisation strategies and can intensively
help improve accuracy; for example, selecting action units
only relevant to a happy emotion. So, it is different from
these studies on the following aspects: (1) we have con-
sidered both the 3D version of convolutional neural net-
work and 3D facial landmarks only relevant to happy emo-
tion, (2) the proposed deep neural network architecture is
simpler but with an increased accuracy for happy emotion
detection. Experimental results on three unconstrained video
datasets, i.e., AM-FED+, AFEW and multi-party conversa-
tional (MELD), demonstrate the high accuracy of the pro-
posed method. The contribution of the work is summarized
as follows:

1) In contrast to the existing methods that mainly focus
on using facial expression recognition to identify all
six basic emotions, we propose a unique, lighter, fast
standalone system for happy emotion detection in the
videos.

2) We propose a novel HappyER-DDF method, which
builds a deep recognition framework modeled by both
spatial and temporal information. We use 3D visual
information aligned with landmark trends, apply them
to the hierarchical architecture long short-termmemory
recurrent neural network (LSTM) and thus improve
the system performance to achieve more reliable
results.

3) We design a recognition system that is able to accu-
rately detect happy and non-happy expressions in a
video captured in the wild (where human faces may be
not always completely captured from random angles),
including different apex frames.

4) We evaluate the trained system using two unconstrained
datasets and a large multi-party conversational dataset,
and the experimental results demonstrate the accu-
racy and effectiveness of our proposed HappyER-DDF
method.

The rest of this paper is organized as follows: Section II
reviews the existing facial expression recognition mod-
els. The HappyER-DDF method is detailed in Section III.
Section IV reports the experimental results and Section VII
concludes the paper.
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II. RELATED WORK
A. TRADITIONAL FACIAL EXPRESSION RECOGNITION
METHODS
Both images and videos can capture facial expressions. The
static facial expression recognition methods focus on extract-
ing features from the images and attempting to classify
the input images to six basic emotions: happiness, surprise,
disgust, anger, sadness and fear. Some texture processing
techniques, for example, scale invariant feature transform
(SIFT) [19], local binary pattern (LBP) [20], the pyramid
of histograms of oriented gradients (PHOG) and local phase
quantization (LPQ) [21] have been utilized to extract the
facial textures as appearance-based features. Most of these
types of FER systems have achieved high accuracy on both
lab-controlled and unconstrained datasets.

By expanding the data from static images to sequential
frames in the videos, facial textured features cannot pro-
vide enough information to recognize the emotions. As a
result, geometric features are employed since we observe
some meaningful relations between facial landmarks. More-
over, the temporal features are considered by applying new
textured features to the videos. Local binary pattern from
three orthogonal planes (LBP-TOP) [22], local Gabor binary
patterns from three orthogonal planes (LGBP-TOP) [23] and
histogram of oriented gradients from three orthogonal planes
(HOG-TOP) [24] are examples of textured features from
the videos. Since the audio is also recorded in the videos,
many multimodal FER systems use the speech features as the
complementary information, when extracting features from
visual data is not feasible due to occlusion or noises [14], [25].
These systems obtain a high accuracy on the lab-controlled
dataset, but a low accuracy on the dataset captured in the wild.

B. DEEP FACIAL EXPRESSION RECOGNITION METHODS
The FER systems applied to the real-world datasets result in
low accuracy due to different backgrounds, illumination vari-
ations and other noises. The features extracted by traditional
methods are correlated to the context and cannot ignore the
light or background changing in the output feature vector.
Consequently, some significant pre-processing techniques
are applied to the videos for unifying them. On the other
hand, a wide range of deep neural networks has an extensive
ability to learn new patterns and extract detailed features
without any pre-processing. Hence, they have been used in
various research areas, such as image classification [26] and
face recognition [27]. Among different deep architectures,
convolutional neural networks (CNN), recurrent neural net-
works (RNN) and long short term memory (LSTM), as a
special type of RNNs, are demonstrated to perform better in
the sequential frames processing.

Many deep FER systems have been developed. A hybrid
method using the CNN and DSIFT features and geometric
relations has been provided to extract features from videos
[28], where the spontaneous datasets are applied to verify the
system performance for the real-world applications. Stacked
CNN blocks are utilized in [29] to recognize the emotions.

The input images are pre-processed to gray-scale form and
passed through eight blocks containing convolutional, batch
normalization, and dropout layers. Although the results are
promising, it could not be applied to unconstrained datasets.
Three different CNN frameworks are employed to extract the
features in [30]. RNN has also been used with rectified linear
hidden units (ReLu) to extract the temporal features. All
three presented networks have shown an overfitting problem,
whereas combining the features achieves higher accuracy.
An attention network is proposed in [31], which extracts both
local and global features. The method utilizes some convolu-
tional filters and bilinear attention pooling for detecting the
emotions in the images. A deep neural framework contain-
ing a spatial transformer network block (STN) is presented
in [32] to track two main issues: 1) the input images to CNNs
have different sizes, and 2) the CNNs are sensitive to the
input image size. After scaling all inputs to a specific size,
the model, including several VGG16 networks [33], detects
the emotions in the images. Selecting a general scale value
operating for all images is a challenge. The Inception layers
have been established in [34] within the GoogLeNet net-
work. These types of layers employ several convolution filters
and concatenate them to extract facial features on various
scales. Several variations of Inception architectures have been
proposed and applied to facial expression recognition [35].
Another CNN has been provided combining inception and
residual blocks [36], in which a wide and deep proposed
framework removes the redundant filters and improves the
training speed; but the problem is that using ordinary CNN
could not extract the temporal features of consecutive frames.
Hence, a 3D version of CNN is used to record the temporal
information in addition to spatial features in various appli-
cations, such as 3D object detection [37] and video emotion
recognition [18], [38].

