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Abstract: Intelligent electronic devices (IEDs) along with advanced information and communication
technology (ICT)-based networks are emerging in the legacy power grid to obtain real-time system
states and provide the energy management system (EMS) with wide-area monitoring and advanced
control capabilities. Cyber attackers can inject malicious data into the EMS to mislead the state
estimation process and disrupt operations or initiate blackouts. A machine learning algorithm
(MLA)-based approach is presented in this paper to detect false data injection attacks (FDIAs) in an
IED-based EMS. In addition, stealthy construction of FDIAs and their impact on the detection rate of
MLAs are analyzed. Furthermore, the impacts of natural disturbances such as faults on the system
are considered, and the research work is extended to distinguish between cyber attacks and faults
by using state-of-the-art MLAs. In this paper, state-of-the-art MLAs such as Random Forest, OneR,
Naive Bayes, SVM, and AdaBoost are used as detection classifiers, and performance parameters
such as detection rate, false positive rate, precision, recall, and f-measure are analyzed for different
case scenarios on the IEEE benchmark 14-bus system. The experimental results are validated using
real-time load flow data from the New York Independent System Operator (NYISO).

Keywords: intelligent electronic device (IED); cyber attacks; energy management system (EMS);
false data injection attack (FDIA)

1. Introduction

The demand for power supply is growing with time, and various types of efficient
and renewable energy sources are being integrated into the legacy power grid. In ad-
dition, new types of loads and storage devices are emerging from the consumers’ side.
Diverse intelligent electronic devices (IEDs) such as inverters, digital relays, and phasor
measurement units (PMUs) are deployed to monitor and control this complex and dynamic
network of power systems [1]. Furthermore, the physical grid components of a smart grid
starting from generation to end users are tightly coupled with a cyber network of physical
process-oriented control, computational resources, and information technology-based com-
munication systems [2]. As a consequence, new types of contingencies such as cyber-attacks
are occurring at a high-frequency on power system monitoring, control, and operations [3].

Attackers can break into a computer or industrial control system (ICS) by deploying
malware through phishing or spoofing attacks and take control of the entire system or
part of the system to mislead the operation or disable it for a certain period of time. False
data could also be injected into the power system energy management system (EMS) by
compromising the physical IEDs’ functionalities or exploiting the flaws and vulnerabilities
in software and communication protocols [4]. Spurious injection in supervisory control
and data acquisition (SCADA)-based ICSs results in the false or incorrect calculation of
system states, which eventually misleads EMS operations such as optimal power flow,
economic dispatch, contingency analysis, and many more. In general, the chi-square test
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and the largest normalized residual (LNR) methods are used to detect and identify corrupt
or distorted measurements present in a SCADA database [5]. However, in a recent study,
Liu et al. demonstrated that an attacker equipped with power system topology information
can inject false or misleading data into the measurement vector that remains undetected
by the conventional chi-square-based bad data detection method [6]. Unless prevented,
cyber attacks in power system EMSs can cause disruptions in power system operations
and eventually initiate cascading failures, leading to complete blackouts [7].

A large number of research studies have been carried out to investigate the construc-
tion and stealthiness of FDIAs against power system EMSs [8]. In addition, IT-based
security measures such as cryptography-based protection systems, firewalls, antivirus,
and many more are currently used to defend against cyber attacks. Due to the tight
coupling between physical processes of smart grids and the communication and cyber
networks among them, the existing only-IT-based security solutions are inadequate for
ensuring cyber security in smart power grids [9]. Significant efforts have been made to
protect meter measurements by implementing PMUs in critical locations in a cost-effective
manner [10]. However, GPS-based PMUs are also not hack-proof [11]. On the other hand,
detection-based defense techniques are proposed that include the generalized likelihood
ratio, Kullback–Leibler distance method, Markov chains, unscented Kalman filter (UKF),
fast-go decomposition, Bayesian framework, diagnostic generalized potential, cosine simi-
larity matching scheme, and many more [12]. However, many of the proposed methods
are not scalable, and thus they are physically unfeasible for large-scale, highly complex
cyber-physical smart power systems [13]. In addition, the large number of data collected
from different smart meter locations requires proper data analysis and anomaly detec-
tion techniques.

Due to the scalability towards large systems, the development and implementation
of MLAs for detecting anomalies in various research and industrial sectors are gradually
increasing [14]. Many supervised machine learning algorithms (MLAs) have been devel-
oped that can successfully detect false data injections in the state estimation process [15].
Furthermore, an unsupervised ensemble learning method in [16] and a deep autoencoder
model in [17] have been developed to detect false data injection attacks in PMUs, whereas
PMUs’ data are difficult to label due to their fast data streaming. Although deep learning
methods exhibit impressive results in detecting FDIAs [18,19], they require large training
data sets, high computational costs, and specialized equipment.

