
Research Article
Towards Revealing Parallel Adversarial Attack on Politician
Socialnet of Graph Structure

Yunzhe Tian ,1 Jiqiang Liu ,1 Endong Tong ,1 Wenjia Niu ,1 Liang Chang ,2

Qi Alfred Chen ,3 Gang Li ,4 and Wei Wang 1

1Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing, China
2Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, China
3University of California, Irvine, CA, USA
4Australia Centre for Cyber Security Research and Innovation, Deakin University, Geelong, Australia

Correspondence should be addressed to Endong Tong; edtong@bjtu.edu.cn and Wenjia Niu; niuwj@bjtu.edu.cn

Received 16 October 2020; Revised 25 January 2021; Accepted 26 February 2021; Published 9 March 2021

Academic Editor: Zhe-Li Liu

Copyright © 2021 Yunzhe Tian et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Socialnet becomes an important component in real life, drawing a lot of study issues of security and safety. Recently, for the
features of graph structure in socialnet, adversarial attacks on node classification are exposed, and automatic attack methods such
as fast gradient attack (FGA) and NETTACK are developed for per-node attacks, which can be utilized for multinode attacks in a
sequential way. However, due to the overlook of perturbation influence between different per-node attacks, the above sequential
method does not guarantee a global attack success rate for all target nodes, under a fixed budget of perturbation. In this paper, we
propose a parallel adversarial attack framework on node classification. We redesign new loss function and objective function for
nonconstraint and constraint perturbations, respectively. /rough constructing intersection and supplement mechanisms of
perturbations, we then integrate node filtering-based P-FGA and P-NETTACK in a unified framework, finally realizing parallel
adversarial attacks. Experiments on politician socialnet dataset Polblogs with detailed analysis are conducted to show the ef-
fectiveness of our approach.

1. Introduction

With the development of Internet and IT technology, an
emerging cyber space [1], which refers to the global network
of interdependent information technology infrastructures,
telecommunications networks, and computer processing
systems, is covering most aspects of our daily life nowadays.
In such space, as a highly important and detailed repre-
sentation, various emerging social networks (e.g., Facebook,
Twitter, WeChat, and TikTok) are greatly pushing the new
revolution of network interconnection and interdepen-
dence, as well as the social relations and information
propagation [2, 3].

Social network is called socialnet in short. Due to the
popularity, billions of socialnet users share their personal
data and connect with friends and family through various
devices and applications. Since the socialnet can be

abstracted to a simple kind of graph with features of nodes
and edges, many researchers have contributed their efforts to
study socialnet and corresponding services based on graph-
and workflow-related approaches [4–8]. One of the most
frequently applied tasks on graph data is node classification,
the goal of which is to predict the labels of the remaining
nodes when given a single large graph and the class labels of
a few nodes [9]. For example, we can utilize node classifi-
cation to predict the political labels of politician such as
Liberals and Conservatives, according to their socialnet
interactions.

For node classification in recent years, the graph con-
volutional network (GCN) [10, 11], a kind of graph neural
network (GNN) [12, 13] based on deep learning, has shown a
great potential. Unfortunately, such GCN also opens a new
door for cyber attacks. Adversarial attacks against GCN are
discovered, through few edge perturbations of addition or
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deletion, and they are uneasy to notice [14]. Furthermore,
automatic attack methods are developed to explore effective
perturbations including constraint and nonconstraint per-
turbations. Constraint perturbation refers to the edge per-
turbation satisfying specific requirements such as node
degree distribution of graph [15]. Nonconstraint perturba-
tion means a free perturbation. Accordingly, fast gradient
attack (FGA) [16] and NETTACK [17] are typical non-
constraint and constraint methods, respectively. /e above
methods enable per-node attacks, as well as multinode at-
tacks in a sequential way. However, due to the overlook of
perturbation influence between different per-node attacks,
the above sequential method does not guarantee a global
attack success rate for all target nodes, under a fixed budget
of perturbation. Figure 1 shows the differences between
sequential and parallel attacks in a motivating example. For
the No. 1, 2, and 3 nodes, the attack goal is to change their
class labels through changing graph structure with pertur-
bations, including edge addition and edge deletion. We can
see that, due to removing the edges from efforts of edge
addition in attack of No. 1 node, No. 2 and No. 3 node
attacks of sequential attack waste edges perturbations and
cause No. 1 node attack to fail with a global attack success
rate of 2/3, while the parallel attack considers perturbation
influence and has a higher attack success rate with a lower
budget.