As we know, the recurrent neural networks (RNNs) can
map the temporal dynamic behavior using some internal
states (memory) and hidden neurons. Although they have
demonstrated a good capability to extract the features, they
are not able to learn and memorize the long term sequences.
Therefore, the LSTMs are utilized to track their vanishing
gradients by adding some more remembering and forgetting
units. Several FER systems have applied LSTM networks
to a fine-tuned CNN for recognizing the emotions in the
videos [18]. A hybrid framework is provided by applying
the extracted VGG16 features to an LSTM layer [39]. Their
system can capture both spatial and temporal features in
various video sequences. Another hybrid network has been
proposed, containing both local and global frameworks based
on CNN-LSTM cascaded network, in which, the videos with
large head pose variation and occlusions have been removed
to get the better results [40]. However, this method can just
achieve high accuracy on laboratory datasets.

C. HAPPY EMOTION RECOGNITION METHODS
Most happy emotion detection systems are applied to images
and very few for videos. They have used different traditional
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FIGURE 1. An overview of the proposed HappyER-DDF method. It comprises two different deep neural networks for
extracting spatial-temporal features from videos and discriminative features from facial landmarks. The videos are
classified as happy and non-happy emotions by concatenating the features in both feature and decision levels.

FER techniques and different deep neural networks to recog-
nize the happiness in both lab-controlled and unconstrained
situations.

An AdaBoost classifier is used to recognize smile faces
from images using intensity differences between pixels in
grayscale level [41]. A feature vector called Self-Similarity
of Gradients (GSS) is extracted to find the similarities in
a HOG feature map and then the AdaBoost algorithm with
linear extreme learning machines (ELM) is used to recog-
nize the smile and non-smile faces [42]. An image-based
real-time smile detection method has been proposed that is
invariant to head poses using conditional random regres-
sion forests [43]. Another smile detection system has been
developed, which extracts a small dimension of features and
uses the ELM method for classification [44]. A scale driven
convolutional neural network (SD-CNN) has been utilized to
extract deep features and then trained an extreme gradient
boosting approach [45]. Their system couldmanage an imbal-
anced data of smile and non-smile faces. All the systems have
evaluated their performance by testing the GENKI-4K smile
image dataset [46] that includes 4,000 face images captured
in unconstrained scenarios.

A happy emotion detection system from videos contains
three components: different happy emotion detection,
happy emotion intensity estimation and spontaneous ver-
sus posed (SVP) smile recognition [47]. By extract-
ing Self-Similarity of Gradients(GSS) features and some
spatial-temporal features from the face, a discriminative
learning model (DML) has detected and recognized the
happiness and its intensity. They have evaluated their system
by the UvA-NEMO dataset [48], which contains 597 and
643 spontaneous and posed happy/smile videos captured
in the laboratory with controlled daylight illuminations.

Another happy emotion detection system has been proposed
using a fuzzy approach [49], which employs geometrical fea-
tures and evaluates the method on an unconstrained dataset,
Affectiva-mit [50]. The dataset includes 242 facial videos
captured from the viewers who recorded their faces when
using the webcam. It is worth noting that the webcam videos’
background is not as diverse as the videos captured from the
movies. Also, there are no significant variations of head poses
in the recorded videos. Among all of the existing methods,
it is noticeable that developing a happy emotion detection
system is necessary to employ in all of the real-world scenar-
ios under large head pose variation and illumination changes.

III. METHODOLOGY
A. OVERVIEW
As mentioned above, many deep learning architectures
have been applied to recognize facial expressions. Due to
the proven excellent performance of ResNet neural net-
works in facial expression recognition, this paper adopts
a 3D-Inception-ResNet neural network, which extracts
spatial-temporal features from different sequential video
frames. Fig. 1 illustrates the proposed HappyER-DDF
method. The potential of using such a system for training
the machine for the natural happiness expressing motivates
us to focus on studying the single emotion recognition where
specific optimisation strategies can be developed, for exam-
ple selecting action units relevant to a single emotion. In the
video processing, the temporal dynamics features play a
critical role in expressing the emotions. So, we extract the
temporal dynamics features by adding a long short term
memory (LSTM) unit to the extracted features at the end
of network architecture. Besides, the importance of action
units cannot be ignored in the facial expression recognition
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systems. We can consequently extract deep facial landmarks’
features by employing a CNN. Finally, we fuse two mod-
els at both feature level and decision level. A simple fea-
ture fusion method combines these features, and a fully
connected unit detects the happy and non-happy videos.
A weighted sum based on the weighted mean and genetic
algorithm determines the final class labels after a support
vector machine (SVM) with radial basis function kernel clas-
sifies the features separately. The details of each module in
the proposed method are explained as follows.

B. 3D INCEPTION-ResNet (3DIR) NEURAL NETWORK
The original Inception-ResNet neural network is introduced
in [34]. This architecture aims to create a wider and deeper
network whereas it costs computationally. As a result, it can
significantly improve the efficiency of video facial expres-
sion recognition systems when we have a large amount of
data located in the sequential frames. We use a 3D version
of Inception-ResNet architecture, and our proposed network
comprises less layers than both the original and the intro-
duced system in [51].