In addition, the detection of cyber attacks becomes complicated when measurement
data disruptions due to natural disturbances such as faults are considered [20]. The incorrect
identification of attacks as faults, or vice versa, can cause inappropriate control actions
by control center operators. Although the detection techniques used in a large number of
anomalous cyber and physical events have been well studied, the development of methods
to distinguish between cyber attacks and physical anomalies is still in the preliminary
stage. Therefore, a simple and realistic machine learning-based approach is presented
in this paper to detect cyber attacks in an IED-based power system EMS and assess the
feasibility of state-of-the-art MLAs in distinguishing between FDIAs and faults. The key
contributions of this paper are as follows:

• An assessment of the feasibility of state-of-the-art MLAs in detecting cyber attacks
is performed.

• The construction of stealthy FDIAs is analyzed, and the performance of MLAs in
detecting stealthy attacks is evaluated.

• The research study is further extended to discriminate between cyber attacks and
faults in an IED-based EMS by using state-of-the-art MLAs such as Random Forest,
OneR, Naive Bayes, SVM, and AdaBoost.

The rest of the paper’s architecture is as follows. In Section 2, the IED-based smart grid
model, the EMS operation and its state estimation, and bad data detection functionalities
are discussed. Section 3 presents cyber-vulnerable nodes in the power system EMS and the
construction strategy of stealthy cyber attacks using system information and measurement



Electronics 2021, 10, 650 3 of 15

signals. The experiential setup, test system, and data generation processes are presented in
Section 4. Results and findings from different case scenarios are presented and thoroughly
discussed in Section 5. The conclusion and future directions of this research are presented
in Section 6.

2. The IED-Based Smart Power System

The smart power system is a complex infrastructure of tightly coupled physical and
cyber networks. In this large and complex cyber-physical network, an advanced metering
infrastructure comprised of several IEDs such as PMUs is used to monitor and measure
important physical quantities such as voltages, currents, power, and angles at different
bus and node locations of a power system. All IED-measured data are sent to the control
center via a high-speed communication network for making control decisions as shown in
Figure 1. The control center processes the received measurement data and sends control
commands to the actuators.

Figure 1. The intelligent electronic device (IED)-based smart cyber-physical power system.

Advanced IEDs have enabled the real-time monitoring and control of power systems
and improved the reliability, maintenance, and power quality of the network. A brief
discussion of different categories of IEDs in the distribution system is given as follows:

• Customer Monitoring IEDs: Customer revenue meters are the best way to obtain data
on the electric supply performance. Modems, Zig-Bee, IRIG-B, and many others are
the multi-functional meters used by commercial, industrial, and residential customers.

• Feeder Monitoring IEDs: Mainly, electronic controllers such as voltage regulators,
switches, recloser, and capacitor banks are used as feeder monitoring infrastructure.
The SCADA-based control center collects information from these devices on steady-
state conditions.

• Substation Monitoring IEDs: Several RTUs such as PMUs are used in the substation
monitoring system to collect status data, voltages, currents, and powers. Other
IEDs, such as digital intelligent relays, are also deployed to generate autonomous
control decisions.
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2.1. The Energy Management System

The control center in EMS continuously monitors the power system through different
types of IEDs deployed in various critical geographical locations and generates necessary
control decisions based on the current status and/or states of the system. The ICT-based
cyber layer is a fundamental element for providing accurate information between IEDs
and the control center by using diverse transmission media within specific protocols. Two
types of data: (1) Topological and system configuration data such as transformer settings,
circuit breakers’ (CBs) status, and line impedance data, and (2) measurement data from
remote IEDs that are collected by the control center for estimating the system’s states and
generating necessary control operations. Status data and measurement data sent by IEDs
can be corrupted or disrupted while transmitting through the communication channel. Bad
data detection techniques are utilized to detect and eliminate those corrupt and disrupted
data. The state estimation process and bad data detection mechanism are discussed below.

2.1.1. State Estimation

The state estimator processes redundant measurements to determine the optimal
current operating system’s states such as bus voltages, currents, angles, and many oth-
ers. Based on reliable real-time data, the state estimator analyses the contingencies and
determines the required control actions [5]. As nonlinear power flow equations are compu-
tationally intensive for an attacker, a weighted least square (WLS) static state estimation
model is considered in this paper to estimate voltage phasors at a given point in time.

For the WLS state estimation, it is considered that the network topology and parame-
ters are completely known, and system states include bus-voltage phasors only. Therefore,
the state vector of the network can be expressed as

θ = [θ1, θ2, . . . θN−1]
T (1)

where θ represents the state vector. In addition, θi is a system state where i = 1, 2, 3, . . . , N
and N is the total number of states. T represents the transpose of the vector matrix for rest
of the article. The received measurement vector z can be represented as

z = h(θ) + e (2)

where h(θ) = [h1(θ), h2(θ), . . . , hm(θ)]T is a function of state variables and the measurement
error due to communication noise, e = [e1, e2, . . . , em] is a Gaussian vector with known
covariance R.