In this work, we are the first to performmultinode attack
in a parallel way by integrating two methods P-FGA and
P-NETTACK in a unified attack framework. Based on
nonconstraint FGA, we redesign a new loss function in
P-FGA, which employs CW-loss [18] to replace CE-loss. For
P-NETTACK, we utilize the maximum sum of surrogate loss
as new objective function to support parallel attack.
Moreover, we apply a node filtering mechanism to
P-NETTACK and P-FGA, which filters out those nodes that
are successfully attacked from target node set. After
extracting common perturbations, we also provide a random
supplement of perturbations to fill the budget.

We experiment on politician socialnet dataset Polblogs [19]
of 1222 nodes and 16714 edges, showing the effectiveness of our
approach. We find that our approach can achieve a high attack
success rate (ASR) of 71.5% at the lowest perturbation budget of
1/5 dsum (dsum is the sum of the degrees of all target nodes), that
is over 15% higher than that of NETTACKor FGA, still keeping
a satisfied test statistic of 0.005. /e filtering mechanism can
greatly improve ASR, with nearly 20% average increment. We
summarize our contributions as follows:

(1) We give the very first attempt to propose amultinode
parallel adversarial attack framework on node clas-
sification in socialnet of graph structure, based on
considering perturbation influence between per-
node attacks.

(2) Node filtering-based nonconstraint P-FGA and
node filtering-based constraint P-NETTACK are
proposed, and we integrate them into a unified
multinode parallel attack framework, through
constructing intersection and supplement mech-
anisms of perturbation.

(3) We evaluate our approach empirically on real dataset
of politician socialnet Polblogs. Based on parallel
attacking on the graph of 1222 nodes and 16714
edges, we reveal and verify the effectiveness of our
approach compared to sequential attacks in terms of
attack strength and attack stealthiness.

/e rest of the paper is structured as follows: Section 2
introduces the preliminaries and problem definition. Section
3 proposes a multinode parallel attack framework. Section 4
reports our experiments and evaluations on the politician
socialnet dataset Polblogs. In Section 5, we discuss the re-
lated works. Finally, Section 6 concludes the work of this
paper.

2. Preliminaries and Problem Definition

2.1. Graph Structure of Socialnet. In real socialnet, one
person can have an interaction with others by operations like
the following: commenting, reposting, etc. Such interaction
can be quantified and qualified, varying from different
measurements. For simplicity, we assume that we just use an
undirected unweighted edge to denote an interaction exis-
tence, constructing graph structure of socialnet (See Fig-
ure 2). Moreover, we simply assume that one node only has
one classification label, and we do not focus onmultiple free-
label user profile or granularity-based hierarchical user
profile [20] in attack scenarios of this paper. /us, for a
socialnet graph, we have a triple G � (V, C,A) including
node set V, label set C, and adjacent matrix A, in which
V � v1, v2, . . . , vn􏼈 􏼉, C � c1, c2, . . . , cn􏼈 􏼉 (|V| � |C| � n), and
A is shown as follows:

A �

a11 · · · a1n

⋮ ⋱ ⋮

an1 · · · ann

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, aij ∈ 0, 1{ }. (1)

2.2. GraphConvolutional Network. As a kind of GNN, GCN
is an extremely powerful neural network architecture for
deep learning on graphs to produce useful feature repre-
sentations of nodes in networks. Given a G � (V, C,A), we
can partially delete some node’s label (ci � null) to obtain a
new G′ � (V, C′,A). /e goal of node classification is to
learn a function Z, which maps each node v ∈ V to one class
(| ci � null􏼈 􏼉|�0).