We plot the different layers of the proposed network
in Fig. 2. We have provided 24 frames per second, and the
systemwill recognize the happy/non-happy emotions per sec-
ond. Therefore, the video input size is 24 × 199 × 199 × 3
(24 frames, 199×199 frame size, and 3 color channels). At the
first layer, the ‘‘stem’’ uses an initial set of convolutional and
pooling operations and extracts the faces’ general features,
which is followed by a 3DIR-A for extracting the features
related to the most vital face part. This Inception-ResNet
block applies the factorized convolutional filters and pre-
serves the input size as the same. According to [34], for
speeding up the training process, the Reduction-A block is
employed to change the width and height of the grid and
reduce the 50 × 50 input size to 25 × 25. Another 3DIR
unit, 3DIR-B, is utilized to extract more accurate and detailed
features. There are two main difference between ours and
the method in [51]. Firstly, due to a binary classification
problem, there is no need to have deeper Inception-ResNet
blocks and we only use two blocks. Secondly, we apply
batch-normalization on the output of each 3DIR block to
normalize the extracted features and directly use it as a short-
cut in our network, since we reduce the input dimension to
accelerate the training phase. Finally, Average Pooling, and
Dropout, and a fully connected layer form a proper shape for
feeding the data into the long short term memory (LSTM)
unit. The size of filters and the layers outputs are shown
in Fig. 2.

C. LONG SHORT-TERM MEMORY (LSTM)
In processing still images, we only consider spatial infor-
mation, but we also remark the temporal data for a video.
Although 3D filters capture both spatial and temporal fea-
tures, we need to consider dependencies between frames in
a video. LSTM networks are a particular type of RNN that
are able to learn long-term dependencies. It means that they

FIGURE 2. The 3D Inception-ResNet (3DIR)-LSTM architecture.(BN block
shows a batch normalization node).The LSTM block containing
256 neurons is shown at the final stage of the structure, after extracting
the spatial-temporal features from Inception-ResNet modules. The LSTM
block output is fed to the classifier in the next phase.

can produce temporal dynamics features during the time and
follow up on the sequential video frames’ changes. According
to [52], 3D CNNs learn spatiotemporal features, whereas
RNN/LSTM networks learn long-term temporal informa-
tion. Thus, we can explain that global temporal features are
extracted by LSTMs while 3D CNNs extract local temporal
features in addition to spatial features.

In the LSTM layer, per the memory cell, c, at the time-
step, t , the input gate,(i), the forget gate,(f ) and the output
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FIGURE 3. (a) AU6- cheek raiser, and AU12- lip corner puller from top (the
images are from AFEW dataset), (b) Impact proportion of various facial
landmarks when two smiling and neutral faces are compared [40].

gate,(o) are three gates responsible for overwriting, keeping
and retrieving, respectively. We define the sigmoid function
as σ (x) = (1 + exp(−x))−1 and hyperbolic tangant as
φ(x) = exp(x)−exp(−x)

exp(x)+exp(−x) = 2σ (2x)− 1. The variables x, h, c,W
and b are the input, output, cell state, parameter matrix and
parameter vector, respectively. Then, the LSTM layer updates
for time-step t can be defined as follows with inputs xt , ht−1
and ct−1:

ft = σ (Wf .[ht−1, xt ]+ bf ])

it = σ (Wf .[ht−1, xt ]+ bi])

ot = σ (Wo.[ht−1, xt ]+ bo])

gt = φ(Wo.[ht−1, xt ]+ bo])

ct = ft ∗ (ct−1 + gt ∗ it )

ht = ot ∗ φ(ct ) (1)

In our proposed method, we extract spatiotemporal features
using 3D Inception-ResNet modules to record the face pixel
changes among all the frames. The extracted spatiotempo-
ral feature maps are then fed to an LSTM unit capturing
the temporal dynamic features to discern the dependencies
between frames in the videos. We tried several different unit
numbers and finally have found 256 hidden neurons that are
adequate for the unit. The LSTM layer is shown in Fig. 2 at
the final stage of the 3D Inception-ResNet-LSTM structure.
The LSTM block output is fed to the classifier in the next
phase.

D. FACIAL CHANGE TIME SERIES
In addition to the visual data provided by the structure and
texture of the face, tracking the facial muscle movement is
complementary to facilitate the training process for achieving
the goal. Fig. 3 illustrates the facial regions involving in
expressing a happy emotion. The facial action coding sys-
tem (FACS) [53] includes a set of action units related to
each emotion. According to [53], there are two action units
responsible for expressing happiness. They are cheek raiser
(AU 6) and lip corner puller (AU12) related to two facial
muscles, zygomatic major and the Orbicularis Oculi. Fig. 3a
shows these AUs, and it is noticeable that the twomost related

facial elements to them are eyes and mouth. It means we can
capture these movements by measuring the mouth and eyes
changes. Inspired by [17], if we consider a reference point like
nose peak on the face, and then calculate the distance between
the mouth and reference point and the distance between the
eyes and reference point, the changes can be recorded. Hence,
we can optimize our system to utilize facial landmarks instead
of finding AUs. As the system will determine the happy
faces, we only take the eyes and mouth landmarks, a total
of 24 points, into the account. However, according to the
comparison of different facial components and their impact
on neutral and happy expressions in [44], the face contour also
plays a vital role (around 30% effective as shown in Fig. 3b) in
distinguishing smile and neutral emotions. As a result, we add
16 points, representative of face contour, to the points set.

Fig. 4 and Fig. 5 illustrate changes of the mouth and eye
landmarks during 28 consecutive frames, respectively, when
the actor is expressing both happy and angry emotions. Fig. 4a
shows the trends for mouth landmarks. It is noticeable that
happy emotion mouth landmarks’ changes are uniform and
create a specific pattern, whereas the mouth points for angry
expression (Fig. 4b) do not change constantly. Fig. 5 also
confirms these trends for the eyes landmarks. According to
Fig. 4b, although the mouth landmarks’ changes for some
landmarks of angry video are almost consistent, the entire
mouth landmarks vary differently during 28 frames. The
inconsistently can also be observed in Fig. 5b for eye land-
marks from the starting point of the angry video. In contrast,
the eye and mouth landmarks change homogeneously at all
frames in the happy video, as shown in Fig. 4a and Fig. 5a.
As a result, it is worth noting that discriminative features
can be extracted from the landmarks patterns to distinguish
between happiness and other emotions.