All branch resistances and shunt elements can be neglected in the DC state estimation
process, while real power flow measurements are obtainable by performing DC load flow
analysis only. The power flow equation can be expressed as

Pkm =
θk − θm

xkm
+ v (3)

where Pkm is the power flow from bus k to bus m, θk and θm are phase angles related to bus
k and m, xkm represents the branch reactance, and v is the measurement error. Similarly,
the power injection at bus k can be expressed as

Pk = ∑
m∈Nm

Pkm + w (4)

where Nm represents the number of connecting buses at the bus m. Pk is the power injection
to bus k and w is the measurement error. Therefore, the real power flow measurement
vector for the DC state estimation model is represented as

z = Hθ+ e (5)
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where real power flows and real power injections are considered, and the Jacobian matrix
H is a function of branch reactance only.

Assuming m ≥ n and H ∈ IRm×n, the rank of the Jacobian matrix, H = n. As a result,
system’s sate vector, θ can be obtained by using the weighted least square (WLS) estimator
which can be formulated as

argmin
θ

J(θ) =
1
σ2

∣∣∣∣∣∣z−Hθ
∣∣∣∣∣∣2 (6)

where σ2 is the meter measurement variance. The formulated problem can be solved
iteratively (e.g., using gradient-based Newton’s method [5]. The estimated state vector θ̂ is
obtained as

θ̂ = (HTWH)−1HTWz (7)

where W = R−1 and R is the measurement error variances.
Now, the measurement residue r can be calculated as

r = z−Hθ̂ (8)

The BDD module uses this calculated residue as a key parameter to detect incorrect
received measurements.

2.1.2. Bad Data Detection

The measurement data can be corrupted or misleading because of a meter malfunction
or the low service efficiency of communication networks. The poor quality of data can
affect the state estimation process and mislead control decisions. As a common practice,
a chi-square (χ2) test is performed on the measurement residue between original and
estimated measurements. It is assumed that the noise in the communication channel are
independent and follow a normal distribution with zero mean. Therefore, the objective
function J(θ) will follow the chi-square distribution with ψ = (m− n) degree of freedom.
A detection threshold τ = χ2

(m−n),p for a particular detection confidence can be obtained
using the chi-square distribution table. The measurement vector is suspected as containing
the bad measurement if the objective function, J(θ) ≥ τ; otherwise, the measurement
vector is free from bad measurements. After that, the largest normalized residual (LNR)
test is conducted to identify and eliminate bad data from the measurement vector.

3. Cyber Attacks on the EMS

As described in Section 2.1, several IEDs are emerging along with advanced ICT-
based cyber networks for the real-time monitoring and control of power systems. Smart
remote terminal units (RTUs) such as PMUs or other sensor-based meters are sparsely
deployed throughout the power network to measure power system quantities and the
current status of the system. The measurements can be corrupted or distorted due to the
meter malfunctions or communication noise. In addition to that, RTUs, communication
channels, and SCADA databases are subject to cyber attacks. However, an attacker can
inject malicious or false measurements into the SCADA system with the aim of misleading
the state estimation process by evading the bad data detector. An EMS model indicating all
vulnerable cyber nodes are portrayed in the Figure 2.

In most cases, bad or corrupt measurements and randomly generated malicious
injections are detected by the traditional chi-square-based BDD. However, attack signals
constructed by using the complete or partial system topological information bypass the
BDD and the state estimation converges [21]. Another study also proved that attack signals
can be constructed without the prior knowledge of the topological information by using
measurement signals only [22]. Both types of stealthy FDIAs construction are discussed in
the following subsections.
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Figure 2. A supervisory control and data acquisition (SCADA)-based energy management system
(EMS) representing different cyber-vulnerable nodes.

3.1. Knowledge Based FDI Attack Model

An attacker can compromise physical meters to inject cyber attacks into the SCADA
system. As meters are sparsely distributed and attackers have limited resource to com-
promise a sufficient number of meters to launch stealthy attacks, a man-in-the-middle
(MITM)-type attack scenario is considered in this research. In MITM, the attacker invades
the communication channel and injects a false attack vector a into the SCADA measurement
vector z. Therefore, the measurement vector received by the control center is za = z + a.
For instance, it is assumed that the attacker has complete information of the system’s Jaco-
bian matrix H. Therefore, the system state vector θ̂a is estimated by using compromised
measurements as follows:

θ̂a = (HTWH)−1HTWza

= (HTWH)−1HTW(z+a)

= θ̂+ (HTWH)−1HTWa

(9)

If the attack injection vector a = Hc, where c is a randomly generated vector; the
2-Norm of the measurement residual can be written as

||za −Hθ̂a|| = ||z + a−H(θ̂+ (HTWH)−1HTWa)||
= ||z−Hθ̂+ (a−H(HTWH)−1HTWa)||
= ||z−Hθ̂+ (Hc−Hc)||
= ||z−Hθ̂|| ≤ τ

(10)

where τ is the bad or corrupted data detection threshold. As both normal and attack cases
have 2-Norm measurement residue values lower than the chi-square threshold, the BDD
will fail to detect false data injections into the measurement vector.