We use a two-layer GCN to approximate the function Z:

Z � fθ(A,X) � softmax 􏽢Aσ 􏽢AXW(1)
􏼐 􏼑W(2)

􏼐 􏼑 , (2)

where 􏽢A � 􏽥D− (1/2) 􏽥A 􏽥D− (1/2), 􏽥A � A + IN is the adjacent
matrix A of the input graph G′ with self-loops added via the
identity matrix IN, 􏽥Dii � 􏽐j􏽥aij is the degree matrix of 􏽥A, and
X is a matrix of node feature vectors. For the graph whose
nodes do not have feature attributes, X can be set to an
identity matrix IN. W(1) and W(2) are the trainable weight
matrices of the first and second layers, respectively, and σ(·)

is a ReLU activation function. For the semisupervised node
classification, the optimal parameters θ � W(1),W(2)􏽮 􏽯 are
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learnt by minimizing the cross-entropy loss over all labeled
examples:

L(θ;A,X) � − 􏽘
v∈Vl

ln Zv,cv , (3)

where Vl ⊆V is the set of nodes with labels, namely, training
set, cv is the given true label of node v, and Zv,cv

is the
probability of assigning class cv to node v.

2.3. ProblemDefinition. Given the attack target set Vt ⊆V in
G′ and perturbation budgetΔ, multinode attack onGCN can
be regarded as the following optimization problem:

A∗ � argmax
A∗

􏽘
v∈Vt

sign max
c≠cv

Zv,c − Zv,cv
􏼠 􏼡􏼠 􏼡, (4)

s.t.
􏽘
u<v

auv − a
∗
uv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Δ, (5)

u ∈ Vt∨v ∈ Vt, where a
∗
uv ≠ auv, (6)

where max
c≠cv

Zv,c − Zv,cv
> 0, sign(·) � 1, else sign(·) � 0.

Formula (4) shows the objective function, aiming to find
the optimal adjacent matrix. When the sum of misclassifi-
cation for all target nodes is maximum, it means a most
successful multinode attack. Formulas (5) and (6) show the
constraints that should be satisfied. Formula (5) requires that
the number of edge perturbations be no more than Δ (a
predefined constant). Formula (6) has the constraint that
any edge perturbation must be linked to a target attack node.

3. Multinode Parallel Attack Framework

Our multinode parallel attack framework is shown in Fig-
ure 3. Firstly, given an original graph G′ � (V, C′,A) as

defined in Section 2.1, we train a GCN for node classification
task, and we obtain C, in which all nodes are labeled with
prediction, and record G into testing result as ground truth.
/en, given a target node set Vt ⊆V, we utilize P-FGA and
P-NETTACK to perturb the original graph, attacking target
nodes in Vt. In each iteration of nonconstraint P-FGA
method, based onGCN-gradient information of the adjacent
matrix A, we select the pair of nodes (vi, vj) of maximum
absolute value of gradient to perform perturbation (edge
deletion or edge addition), generating a new adversarial
graph Gadv

P− FGA by the generator. In each iteration of con-
straint P-NETTACK, to ensure keeping the perturbations
unnoticeable and preserving the important structural
characteristics, we firstly compute the candidate perturba-
tion set Cpert to ensure the similar node degree distribution
after perturbation execution. /en, according to our rede-
signed objective function, from candidate perturbation set,
we greedily select the optimal perturbation (vm, vn), which
obtains the highest objective score, generating a new
adversarial graph Gadv

P− NETTACK by the generator.
In the filtering mechanism, after each perturbation of

P-FGA or P-NETTACK, the new predicted labels should be
compared with the testing result to determine the attack
effect. For those nodes that are successfully attacked, such
mechanism filters them out from target node set Vt to form a
new target node set Vt

′, ignoring those nodes in the next
gradient/objective function computation and perturbation
selection. Such process is repeated until the perturbation
budget Δ is reached. DP− FGA and DP− NETTACK are pertur-
bation sets based on P-FGA and P-NETTACK, respectively.
To integrate DP− FGA and DP− NETTACK and generate unified
perturbations, we provide an intersection mechanism to
extract common perturbations and a perturbation supple-
ment mechanism to fill the perturbation budget Δ. Finally,
the integrated perturbation set Dcomb is used to realize ef-
fective multinode parallel adversarial attacks.