We apply a CNN to the resulted distance between the
40 landmarks and the reference point, i.e. the nose peak.
We define the landmark points on the ith frame as follows:

l i = [x i1, y
i
1, z

i
1, . . . , x

i
m, y

i
m, z

i
m, . . . , x

i
40, y

i
40, z

i
40] (2)

where (x im, y
i
m, z

i
m) is the m

th landmark point.
3D landmark coordinates are processed in our system

because 3D landmarks supply more accurate results than
2D counterparts by proceeding geometry of rigid face fea-
tures [54]. Hence, using 3D landmarks have the potential to
achieve better accuracy, especially for the videos captured in
the wild with the faces in various head positions. Due to the
different landmark locations, the landmarks vector should be
normalized by (3):

x̄ im =
x im − x

i
c

σ ix
, ȳim =

yim − y
i
c

σ iy
, z̄im =

zim − z
i
c

σ iz
(3)

where (x ic, y
i
c, z

i
c) is landmark coordinate of the reference

point (i.e., the nose peak) and (σ ix , σ
i
y, σ

i
z) shows the standard

deviation of (x, y, z) coordinates at ith frame.
We produce 120 distance features per frame based

on 40 landmark points. We combine all these features
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FIGURE 4. (a) and (b) illustrate the normalized distances between nose
peak and different mouth landmarks among frames in two videos
expressing happiness and anger, respectively. Each line of
figures demonstrates the changes per mouth landmark in the video
(12 mouth landmarks in total). It shows that the change during different
frames in happy emotion follows a pattern separable from angry.

of 24 frames in an image-like matrix as an input of a con-
volutional neural network. Fig. 6 illustrates the details of the
proposed CNN. The input size is 24 × 120 × 1 (24 frames,
120 distance features and one channel) that fed to four
sequential convolutional filters with different sizes. As shown
in Fig. 6, the pooling is applied after the first four layers
and stacks the convolutional layers together to reduce the
input to 2× 26× 12. Since the pooling neurons intensify
the spatial invariance [55], we only consider them at the
end of the architecture. In this case, the network can find
the attentional landmarks affective in expressing an emotion
per video among all the landmarks input. The final fully
connected layer forms our landmarks features vector with size
(f1 ∈ <624).

E. MODEL FUSION
Since two proposed neural networks extract two various
feature vectors, the model fusion plays a crucial role in

FIGURE 5. (a) and (b) illustrate the normalized distances between nose
peak and different eye landmarks among frames in two videos
expressing happiness and anger, respectively. Each line of
figures demonstrates the changes per eye landmark in the video (12 eye
landmarks in total). It shows that the change during different frames in
happy emotion follows a pattern separable from angry.

the final result. Two main categorizations (feature-level and
decision-level fusions [56]) are considered for fusion meth-
ods. In the feature-level fusion, also called early-fusion, dif-
ferent extracted feature vectors are combined to form a shared
representation. The concept and type of features should be
similar to ensure the feature-level fusion can be conducted.
In the decision-level fusion, the decisions that are obtained by
separately applying each feature vector to multiple classifiers
are concatenated. Hence, it is also called the late-fusion tech-
nique. Due to each fusion method’s independent impact on
the data, we utilize both the feature-level and decision-level
fusions. The fusion techniques are detailed as follows.

1) FEATURE-LEVEL FUSION
After extracting the desired feature vectors from both pro-
posed deep neural networks by training on the videos, we use
the vector (f1 ∈ <256) of LSTM output, and the vector
(f1 ∈ <624) output of landmarks CNN and normalize these
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FIGURE 6. The proposed CNN architecture for extracting landmarks features. It comprises five convolution, two pooling layers and a
624 neurons fully connected layer.

features separately using l2 normalization. The normalized
features are then concatenated into (f ∈ <880) and form
the final feature vector descriptive of the videos. The fused
feature, f , is fed to a fully connected layer of 512 neurons and
the final layer with a sigmoid function is used to recognize the
happy and non-happy emotions.

2) DECISION-LEVEL FUSION
Due to the significant head pose variations, we may detect
emotions from incomplete faces in the unconstrained videos.
So, we cannot get the spatial-temporal features from the entire
face in the side view faces, whereas an accurate estimation
of the facial landmarks is accessible. As a result, it is worth
weighing the impact of facial landmarks in the final deci-
sion. Inspired by the weighted sum fusion method introduced
in [18], we define the weighted sum rule as follows:

dout = ω1dspatial−temporal + ω2dlandmarks (4)

where dout , dspatial−temporal and dlandmarks are the final
decision, the decision obtained by 3DIR-LSTM network,
and facial landmarks classification, respectively. ω1 and
ω2 are the weights assigned to our models for apply-
ing spatial-temporal and facial landmarks features and
ω1 + ω2 = 1. We employ an SVM with radial basis function
kernel to obtain a single decision per feature vector. For opti-
mizing the weights, ω1 and ω2, the weighted mean method
used in [57] and a genetic algorithm (GA) are applied to the
validation sets. In weighted mean method [57], the weights
are selected based on the validation sets that achieve to the
highest performance. In GA, an evolutionary searching algo-
rithm [58], a population for our parameters, ω1 and ω2, are
randomly initialized. The random operators like selection,
crossover and mutation are repeated to maximize the objec-
tive function (dout ) subject to ω1 + ω2 = 1. The values
of dspatial−temporal and dlandmarks are obtained by applying
the validation sets. We limit creating the new generations by
reaching to 200 repeats. This value is set based on the trial
and error when we apply various validation sets of different
datasets. After termination, we can obtain the optimized val-
ues of ω1 and ω2 for different datasets.