3.2. Blind FDI Attack Model

In reality, the topology of the network and impedance of transmission lines are con-
fidential information and updated periodically over time. Therefore, generating stealthy
attack vector using measurement signals is a more practical approach from the attacker’s
point of view. A blind false data injection method is proposed in [23] by using the principal
component analysis (PCA) approximation method. By using this technique, an approximate
system Jacobian matrix H can be calculated from measurement data aiming to construct a
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successful stealthy attack vector. After the successful implementation of the PCA technique
on the collected time series measurement matrix Zd×m, the attacker achieves a transforma-
tion matrix M̃ and a vector of principal components x. The PCA transformation can be
expressed as

M̃TZ = x (11)

As H is an n rank matrix, the system’s Jacobian matrix construction will involve only
n number of eigenvectors. Therefore, the representation of the measurement matrix is

Z ≈


M̃1,1 M̃1,2 . . . M̃1,n

. . . .

. . . .

. . . .
M̃m,1 M̃m,2 . . . M̃m,n




x̃1
.
.
.

xn

 (12)

where the approximated Jacobian matrix is a m× n matrix.
Now, an attack vector apca = Hpcac can easily be constructed that will remain hidden

during the chi-square test and bypass the BDD module. The readers are referred to the work
in [23] for further details of blind PCA-based stealthy attack construction and its impacts.

4. Data Preparation and Attack Detection Methods

In this paper, the IEEE benchmark 14-bus power system is considered as a test system,
and cyber attacks and fault scenarios are simulated in this system by utilizing one year
of real-time load flow data from NYISO [24]. The 14-bus test system is comprised of
five generators, fourteen node buses, and twenty interconnecting branches. As shown in
the Figure 3, a total of 54 power sensor-based IEDs are deployed in different locations to
measure power injections and power flows in different nodes and buses. Meter measure-
ments are transmitted to the control center through wireless communication channels for
contingency analysis and other different EMS operations. Meter readings received by the
control center during different case scenarios such as with-communication noise, cyber
attacks, and faults are utilized to generate training and test data set for MLAs. After that,
performances of different state-of-the-art MLAs are evaluated for several case scenarios to
discriminate between faults and cyber-attack data in the SCADA-EMS.

Figure 3. The IEEE 14-Bus system with sensors in different locations [22].
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4.1. Dataset Preparation

Three case scenarios—normal operation, cyber attacks, and faults—are considered in
this paper to generate training and test data. The data generation processes of different
case scenarios and their impacts on the state estimation process are briefly discussed below.

4.1.1. Original and With-Noise Measurements

The original measurement refers to the actual value of power flow in a node or bus. On
the other hand, Gaussian noise with an SNR between 20∼35 DB is considered in this paper
as a communication and sensor noise. The measurement residue between the estimated
measurement and received original measurement is very small, whereas the measurement
residue due to noise shows a value greater than the value with the original measurement.
However, the measurement residue calculated for the noise signal remains below the BDD
threshold value, and thus it bypasses the module. A chi-square detection threshold can be
obtained for a particular confidence interval value. For example, the detection threshold is
56.94 considering 95% confidence interval of a chi-square test [5]. Measurement residues of
original measurements and with-noise measurements are below 56.94, and thus bypass the
BDD module. In contrast, measurement data are considered corrupted while the residue
value is more than the threshold value. The original and with-noise measurements data
are considered as no-attack data. In this research, no-attack data are generated by using
yearly load flow data collected from the NYISO.

4.1.2. Random and Stealthy Attack Measurements

During gross error or random attacks on measurement signals, the residue is greater
than the chi-square threshold and detected by the BDD module. However, in cases of
stealthy attacks, the measurement residue between the attack measurement and estimated
measurement is below the detection threshold and remains hidden in the system. Figure 4a
shows the original measurements, estimated measurements, and attack measurements,
and Figure 4b shows the actual system states and the system states during stealthy attacks.
In Figure 4a, although attack measurements are different from original measurements,
the estimated measurements are very close to the original measurements. As a result,
measurement residues between the original and estimated measurement will remain below
the chi-square threshold value and will bypass the BDD. Furthermore, the system’s states
are deviated from the original states as shown in the Figure 4b. Two sets of random attack
and stealthy attack data are generated for the training and testing of machine learning-
based algorithms.

Figure 4. Estimated measurements and system states during cyber attacks.
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4.1.3. During-Fault Measurements

Faults in a power system are considered natural disturbances. When fault data are
detected, the control center generates certain control actions to mitigate the effects on the
system. To avoid any undesired situation, the operator must differentiate between attack
signals and faults. The three-phase-to-ground fault is the most severe type of fault and is
considered in this research to generate during-fault data. To demonstrate practical case
scenarios, faults are considered in different nodes for various load variations. In addition,
fault impedance is also randomly varied throughout the simulation process.

4.1.4. Overview of the Complete Dataset

In the NYISO, the measurement samples are taken as five-minute intervals. Therefore,
a total of 290 instances of measurement data are recorded for a day, and a total 212,338 sets
of measurement data are generated for each no-noise, with-noise, random attack, stealthy
attack, and fault cases throughout a year. The total number of data generated for no-attack,
with-attack, and fault data are presented in Table 1. Both original data and with noise data
are incorporated in the no-attack data set. Random attacks are randomly generated attack
signals and stealthy attacks are those attack signals, which have ability to successfully
bypass the BDD.