Attack success rate = 2/3
Edge perturbations = 6

Attack success rate = 3/3
Edge perturbations = 4

Sequential attack 

Parallel attack

Edge removal
Edge addition

No. 1 node attack
by two edge additions

No. 2 node attack
by one edge removal

and one edge addition 

No.3 node attack
by one edge removal

and one edge addition

Class 1 node
Class 2 node

3 2

1

3 2

1

3 2

1

3 2

1

3 2

1
3 2

1

Figure 1: Differences between sequential and parallel attacks in a motivating example.
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3.1. P-FGA Method. In our P-FGA, to adapt to the multi-
node attack, we redesign a new loss function Lmulti for attack
target set Vt, which employs CW-loss [18] to replace CE-loss
and takes all target nodes into consideration (see equation
(7)).

Lmulti � 􏽘
v∈Vt

max
c≠cv

ln Zv,c − ln Zv,cv
􏼨 􏼩 . (7)

Following the gradient-based idea of original FGA, based
on the new loss function Lmulti for multinode attack, we
firstly calculate the partial derivatives with respect to the
element aij of adjacency matrix A and further obtain gra-
dient matrix GM, and its element gij can be calculated by

gij �
zLmulti

zaij

. (8)

Considering that the adjacency matrix is symmetric and
its gradient matrix should also be symmetric, thus, we have

ĝij � ĝji �

gij + gji

2
, i≠ j,

0, i � j,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

􏽥gij � ĝij × − 2 · aij + 1􏼐 􏼑 ,

(9)

where 􏽥gij forms 􏽧GM. A bigger value of multinode loss
function Lmulti corresponds to worse prediction results for the
target nodes inVt. And edge perturbations along the direction
of the gradient can make the loss increase more faster locally.
/at is, for a positive gradient 􏽢gij, adding the edge between
the pair of nodes (vi, vj) can increase the loss. Similarly, for a
negative gradient 􏽢gij, deleting the edge also increases the loss.

However, since the adjacent matrix A is binary discrete
and aij ∈ 0, 1{ }, not all edges can be perturbed along the
direction of the gradient. For example, for a pair of nodes
(vi, vj) who have positive/negative gradient (i.e.,
(􏽢gij > 0/􏽢gij < 0)) and meanwhile are connected/discon-
nected (i.e., (aij � 1/aij � 0)), we cannot further add/delete
the edge along the direction of the gradient. /us, we design
equation (9); for a positive gradient 􏽢gij, when aij � 0, 􏽥gij is
positive; when aij � 1, 􏽥gij is negative. Similarly, for a neg-
ative gradient 􏽢gij, when aij � 1, 􏽥gij is positive; when aij � 0,
􏽥gij is negative. Only the positive 􏽥gij enables the addition/
deletion of the edge along the direction of the gradient./en,
for edge addition or deletion, we pick the optimal edge
(vm, vn), vm ∈ Vt ∨ vn ∈ Vt, with the maximum 􏽥gmn, and the
adjacent matrix A is updated to A′ by changing the cor-
responding value (amn and anm) to a different binary value
(see equation (10)).

amn
′ � anm
′ � 1 − amn. (10)

/e pseudocode for P-FGA is given in Algorithm 1.

3.2. P-NETTACK Method. In constraint P-NETTACK, we
use test statistic Λ(G′, Gadv) to determine whether our
generated adversarial graph Gadv � (V, C′,A′) and original

graphG′ � (V, C′,A) have similar node degree distribution
of pow-law distribution p(x)∝ x− α, in which p(x) denotes
the probability of certain degree x, and α refers to scaling
parameter. /e test statistic Λ can be calculated based on the
following formulas.