IV. EXPERIMENTS AND RESULTS
In this section, we evaluate the proposed method using three
different video datasets captured in the wild and demonstrate

its accuracy by comparing it with various state-of-the-art
facial expression recognition methods. We first briefly intro-
duce the datasets, then explain the networks settings and
finally report the results when concatenating at both feature
and decision levels. The results obtained by applying single
features are also explained to prove the importance of each
feature vector.

A. DATASETS
Among various benchmark facial expression datastets,
we have selected three AM-FED+, AFEW, and MELD
datasets to evaluate the generality of the proposed method on
different levels of challenge. Some examples of these datasets
have been shown in Fig. 7.

1) EXTENDED AFFECTIVA-MIT (AM-FED+)
The dataset is an extended version of naturalistic facial
response videos collected in daily settings [59]. The partic-
ipants from all over the world were asked to watch video
advertisements. They permitted to use their webcam while
watching videos to record their face. As a result, 1044 web-
cam videos have been streamed to the server. Among them,
545 videos were manually labeled by facial action units and
smile. Since there were not any requirements for the envi-
ronment that participants recorded their videos, the lighting
varied in all videos. Most videos were recorded in frontal
view, whereas several had some variations in the head pose.
Almost all smile videos have three types (onset, apex and
offset) of frames. Due to videos self-recording by users, some
videos are very long (around 5-6 min) without any proper
information in the first 5 minutes. We selected continuous
frames (at least 24 frames) per video dependent on the video
duration. It can be ensured that the chosen frames are the
most important ones since they comprise onset, peak, and
offset according to existing labels. Fig. 7(a) shows an example
of AM-FED+ dataset. AM-FED+ is the least challenging
dataset due to two reasons: 1) most faces are in frontal view,
and contains videos including onset, apex, and offset frames,
and 2) there is a slight difference in expressing the happiness
between different videos (small intra-class distance).

2) ACTED FACIAL EXPRESSION IN THE WILD (AFEW)
This dataset contains videos captured from Hollywood
movies and TV series and first introduced for the EmotiW
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FIGURE 7. Some examples of onset, apex and offset frames from happy videos in three in-the-wild datasets. As it is seen, AM-FED+ videos have
all three onset, apex, and offset frames. In contrast, AFEW and MELD videos do not include entire types of frames.

challenge [60]. There are 578, 383 and 307 videos for train-
ing, validation and testing, respectively. It is one of the
most challenging datasets for emotion recognition as the
330 actors express seven emotions in different outdoor and
indoor environments. The number of happy videos in the
training and validation sets is 150 and 63, respectively. If we
wanted to put happy videos in one category and all other
emotions in another, we might face with imbalanced data.
Hence, we created three different training and validation sets
by randomly data selection from all the emotions (except hap-
piness) to have a balanced dataset for our model. Although
the video durations are various between 0.75 and 4 seconds,
we have chosen 24 frames per second. For the videos less than
24 frames, we had to keep the frames to be sequential. Hence,
we repeated first several frames and final several frames
in the video to ensure at least 24 frames. Finally, the max
voting is used for labeling videos into happy and non-happy
groups since almost all the videos’ frames contain the apex
expressions. Fig. 7(b) shows an example of AFEW dataset.
It is ranked the second challenging dataset since there is a
big intra-class distance between happy videos. The emotions
are expressed by many actors from various nationalities and
races. Also, onset, apex, and offset frames may not constantly
occur in the videos.

3) MULTIMODAL MULTI-PARTY DATASET IN EMOTION
RECOGNITION IN CONVERSATIONS (MELD)
Multimodal Emotionlines Dataset (MELD) was created to
provide multimodal multi-party conversational data by col-
lecting three different visual, audio and text modalities [61].
MELD contains 13,708 utterances from 1433 dialogues of
Friends TV series. Consequently, there are 9989, 1109 and
2610 videos in the training, validation and test sets, respec-
tively. Among them, 1743, 163 and 402 videos in each set
are labeled by happy emotion. Each utterance was annotated

by an emotion and sentiment label. Neutral, positive and
negative are three groups of sentiments, whereas the emo-
tions categorization covers six basic emotions (joy, disgust,
sadness, anger, fear, and surprise). Because videos (acoustic
and visual data) in the MELD dataset were extracted based
on the time-stamps of subtitle transcription, some videos
did not include any faces and were ignored. Similar to the
AFEW data preparation, we created two non-happy training
groups by randomly selecting videos from other emotions.
Fig. 7(c) shows an example of MELD dataset. Processing the
unfocused faces in the scenes is the addition cause to AFEW
reasons why the MELD dataset is the most challenging.
Detecting the faces is more complicated, and aligning the
faces leads to low-resolution input.

B. PRE-PROCESSING
Before training our happy emotion detection system, the faces
in video frames are detected and resized to the network input
size. Using OpenFace toolkit [62], a multi-task convolutional
neural network (MTCNN) has been employed to detect the
faces. Also, a piecewise affine warp was trained to esti-
mate the landmarks error and accurately align the faces. The
aligned faces were resized to 199 × 199, and considering
24 frames per second, we have the aligned video frames
with size of 24 × 199 × 199 × 3 equal to the 3DIR-LSTM
network input. Although convolutional experts constrained
local model (CE-CLM) in the OpenFace facial detection
module was trained at different head orientations, we noticed
that the system could not sometimes detect any landmarks
or fit the obtained landmarks on the face. It occurred when
there was a significant variation in head poses. Fig. 8a shows
some unsuccessful examples where landmarks are wrongly
detected by OpenFace toolkit [62]. As we aim to develop a
precise happy emotion detection system for the unconstrained
videos, finding the true 3D facial landmarks is crucial in
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FIGURE 8. Two face examples from MELD dataset that we have applied
OpenFace toolkit [62] and method in [63] for detecting 68 face
landmarks. a) The OpenFace toolkit could not detect 68 face landmarks
correctly, b) the correct landmarks were detected by the method in [63].

the proposed approach. We have utilized the method in [63],
in which a proposed hierarchical, parallel and multi-scale
block has been utilized instead of the Hour Glass bottleneck
blocks (i.e., four different blocks of architectures in a Face
Alignment Network [64]) to locate the 2D and 3D facial land-
marks points. Fig. 8b shows the correct landmarks detected
by the method in [63]. Among all 68 obtained facial land-
marks, we chose 24 3D eyes and mouth landmarks adding to
16 3D face contour points. The image-like matrix with a size
of 24×120 was created, equal to the proposed landmarks that
are input of CNN network.