Table 1. Data for no-attack, cyber attack, and fault scenarios.

Situation No. of Records

No-Attack/Normal operation 424,676
Randomly generated attacks 212,338
Stealthy Attacks (PCA, SVD, and Known H) [6,23,25,26] 212,338
Fault 212,338

4.2. Performance Metrics for Machine Learning Algorithms

MLAs learn from the provided training data and build mathematical models to make
decisions on test data. In this paper, five popular state-of-the-art MLAs—Random Forests,
OneR, Naive Bayes, SVM, and AdaBoost—are selected from five distinct categories to
evaluate their performance in detecting normal data, cyber attacks, and faults. The MLAs
and their respective categories are presented in the Table 2.

Table 2. Machine learning algorithms and their respective categories.

Name Category

Random Forests Decision tree learning
OneR Rule induction
AdaBoost Boosting, a meta-algorithm for learning
Naive Bayes Probabilistic classification
SVM Non-probabilistic binary classification

The performance of an MLA for given data can be evaluated using different perfor-
mance metrics. The detection rate and the false positive rate of an MLA can be obtained
using following equations:

Detection Rate =
xta − x f n

xta
× 100 (13)

False Positive Rate =
x f p

xt
× 100 (14)

where xta = the total number of anomalies, number of false positives, x f p = the number of
normal data classified as anomalous data, the number of false negatives, x f n = the number
of anomalies classified as normal data, and xt = the total number of data.
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The detection rate always does not show the actual performance of the algorithm. For
that, there are many other performance parameters such as precision, recall, and f-measure.
The precision parameter is used to identify the ability of a classifier to predict overall
positive values and can be expressed as

Precision =
xtp

xtp + x f p
(15)

where number of true positives, xtp = the number of normal data classified as normal data.
The Recall is a metric that measures the true positive rate and is expressed as

Recall =
xtp

xtp + x f n
(16)

where xtp and x f n have the same meaning as Equations (13)–(15).
The f-Measure parameter represents the mean of both precision and recall and is

expressed as

F-Measure =
2× Precision×Recall

Precision + Recall
(17)

The machine learning performance parameters such as precision, recall, and f-measures
are the ratios of two different numbers and the performance score varies from 0 to 1 to the
robustness of an MLA.

5. Results and Discussions

Different case scenarios of normal operational, random, and stealthy cyber attacks
and faults are simulated in the IEEE 14-bus test system. Cyber attack detection and the
discrimination between faults and cyber attacks are performed by using a machine learning
analytical platform called WEKA [27].

5.1. Cyber Attack Detection

Two types of cyber attacks—random and stealthy attacks—are considered in this
paper. Random attacks are detected by the BDD module because of their high measurement
residue value, but stealthy attacks can successfully circumvent the BDD. Therefore, two
case scenarios are considered to evaluate the cyber attack detection performance of MLAs:
successful stealthy cyber attacks in the historical data and synthesized stealthy attacks
in the historical data. Successful stealthy cyber attacks circumvent the BDD and labeled
as normal data. On the other hand, synthesized data are prepared by using a proper
mathematical model and are labelled as attack data to train MLA classifiers.

5.1.1. CASE A: Considering Successful Stealthy Cyber Attacks in the Historical Data

In this case study, cleverly generated attacks are considered hidden and bypassed
through the BDD module. The original and with-Gaussian-noise data are considered
as normal operational data. Randomly generated attack data and stealthy attack data
generated by using a known system Jacobian matrix and using PCA and SVD methods
are considered as cyber attack data. In addition, the measurement residue of some of
the random attack data can be below the detection threshold and hence are labeled as
normal data.

5.1.2. CASE B: Considering Synthesized Stealthy Attacks in the Historical Data

In this case study, synthesized stealthy attacks are generated to train the classifiers
and considered as historical attack data. Unlike CASE A, stealthy data are not labeled as
normal data; rather, they are labeled as attack data.

The detection rate and the false positive rate of different state-of-the-art classifiers are
presented in Tables 3 and 4. As MLA classifiers are trained with a similar kind of normal
data, the detection rate of normal data is higher in both CASE A and B. However, attack
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data are considered stealthy in CASE A. Therefore, all classifiers show a detection rate that
is below 75%, and the false positive rate is higher than 0.25%. In contrast, MLA classifiers
are trained with synthesized stealthy data for CASE B, and very high detection rates and
low false positive rates are achieved by all classifiers. The lower detection rate of CASE
A and higher detection rate of CASE B show that the performance of MLAs are highly
dependent on their training data types and their availability. However, providing relevant
historical or synthesized data highly improves the detection rates and reduce the chances
of being false positives which are clearly manifested in Tables 3 and 4.

Table 3. Detection rate (%) for CASES A and B.