αG � 1 + DG′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · 􏽘
di ∈ DG′

log
di

dmin − (1/2)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− 1

, (11)

l DG′( 􏼁 � DG′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · log αG′ + DG

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · αG′ · log dmin

+ αG′ + 1( 􏼁 􏽘
di∈DG
′

log di, (12)

Λ G′, G
adv

􏼐 􏼑 � − 2 · l DG′
⋃
​
DGadv􏼒 􏼓 + 2 · l DG′( 􏼁 + l DGadv( 􏼁􏼂 􏼃.

(13)

In equation (11), dmin is the minimum degree that a node
has to be considered in the power-law test, and
DG′ � dG′

v |v ∈ V, dG′
v ≥ dmin􏽮 􏽯 is the multiset containing the

list of node degrees, where dG′
v is the degree of node v in G′

[21]. Equation (12) is used to evaluate the log-likelihood
l(DG′) for the sample DG′ [22]. /en, we can get final test
statistic by equation (13). Similar to NETTACK, we only
accept adversarial graph Gadv whose degree distribution
fulfils Λ(G′, Gadv)< 0.004 and thus obtain the candidate
perturbation set Cpert. In our P-NETTACK, the edge per-
turbations in Cpert must be linked to an attack target node.

To efficiently select the optimal perturbation from Cpert,
NETTACK utilizes a linear surrogate model Z′ to approx-
imate the nonlinear GCN model Z by removing the acti-
vation function σ(·). Z′ is calculated as follows:

Z′ � softmax 􏽢A􏽢AXW(1)W(2)
􏼐 􏼑 � softmax 􏽢A2XW􏼒 􏼓.

(14)

In our P-NETTACK, given an attack target set Vt, we
utilize the sum of single surrogate losses for each v ∈ Vt as
the new surrogate loss to support multinode attack:

Lmulti A;X,W, Vt( 􏼁 � 􏽘
v∈Vt

max
c≠cv

􏽢A2XW􏼔 􏼕
v, c

− 􏽢A2XW􏼔 􏼕
v, cv

􏼨 􏼩,

(15)

where [􏽢A2XW]vt,c
is the value of class c given to the node vt

by the surrogate model. /e multinode scoring function that
evaluates the multinode surrogate loss obtained after add-
ing/deleting an edge e � (i, j) ∈ Cpert is defined as

smulti e;A, Vt( 􏼁 ≔ Lmulti A′;X,W, Vt( 􏼁, (16)

whereA is updated toA′ by aij
′ � aji
′ � 1 − aij. Following the

greedy approximate scheme in NETTACK, during each
iteration, we select the optimal perturbation that has the
highest value of multinode scoring function from the can-
didate perturbation set Cpert to execute. /e above processes
including candidate perturbation computation, determining
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optimal perturbation, and perturbation execution are re-
peated until the perturbation budget Δ is reached. /e
pseudocode for P-NETTACK is given in Algorithm 2.

3.3. FilteringMechanism. In this part, we propose a filtering
mechanism that filters out target nodes that are successfully
attacked from the target node set. After each perturbation,
by the filtering mechanism, we obtain a filtered attack target
set Vt
′, which is used in the next iteration. If there are no

nodes in Vt
′, which means that all target nodes have been

attacked successfully, and we reset the attack target set Vt
′ to

the original attack target set Vt. /e pseudocode for filtering
mechanism is given in Algorithm 3.

3.4. Intersection and Supplement Mechanism. In this section,
we construct intersection and supplement mechanism of per-
turbations. Given the perturbation sets DP− FGA and
DP− NETTACK under a fixed perturbation budgetΔ, we first utilize
intersection mechanism to extract their common perturbations
Dcomb. In general, the number of common perturbations is less
than perturbation budget Δ. /us, we should provide a per-
turbation supplement mechanism to fill the budget.

User 

Interaction

Figure 2: Illustration of socialnet graph.