Since the AM-FED+ dataset has not been categorized to
different training, validation, and test sets, we apply 10-fold
cross-validation strategy similar to the methods in [31]
and [65] to ensure the approach generalization. The data is
divided into ten groups, selecting nine of them as training and
one as testing sets. We consider a near-identical distribution
for expressions in both groups to prevent the issues caused by
imbalanced data and report the average results of 10 runs for
the AM-FED+ dataset. For the AFEW and MELD datasets,
we created three and two balanced training and validation sets
and consequently describe the average results as well.

C. NETWORK SETTINGS
In the proposed approach, two 3DIR-LSTM and CNN net-
works need to be trained to extract the proper features from
faces and landmarks. There are around 409,068,581 trainable
parameters in total for training of the proposed algorithm.
Network initialization plays a fundamental role in network
training, prohibiting over-fitting and early convergence. The
weight matrixes were initialized with Xavier uniform ini-
tializer, and the training process starting with the learning
rate, 0.005, was decayed to 0.0003 after the first 20 epochs,
0.0002 in the next 20 epochs and 0.00001 in the remaining

epochs. All layers except pooling and final layer were fired
by Rectifier Linear Unit (ReLu) activation function and a
linear function was used when concatenated the output of
inside layers. Sigmoid function determined the final output.
We optimized the training process with Adam optimizer and
estimated the loss employing the binary cross-entropy. It was
repeated till the model was convergence to the minimum
loss error. At this stage, we froze it as the spatial-temporal
features and apply to both the feature and decision level
fusions in the next steps. The training phase was conducted
on a computer (NVIDIA GPU, GeForce GTX 1080 Ti),
where the batch size was set to 16. Table 1 shows the time
complexity of the proposed method. We report the running
times when feature-level fusion concatenates the features and
the decision-level method is applied by both weighted mean
and GA. Dependent on the size of each dataset, the proposed
approach at feature-level fusion was executed in about 3, 2,
and 30 hours and a half for AM-FED+, AFEW, and MELD
datasets, respectively. Due to the complexity of the Genetic
algorithm, the decision-level fusion models were the slowest
and took around 4 hours, 2 hours and a half, and 36 hours
and a half for AM-FED+, AFEW, and MELD datasets,
respectively. The running times for decision-level models
by weighted mean were approximately close to feature-level
fusion with 3, 2, and 30 hours and a half for AM-FED+,
AFEW, and MELD datasets, respectively.

TABLE 1. Time complexity of the proposed method.

Meanwhile, we have an image-like matrix with 24 × 120
formed by facial landmarks. The numbers of batch sizes,
epochs, activation and loss functions and optimizer were the
same as the 3DIR-LSTM network except for the learning rate
that is set to 0.001.

D. COUNTERPARTS METHODS FOR HAPPY EMOTION
DETECTION
There are a few happy emotion detection systems/approaches
from videos as discussed in Section II. To verify our proposed
method, in contrast, we implemented some popular feature
extraction and classificationmethods in happy emotion detec-
tion from images and extended them to process the videos.
Also, wemodified some general facial expression recognition
systems to recognize only happy faces. To have a fair com-
parison, we have adopted the same settings as in their original
papers. The counterpart methods are introduced as follows.
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• According to the baseline report of the AM-FED+
dataset, the OpenFace toolkit is utilized to recognize the
smile [62].

• A method for detecting smile from AM-FED videos
recognizes the smile by employing the facial landmarks
and defining rules through a fuzzy system approach [49].

• A system is proposed for recognizing emotions in wild
videos [12]. LBP-TOP and SIFT features are extracted
and the sparse representation is used to classify seven
emotions. We have modified their classification method
to enable it to detect happy and non-happy emotions.

• Another facial expression recognition method has been
proposed by extracting 3DIR-LSTM features and con-
ducting the element-wise operation with facial land-
marks [51]. In this work, ten apex frames have been
manually selected for all the datasets. We have modified
the system to classify the happy emotions. As manually
selecting takes much time, we chose the ten frames in
the middle of each video.

• The decision level fusion has been employed to classify
the emotions among two feature vectors extracted by
CNN-BRNN and trajectory matrix from facial land-
marks [17]. Forty frames are used as input videos, and if
a video was shorter, they have repeated the first frame
at the beginning of the sequence. We have modified
their method to classify only two classes (happy and
non-happy expressions).

Also, other two techniques were considered for evaluation.
Extreme learning machine (ELM) is one adopted classifier
containing a hidden layer feed-forward neural network that
has been utilized in smile detection from images [44]. We set
the number of hidden layer neurons to two times of the input
dimension and extract LBP-TOP and HOG-TOP from the
sequential frames in the videos. The ELM then classifies the
videos into happy or non-happy groups.We have also adopted
a convolutional neural network similar to [66]. We use it in
two ways: firstly, passing the extracted HOG-TOP features
to the CNN; secondly, converting it to a 3D-CNN network
to cover the video frames. Finally, we study the performance
of our proposed method by comparing with all counterpart
methods using the three in-the-wild datasets.