Random Forests OneR Naive Bayes SVM AdaBoost

CASE A 74.92 74.15 25.10 74.92 72.97
CASE B 99.79 98.58 99.79 99.76 93.78

Table 4. False positive rate (%) for CASE A and B.

Random Forests OneR Naive Bayes SVM AdaBoost

CASE A 0.251 0.259 0.251 0.251 0.271
CASE B 0.002 0.014 0.002 0.002 0.062

The precision, recall, and f-measure values of different classifiers for CASE A and B
are depicted in Figure 5. The weighted values of performance parameters show that CASE
B is more robust in detecting cyber attacks. In CASE A, all performance parameters are
low because of the stealthy attacks in the system data. However, the average performance
parameters reach up to 0.83 because of the successful detection of normal data.

Figure 5. Precision, Recall, and F-measure of different MLAs for CASES A and B.
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5.2. Discriminating between Cyber Attacks and Faults

For distinguishing between cyber attacks and faults, five case scenarios of no-attacks,
cyber attacks, and faults are considered as training and testing classes of selected state-of-
the-art MLAs and are presented in Table 5.

Table 5. Different case scenarios for discriminating between cyber attacks and faults.

CASES Training Class 1 Training Class 2 Test Class 1 Test Class 2

1 Attack Normal Attack Normal
2 Fault Normal Fault Normal
3 Attack Fault Attack Fault
4 Fault & Attack Normal Fault & Attack Normal
5 Fault Normal Fault & Attack Normal

For distinguishing between cyber attacks and faults, both random and stealthy attacks
are considered as attacks, and a three-phase-to-ground fault in the transmission line is
considered as a fault. The successful detection rate of instances for different case scenarios
is presented in Table 6, and the false positive rate is presented in Table 7.

Table 6. Detection rate (%) for different case scenarios.

CASES Random Forests OneR Naive Bayes SVM AdaBoost

1 99.90 98.70 99.90 99.90 99.87
2 99.81 99.84 99.84 95.58 99.44
3 99.84 99.87 90.01 93.97 99.87
4 99.92 98.67 99.44 98.16 99.54
5 91.66 60.26 93.85 62.76 76.44

Table 7. False positive rate (%) for different case scenarios.

CASES Random Forests OneR Naive Bayes SVM AdaBoost

1 0.001 0.013 0.001 0.001 0.001
2 0.002 0.002 0.002 0.087 0.087
3 0.002 0.002 0.197 0.098 0.002
4 0.001 0.011 0.004 0.013 0.003
5 0.059 0.269 0.044 0.252 0.161

In CASE 1, attacks (both random and stealthy attacks) and normal data are provided
as training data and test data. All classifiers learn from training data and successfully
detect most of the instances, and their false positive rates are also negligible. As training
and test data of similar categories are provided for CASES 2–4, analogous results were
obtained. This proves that similar data type in the historical and present data provide a
higher detection rate and lower false positive rate.

In CASE 5, only faults and normal data are considered as historical data and used as
training classes for MLAs. However, the test class contains both stealthy and random types
cyber attack data. As a result, the detection rates of all classifiers are decreased and false
positive rates are increased.

In Figure 6, the MLA performance parameters such as precision, recall, and f-measures
for CASES 1–5 are depicted. For CASES 1–4, MLA classifiers show a very high performance,
but this degrades for CASE 5 because of the absence of cyber attack data in the historical
dataset. However, reduced performance parameters are not less than 0.6, which indicate
that either enough historical data or appropriate modifications are needed to increase the
successful detect rate of stealthy type cyber intrusions.

In addition to the discrimination between during fault measurements and FDIAs, sig-
nificant efforts are required to separate inaccurate measurements and faulted measurement
devices’ (current and voltage transformers and sensors) data from false data injections.
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To achieve satisfactory results, additional historical data from transformers and circuit
breakers are required to train MLAs. In addition, deployment of more IEDs with higher
data transfer capability can assist the control centre to distinguish between the inaccurate
measurements and faulted measurement devices’ measurements.

Figure 6. Precision, Recall, and F-measure of different machine learning algorithms for different
case scenarios.

6. Conclusions

A MLA-based cyber attack and fault discrimination approach is presented in this
paper. First, normal operational data, random and stealthy attack data, and three-phase-
to-ground fault data are generated. Second, different case scenarios are considered to
evaluate MLA performance parameters such as the detection rate, false positive rate,
precision, recall, and f-measure in detecting stealthy cyber attacks. Finally, state-of-the-art
MLA classifiers—Random Forest, OneR, Naive Bayes, SVM, and AdaBoost—are used to
distinguish between cyber attacks and faults in an IED-based EMS. The results show that
synthesized stealthy attacks in historical data highly improve the detection rate of MLA
classifiers. In addition, the robustness of all classifiers in detecting cyber attacks decreases
when they are trained only with faults and normal operational data. All MLAs, except
Naive Bayes, showed similar results during successful stealthy attacks (CASE A). However,
detection rates improved for all MLAs while stealthy attacks (CASE B) are considered. In
contrast, all MLAs show similar performance for CASES 1–4 while discriminating faults
and attacks. However, detection rates of OneR and SVM drop below 65%, while historical
attack data are absent from the training data set.