GCN-based
gradient computation

Perturbation selection

Graph convolutional network
(GCN) Prediction result

Filter

Perturbation execution

Node label
comparison

Node filtering

Candidate perturbation
computation 

Determining optimal
perturbation 

Perturbation execution

Original graph

G
enerator

G
enerator

Unified perturbation
generation

Intersection

Supplement

Testing result

Class 1 node
Class 2 node

Data flow
Unlabeled node

Parallel adversarial attack framework
Attack target

GCN-based node classification 

P-NETTACK

P-FGA

Figure 3: /e parallel adversarial attack framework against GCN-based node classification.
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We denote DP− NETTACK′ as the set consisting of the
perturbations in DP− NETTACK but not in Dcomb. Similarly,
DP− FGA′ contains the perturbations in DP− FGA but not in
Dcomb. Δ′ is the difference between Δ and the number of
Dcomb. Besides, we use a supplementary factor k to control
the proportion of supplementary perturbations from
DP− NETTACK′ . Specially, we randomly select [k · Δ′] and Δ′ −
[k · Δ′] perturbations from DP− NETTACK′ and DP− FGA′ , re-
spectively, and add them to the Dcomb, forming the final
unified perturbation set. /e pseudocode for intersection
and supplement mechanism of perturbations is given in
Algorithm 4.

4. Experiments

4.1. Dataset and Environment. We use the well-known
politician socialnet Polblogs [19] as our experimental dataset

to evaluate our methods. /e basic statistics are summarized
in Table 1, and only the largest connected component is
considered. We randomly choose 20% nodes in the dataset
as the labeled nodes for training. /e testing set consists of
the rest of the unlabeled nodes.

We also give our experimental environment configu-
ration in Table 2.

4.2. Target Parameters and Baselines. Our GCN as an attack
target is constructed based on the program on the Github
(https://github.com/tkipf/gcn). We train all models for a
maximum of 200 epochs using Adam [23] with a learning
rate of 0.01. We initialize weights using the initialization
described in Glorot and Bengio [24] and accordingly (row-)
normalize input feature vectors.

We compare our proposed attack method with com-
prehensive state-of-the-art adversarial attack methods

Input: G′ � (V, C′,A), attack target set Vt, perturbation budget Δ
Output: perturbation set DP− FGA

(1) Train the GCN model Z on original graph G′
(2) Initialize A(0) � A
(3) Initialize perturbation set DP− FGA
(4) for h � 1 to Δ do
(5) //GCN-based Gradient Computation
(6) Calculate multi-node target loss function Lmulti � 􏽐v∈Vt

max
c≠cv

ln Zv,c − ln Zv,cv
􏼨 􏼩

(7) Construct 􏽧GM
(h− 1)

based on the A(h− 1):
g

(h− 1)
ij � (zLmulti/za

(h− 1)
ij ), 􏽢g

(h− 1)
ij � 􏽢g

(h− 1)
ji �

g
(h− 1)
ij + g

(h− 1)
ji /2 i≠ j

0 i � j
􏼨 ,

􏽥g(h− 1)
ij � 􏽢g

(h− 1)
ij × (− 2 · a

(h− 1)
ij + 1)

(8) //Perturbation Selection
(9) Select e∗ � (vm, vn) where vm ∈ Vt∨vn ∈ Vt, having the maximum 􏽥g(h− 1)

mn

(10) //Perturbation Execution
(11) Obtain the adjacency matrix A(h) by a(h)

mn � a(h)
nm � 1 − a(h− 1)

mn

(12) Generate a new adversarial graph G(h) � (V, C′,A(h))

(13) Add e∗ to DP− FGA
(14) end
(15) return DP− FGA

ALGORITHM 1: Parallel fast gradient attack (P-FGA).