E. HAPPY EMOTION DETECTION RESULTS
1) OPTIMAL MODELS USING THE PROPOSED HAPPYER-DDF
METHOD/STRATEGY
As mentioned earlier, we evaluated the proposed method at
both feature and decision level fusions. We used the trained
models for testing AM-FED+, AFEW and MELD datasets.
Fig.9a illustrates the loss values for the training and validation
process of three datasets when it was repeated for 195 epochs.
It is clear that the training process of three datasets has been
converged by reaching the minimum possible loss. Table 2
shows that the average accuracy of evaluating the trained
models on the AM-FED+, AFEW and MELD datasets
when we obtained the results using a fully connected layer
(feature-level fusion) and weighted sum rule with radial basis

FIGURE 9. (a) and (b) show the calculated losses and accuracies for both
training and validation processes. The accuracy plot is for the best results
obtained by the proposed method during different runs.

TABLE 2. Average accuracy of the proposed trained models.

function kernel (decision-level fusion). It is noticeable that
we have reported the results with both extracted features and
single feature vectors alone. In this case, we separately fed
each feature vector to the final fully connected layer and
SVM classifier. Although the videos in AM-FED+ have been
labeled by action units and smile, we only considered the
smile classification in the evaluation phase. According to
Table 2, the highest accuracy for AM-FED+, AFEW and
MELD datasets are 95.97%, 94.89%, and 91.14%, respec-
tively, when the extracted features have been fused at fea-
ture level. We can see that concatenating features provide
complementary information for the system to resist possible
noises. The accuracy changes during 195 epochs are shown
in Fig. 9b for the training round which leads getting the best
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accuracy for AM-FED+, AFEW, and MELD. The obtained
accuracy for AM-FED+ is higher than the accuracy of two
other datasets sincemost faces are focused and in frontal view
with a slight variation between different videos. Moreover,
it is apparent that the results on the AFEW dataset are higher
than MELD dataset because the primary goal of creating the
MELD dataset was emotion recognition based on the text,
the scenes were not chosen only dependent on the faces,
and the aligned faces are in low-resolution. It is a great
instance of the in-the-wild dataset where the faces were not
on the scenes’ concentration and were far from the camera;
hence, detecting the faces and aligning them resulted in a
low-resolution face as Fig. 10 shows. Getting acceptable and
significant-good results on a large unseen and unexpected
dataset (MELD) demonstrates that the proposed system is
robust andwell generalized. Although classifying the features
separately by SVM achieved more accuracy, with 93.86%,
92.76% and 87.44% for AM-FED+, AFEW and MELD
datasets, the concatenated features resulted in better accuracy
when we used the fully connected layers for fusion and the
classifier. It means feature-level fusion performs superior
to decision-level based on both GA and weighted mean in
recognizing happy expressions, with 95.97%, 94.89%, and
91.14% in contrast to 94.52%/93.03%, 93.29%/93.74%, and
87.73%/85.36% for AM-FED+, AFEW andMELD datasets.

FIGURE 10. Some low-resolution examples from MELD dataset that
challenge the proposed method performance.

As Table 2 shows, we also obtained the optimized weights
of decision-level model using two methods of the weighted
mean and GA. The recognition accuracy of 94.52% and
87.73% forAM-FED+ andMELDusingGA-based decision-
level is higher than the accuracy rate obtained by weighted
mean decision-level with 93.03% and 85.36%. For the AFEW
dataset, we achieved a similar result to work [57] and
the accuracy obtained by the weighted mean decision-level
model (93.74%) is slightly higher than the GA-based model
accuracy (93.29%). Regarding the runtimes shown in Table 1,
although GA has achieved better accuracies (around 2%),
it has sacrificed the time. It seems that optimizing the weights
using GA help achieve higher accuracy by sacrificing a rea-
sonable efficiency. As in any real-world application, we use
the pre-trained models; it is worth to employ a slower method
with higher accuracy than a fast lower rate one.

2) COMPARISON WITH OTHERS’ METHODS
For demonstrating the effectiveness of the proposed method,
we compare the obtained results with the existing happy
emotion detection approaches in Table 3. Table 3 shows

TABLE 3. The comparison with the state-of-the-art methods.

that the best proposed approach (both feature and deci-
sion level fusion) applied to AM-FED+ has remarkably
achieved an 95.97% using feature level fusion (note that our
another proposed method achieves 94.52% using decision
level fusion as shown in Table 2), higher than the baseline
(achieving 87.9%) and all other counterpart methods. Com-
paring the methods applied to AM-FED+, the method [17]
ranked the second only achieves 92.87% using a recurrent
Inception-ResNet neural network and element-wised land-
marks. Considering concatenated facial landmarks features
and spatial-temporal in videos caused it to be better among
others by improving the performance robustly and signifi-
cantly. Similar to work [17], the method [51] applied both
landmarks and textural features using CNN-BRNN structure
to achieve a close accuracy of 92.61%, placed the third
rank. Combining HOG-TOP features (traditional techniques)
with CNN (deep learning-based) performed well and ranked
forth with accuracy of 91.76%. Utilizing both local binary
pattern (LBP-TOP) and scale invariant features (SIFT) as a
single traditional method achieves a relatively high accuracy
of 90.33% after all deep learning methods. After the baseline
method, LBP-TOP demonstrates the worst accuracy among
all, with 88.2%. It is worth noting that the result (88.9%) for
the method [49] is obtained by the small AM-FED (including
242 videos) where the facial landmarks are employed only in
the fixed number of changed frames, not processing all the
sequences. Hence, it cannot be utilized for real-world appli-
cations as handling a large number of frames is a challenge.