The future scopes of this paper include the analysis of other types of cyber attacks,
such as DoS, DDos, replay, and many others, and generate synthesized data for the early
training of MLAs in distinguishing between cyber attacks and faults.



Electronics 2021, 10, 650 14 of 15

Author Contributions: Conceptualization, B.M.R.A. and A.A.; methodology, B.M.R.A.; validation,
B.M.R.A., M.J.H., A.A., and S.Z.; formal analysis, B.M.R.A.; writing—original draft preparation,
B.M.R.A.; writing—review and editing, S.Z., M.J.H., and A.A.; visualization, B.M.R.A. and S.Z.;
supervision, M.J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mlakic, D.; Reza Baghaee, H.; Nikolovski, S.; Vukobratovic, M.; Balkic, Z. Conceptual Design of IoT-Based AMR Systems Based.

Energies 2019, 12, 4281. [CrossRef]
2. Gong, S.; Lee, C. Cyber Threat Intelligence Framework for Incident Response in an Energy Cloud Platform. Electronics 2021,

10, 239. doi:10.3390/electronics10030239. [CrossRef]
3. ICS Vulnerabilities Key Findings. Available online: https://www.dragos.com/review/2019-ics-year-in-review-ics-vulnerabilities/

(accessed on 22 January 2021).
4. Wang, Q.; Tai, W.; Tang, Y.; Ni, M. Review of the false data injection attack against the cyber-physical power system. IET Cyber-

Phys. Syst. Theory Appl. 2019, 4, 101–107. doi:10.1049/iet-cps.2018.5022. [CrossRef]
5. Abur, A.; Expósito, A.G. Power System State Estimation: Theory and Implementation; CRC: Boca Raton, FL, USA, 2004; p. 327.
6. Liu, Y.; Ning, P.; Reiter, M.K. False Data Injection Attacks against State Estimation in Electric Power Grids. ACM Trans. Inf. Syst.

Secur. 2011, 14, 1–33. doi:10.1145/1952982.1952995. [CrossRef]
7. Liang, G.; Weller, S.R.; Zhao, J.; Luo, F.; Dong, Z.Y. The 2015 Ukraine Blackout: Implications for False Data Injection Attacks.

IEEE Trans. Power Syst. 2017, 32, 3317–3318. doi:10.1109/TPWRS.2016.2631891. [CrossRef]
8. Liang, G.; Zhao, J.; Luo, F.; Weller, S.R.; Dong, Z.Y. A Review of False Data Injection Attacks Against Modern Power Systems.

IEEE Trans. Smart Grid 2017, 8, 1630–1638. [CrossRef]
9. Anwar, A.; Mahmood, A.N.; Tari, Z. Ensuring Data Integrity of OPF Module and Energy Database by Detecting Changes in

Power Flow Patterns in Smart Grids. IEEE Trans. Ind. Inform. 2017, 13, 3299–3311. doi:10.1109/TII.2017.2740324. [CrossRef]
10. Pei, C.; Xiao, Y.; Liang, W.; Han, X. PMU Placement Protection Against Coordinated False Data Injection Attacks in Smart Grid.

IEEE Trans. Ind. Appl. 2020, 56, 4381–4393. doi:10.1109/TIA.2020.2979793. [CrossRef]
11. Gong, S.; Zhang, Z.; Li, H.; Dimitrovski, A.D. Time Stamp Attack in Smart Grid: Physical Mechanism and Damage Analysis.

arXiv 2012, arXiv:1201.2578
12. Musleh, A.S.; Chen, G.; Dong, Z.Y. A Survey on the Detection Algorithms for False Data Injection Attacks in Smart Grids.

IEEE Trans. Smart Grid 2020, 11, 2218–2234. [CrossRef]
13. Wei, J.; Mendis, G.J. A deep learning-based cyber-physical strategy to mitigate false data injection attack in smart grids. In

Proceedings of the 2016 Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG), Vienna, Austria, 12
April 2016; pp. 5–10.

14. Sayghe, A.; Hu, Y.; Zografopoulos, I.; Liu, X.R.; Dutta, R.G.; Jin, Y.; Konstantinou, C. Survey of Machine Learning Methods
for Detecting False Data Injection Attacks in Power Systems. IET Smart Grid 2020, 3, 581–595. doi:10.1049/iet-stg.2020.0015.
[CrossRef]

15. Sakhnini, J.; Karimipour, H.; Dehghantanha, A. Smart Grid Cyber Attacks Detection Using Supervised Learning and Heuristic
Feature Selection. In Proceedings of the 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE),
Oshawa, ON, Canada, 12–14 August 2019; pp. 108–112.