Input: G′ � (V, C′,A), attack target set Vt, perturbation budget Δ
Output: perturbation setDP− NETTACK

(1) Train the surrogate model Z’ on original graph G′ to obtain W
(2) Initialize A(0) � A
(3) Initialize perturbation set DP− NETTACK
(4) for h � 1 to Δ do
(5) Construct the valid candidate perturbations set Cpert

Λ(G′, G(h))< 0.004 and vi ∈ Vt∨vj ∈ Vt

where (vi, vj) ∈ Cpert, G(h) � (V, C′,A
(h)) and a

(h)
ij � a

(h)
ji � 1 − a

(h− 1)
ij

(6) Select e∗ � (vm, vn) of the maximum multi-node scoring function value in Cpert
e∗ � (vm, vn) � arg max

e∈Cpert

smulti(e;A(h− 1), Vt)

(7) Obtain the adjacency matrix A(h) by a(h)
mn � a(h)

nm � 1 − a(h− 1)
mn

(8) Generate a new adversarial graph G(h) � (V, C′,A(h))

(9) Add e∗ to DP− NETTACK
(10) end
(11) return DP− NETTACK

ALGORITHM 2: Parallel NETTACK (P-NETTACK).

6 Security and Communication Networks
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including FGA and NETTACK. We use codes of the
baselines provided by their authors.

(i) FGA [16] extracts the gradient of pairwise nodes
based on the adversarial network and then selects
the pair of nodes with maximum absolute link
gradient to realize the attack and update the
adversarial network.

(ii) NETTACK [17] designs adversarial attacks based
on a static surrogate model and greedily selects the
optimal perturbation through preserving the key
structural features of a graph.

(iii) Random attack randomly perturbs the edges re-
lated to target nodes.

5. Evaluations

5.1. Evaluation Metric

5.1.1. Attack Success Rate (ASR). ASR is the ratio of the
number of successfully attacked nodes to the total number of
target nodes, which can be calculated as follows:

ASR �
nsucc

Vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, (17)

where nsucc denotes the number of successfully attacked
nodes and Vt is the attack target set.

5.1.2. Average Attack Speed (AAS). AAS refers to average
running time of each attack, and it can be calculated as
follows:

AAS �
ttotal
Δ

, (18)

where ttotal denotes the total attack time on target set Vt, and
Δ is the perturbation budget.

5.1.3. Test Statistic Λ. Test statistic Λ is used to evaluate
attack stealthiness (see equation (13)), which measures the
structural difference between original graph and adversarial
graph. A smaller Λmeans that the degree distribution of the
adversarial graph is more similar to the original graph’s, and
thus, the perturbations are more unnoticeable.

Input: perturbed graph Gadv � (V, C,A′), attack target set Vt, node classification model Z
Output: filtered attack target set Vt

′
(1) Initialize Vt

′ � Vt

(2) for each ] ∈ Vt do
(3) Predict the label of ] in Gadv by Z
(4) if cv of ground truth is not equal to prediction result then
(5) Remove v from Vt

′ //filtering
(6) end
(7) if |Vt

′| �� 0 then
(8) Vt

′ � Vt //reset
(9) return Vt

′

ALGORITHM 3: Filtering mechanism.

Input: DP− FGA, DP− NETTACK, supplementary factor k, perturbation budget Δ
Output: Dcomb

(1) Execute the intersection of DP− FGA and DP− NETTACK to obtain Dcomb
Dcomb � DP− FGA ∩DP− NETTACK

(2) if |Dcomb|<Δ then
(3) Obtain DP− NETTACK′ � DP− NETTACK − Dcomb
(4) Obtain DP− FGA′ � DP− FGA − Dcomb
(5) Calculate Δ′ � Δ − |Dcomb|

(6) Randomly add [k · Δ′] perturbations from DP− Nettack′ to Dcomb
(7) Randomly add [Δ′ − k · Δ′] perturbations from DD− FGA′ to Dcomb
(8) return Dcomb

ALGORITHM 4: Intersection and supplement mechanism.

Table 1: Dataset statistics of Polblogs.