Table 3 also shows the performance for AFEW andMELD
as two very challenging datasets. They contained all the
real-world conditions and were captured from TV series and
movies where the actors/actresses express genuine emotions.
According to Table 3, our proposed method is better than
all counterpart methods, including traditional and deep learn-
ing methods, with the accuracies of 94.89% for AFEW and
93.29% for MELD. In [12], the traditional LBP-TOP and
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SIFT feature extraction methods are proposed, and the data
are classified using a modified sparse representation. It is
noticeable that although their system had a significant perfor-
mance on the AFEW test set (ranked the second with 91.84%
accuracy), it was not generalized on unseen, unexpected data,
and the performance on the MELD dataset has reduced much
to around 84.15% accuracy. However, work [51] demon-
strated a very high accuracy on chosen datasets on their study;
its performance did not show superiority andwas placed at the
third, with accuracies of 89.93% and 85.39%. This problem
can be referred to as the manual frame selection. By applying
the work [17] settings and unifying the data accordingly,
we again got the better result for AFEW test data, with
79.47% contrary to 76.28% for MELD. As mentioned above,
the RNN cannot memorize the long sequences, and it is clear
that the LSTM layer has a better performance on the videos.
3D-CNN showed the worst performance, with 64.81% and
65.28% accuracy, because the videos were captured in the
unconstrained scenarios, and it cannot track all the existing
challenges, such as significant variation in head poses. Over-
all, the proposed system performs well, especially in harsh
situations and in-the-wild datasets, and outperforms at least
seven state-of-the-art approaches. Furthermore, according to
the results reported in Table 3, it can be claimed that the type
of features alongwith the used classifier plays a key role in the
recognition accuracy rate of happy emotion. The same clas-
sifier can achieve close accuracy values by different feature
extraction methods. For instance, the ELM classifier could
lead to higher accuracy when the features were changed from
LBP-TOP to HOG-TOP. Also, using an additional feature to
CNNs may achieve higher accuracy than applying a single
CNN network.

Regarding the network size comparison, our method can
work better for larger datasets than a counterpart method,
even reducing the number of layers. We compared our pro-
posed network with a similar method introduced in [51];
they have trained and tested their network with MMI, CK+,
FERA, and DISA datasets that contain 11,500, 3270, 7000,
and 89,000 images, respectively. We trained and tested our
proposed method using AM-FED+, AFEW, and MELD
datasets that contain 13,080, 7200, and 110,784 images,
respectively. (Note that we calculated the number of frames
considering at least 1 second (24 frames) per video, whereas
some videos are longer (2-4 seconds)). According to Table 3,
the proposed method achieves higher accuracy than the coun-
terpart method in [51] (95.97%, 94.89%, 91.14% in contrast
to 92.87%, 89.93%, and 85.36% for AM-FED+, AFEW, and
MELD, respectively). As a result, the fewer layers in the pro-
posed approach work more accurately even with larger-scale
data compared to the method [51].

We face two different types of occlusion in the AFEW and
MELD datasets. In the first type, half or top of the face is
covered by hair. In this case, the system decides on the same
as when we address a significant variation in the head pose.
Thus, the proposed CNN of landmarks plays an essential role
in the final decision. In the second type of face occlusion,

in which the happy mouth is covered by something such as
the actors’ hand, the predicted label is wrong in most cases
because the mouth landmarks are estimated similar to normal
lips that express neutral emotion. Hence, we can claim that
mouth is the most vital face part that misleads the system
when it is under covered.

In summary, the obtained results demonstrate that our pro-
posedmethod has considerably achieved the highest accuracy
of 95.97%, 94.89%, and 91.14% among state-of-the-art FER
systems on three AM-FED+, AFEW, and MELD datasets,
respectively. Generally speaking, it has been proven that
combining both textural and landmarks’ features leads to
higher accuracy. As we reported the results in both feature
and decision levels, the most significant accuracies were
obtained when feature-level fusion was applied. We tested
our proposed method with different datasets in the wild
that videos contain various challenging conditions such as
large head pose variations and illumination changes. More-
over, race diversity existed among the actors who played
in the videos expressing spontaneous facial expressions.
The results demonstrate the well-generality of the proposed
approach even on these datasets. It could achieve high
accuracy by addressing the head pose problem and was
lighting-invariant in most cases. Recognizing the sponta-
neous happy/smile expressions can also be considered as a
significant achievement since they are natural rather than
posed emotions expressed in the lab-controlled datasets.
Therefore, the proposed approach could obtain similar results
on similar real-world datasets in challenging situations that
faces are captured at random angles.

V. CONCLUSION
This paper proposes a novel HappyER-DDF method that
adopts a hybrid deep neural network to recognize the happy
emotions from unconstrained videos. Due to the excellent
result of ResNet frameworks on facial expression recognition,
in our HappyER-DDF method, we have used a 3D version of
Inception-ResNet architecture to extract the spatial-temporal
features. An LSTM layer has been applied to the extracted
features to consider the temporal dynamic features in the
sequential frames. Since geometric features formed by facial
landmarks are effective in expression recognition, we have
employed a CNN to extract deep features from facial distance
time series. By concatenating these feature vectors at both
feature and decision level fusions, our methods have classi-
fied the happy and non-happy groups. The experiments on
three unconstrained video datasets have demonstrated that
the proposed HappyER-DDF approach detects happy emo-
tions with an accuracy of 95.97% for AM-FED+ dataset,
94.89% for AFEW dataset and 91.14% for MELD dataset,
which has a better accuracy than several counterpart methods
such as methods in [12]–[17], and [47]. Due to overall low
accuracy resulted in the emotion recognition systems in the
wild, creating such a successful standalone happy emotion
recognition approach can inspire us to develop the single
emotion recognition strategy further for demonstrating in
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other five emotions in the near future. It is worth noting that
there is still room to improve the proposed method’s perfor-
mance by adding some attentional blocks to the mentioned
framework to discover more important face parts in emotion
recognition. Also, testing and developing the proposed model
on other large-scale challenging unconstrained datasets can
be considered in future work.
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