16. Ahmed, S.; Lee, Y.; Hyun, S.H.; Koo, I. Unsupervised Machine Learning-Based Detection of Covert Data Integrity Assault in
Smart Grid Networks Utilizing Isolation Forest. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2765–2777. [CrossRef]

17. Zhou, M.; Wang, Y.; Srivastava, A.K.; Wu, Y.; Banerjee, P. Ensemble-Based Algorithm for Synchrophasor Data Anomaly Detection.
IEEE Trans. Smart Grid 2019, 10, 2979–2988. [CrossRef]

18. Yu, J.J.Q.; Hou, Y.; Li, V.O.K. Online False Data Injection Attack Detection With Wavelet Transform and Deep Neural Networks.
IEEE Trans. Ind. Inform. 2018, 14, 3271–3280. doi:10.1109/TII.2018.2825243. [CrossRef]

19. Abu Al-Haija, Q.; Zein-Sabatto, S. An Efficient Deep-Learning-Based Detection and Classification System for Cyber-Attacks in
IoT Communication Networks. Electronics 2020, 9, 2152. doi:10.3390/electronics9122152. [CrossRef]

20. Guo, X.; Tan, Y.; Wang, F. Modeling and fault propagation analysis of cyber–physical power system. Energies 2020, 13, 539.
doi:10.3390/en13030539. [CrossRef]

21. Li, Y.; Wang, Y. False Data Injection Attacks with Incomplete Network Topology Information in Smart Grid. IEEE Access 2019,
7, 3656–3664. doi:10.1109/ACCESS.2018.2888582. [CrossRef]

22. Anwar, A.; Mahmood, A.N.; Pickering, M. Modeling and performance evaluation of stealthy false data injection attacks on smart
grid in the presence of corrupted measurements. J. Comput. Syst. Sci. 2017, 83, 58–72. doi:10.1016/j.jcss.2016.04.005. [CrossRef]

23. Yu, Z.H.; Chin, W.L. Blind False Data Injection Attack Using PCA Approximation Method in Smart Grid. IEEE Trans. Smart Grid
2015, 6, 1219–1226. doi:10.1109/TSG.2014.2382714. [CrossRef]

24. New York Independent System Operator (NYISO) Real Time Actual Load Data—2018. Available online: http://mis.nyiso.com/
public/P-58Blist.htm (accessed on 22 January 2021).

http://doi.org/10.3390/en12224281
http://dx.doi.org/10.3390/electronics10030239
https://www.dragos.com/review/2019-ics-year-in-review-ics-vulnerabilities/
http://dx.doi.org/10.1049/iet-cps.2018.5022
http://dx.doi.org/10.1145/1952982.1952995
http://dx.doi.org/10.1109/TPWRS.2016.2631891
http://dx.doi.org/10.1109/TSG.2015.2495133
http://dx.doi.org/10.1109/TII.2017.2740324
http://dx.doi.org/10.1109/TIA.2020.2979793
http://dx.doi.org/10.1109/TSG.2019.2949998
http://dx.doi.org/10.1049/iet-stg.2020.0015
http://dx.doi.org/10.1109/TIFS.2019.2902822
http://dx.doi.org/10.1109/TSG.2018.2816027
http://dx.doi.org/10.1109/TII.2018.2825243
http://dx.doi.org/10.3390/electronics9122152
http://dx.doi.org/10.3390/en13030539
http://dx.doi.org/10.1109/ACCESS.2018.2888582
http://dx.doi.org/10.1016/j.jcss.2016.04.005
http://dx.doi.org/10.1109/TSG.2014.2382714
http://mis.nyiso.com/public/P-58Blist.htm
http://mis.nyiso.com/public/P-58Blist.htm


Electronics 2021, 10, 650 15 of 15

25. Anwar, A.; Mahmood, A.N. Stealthy and Blind False Injection Attacks on SCADA EMS in the Presence of Gross Errors. In
Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 8–12.
doi:10.1109/PESGM.2016.7741557. [CrossRef]

26. Kim, J.; Tong, L.; Thomas, R.J. Subspace Methods for Data Attack on State Estimation: A Data Driven Approach. IEEE Trans.
Signal Process. 2015, 63, 1102–1114. doi:10.1109/TSP.2014.2385670. [CrossRef]

27. Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and
Techniques”, 4th ed.; Morgan Kaufmann: San Francisco, CA, USA, 2016; p. 327.

http://dx.doi.org/10.1109/PESGM.2016.7741557
http://dx.doi.org/10.1109/TSP.2014.2385670

	Introduction
	The IED-Based Smart Power System
	The Energy Management System
	State Estimation
	Bad Data Detection


	Cyber Attacks on the EMS
	Knowledge Based FDI Attack Model
	Blind FDI Attack Model

	Data Preparation and Attack Detection Methods
	Dataset Preparation
	Original and With-Noise Measurements
	Random and Stealthy Attack Measurements
	During-Fault Measurements
	Overview of the Complete Dataset

	Performance Metrics for Machine Learning Algorithms

	Results and Discussions
	Cyber Attack Detection
	CASE A: Considering Successful Stealthy Cyber Attacks in the Historical Data
	CASE B: Considering Synthesized Stealthy Attacks in the Historical Data

	Discriminating between Cyber Attacks and Faults

	Conclusions
	References