Nodes Edges Classes Maximum degree Minimum degree Average degree
1222 16714 2 351 1 27.4
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5.2. ASRAnalysis. In our experiments, each attack target set
consists of five target nodes, and all of them are from the test
set that has been classified correctly in original graph. We
divided the perturbation budgets into five levels according to
the sum of degrees of all target nodes in the attack target set
Vt, i.e., Δ ∈ (1/5)dsum􏼈 , (2/5)dsum, (3/5)dsum, (4/5)dsum,
(5/5)dsum}.

As we can see from Table 3, for each Δ, we compare ASR
among P∗, P-NETTACK (k� 1), P-FGA (k� 0), NETTACK,
FGA, and Random Attack, in which P∗ is the best value of
our unified approach. From Algorithm 4, we know that if
k� 1, our unified method can be simplified as P-NETTACK;
and if k� 0, our unified method can be simplified as P-FGA.
P∗ has the highest ASR values of 0.715, 0.880, 1, and 1 at Δ1,
Δ2,Δ4,Δ5, respectively. When there is a quite low budget Δ1,
the ASR of P∗ is over 15% higher than that of NETTACK or
FGA. P-NETTACK (k� 1) and P-FGA (k� 0) have ex-
tremely close values for all budget Δ. Figure 4 shows the
visual comparison in Table 3.

In Table 4, we can see that, for Δ1, Δ2,Δ3, our approach
achieves highest ASR values of 0.715 (k� 0.5), 0.880 (k� 0.7),
and 0.987 (k� 0.8), respectively. At Δ4,Δ5, for many k
settings, ASR values can reach 1. For example, at Δ4, ASR� 1
when k� 0.1, 0.2, 0.3, 0.4, 0.5, 0.7. Figure 5 shows the detailed
ASR variation along with k increment.

5.3. Test Statistics Λ Analysis. As we can see from Table 5,
P-NETTACK (k� 1) has the lowest Λ values of 0.003, 0.005,
0.005, and 0004 at Δ1, Δ2,Δ4,Δ5, respectively. Although
P-NETTACK (k� 1) and NETTACK have the same con-
straint mechanism, theΛ values of P-NETTACK (k� 1) are
always lower than those of NETTACK. For P-FGA (k� 0)
and FGA, which have not enforced the constraint, the Λ
values are extremely higher and continue increasing with the
increment of Δ. Figure 6 shows the visual comparison in
Table 5.

In Table 6, we can see that, for all Δ ∈ Δ1,Δ2,Δ3,Δ4,Δ5􏼈 􏼉,
with the increment of k, the test statistics Λ keep decreasing,
towards better results. Figure 7 clearly shows the Λ variation
along with k increment.

5.4.AASAnalysis. As we can see from Table 7, P-NETTACK
is the most time-consuming adversarial attack method, with
an average of 11.17s of each attack. Since the candidate
perturbation set of P-NETTACK is larger than that of
NETTACK, the AAS of P-NETTACK is much higher than
that of NETTACK. Instead, P-FGA and FGA have extremely
close AAS values, 0.17s and 0.14s, respectively.

5.5. Filtering Mechanism Analysis. In Table 8, we can see
that, for all Δ ∈ Δ1,Δ2,Δ3,Δ4,Δ5􏼈 􏼉, the filtering mechanism
can greatly improve ASR, with nearly 20% average incre-
ment. And for P-FGA, the ASR values at Δ2 are higher than
those of P-FGA (without filtering) at Δ5. /us, we can see
that the filtering mechanism plays a quite important role for
P-NETTACK and P-FGA.

6. Related Work

6.1. Politician Socialnet Analysis. In the last few years, social
media has become an important political communication
channel, attracting a lot of studies. Adamic and Glance [19]
analyzed the political blogosphere over the period of two
months preceding the US Presidential Election of 2004,
measuring the degree of interaction between liberal and
conservative blogs and revealing many interesting differ-
ences between the two communities such as linking patterns
and discussion topics. Caton et al. [25] presented a Social
Observatory, which focused on public Facebook profiles of
187 German politicians from five federal parties, observing
how they interacted with constituents, measuring sentiment
difference between the politicians and their followers, and
analyzing online speech patterns of different parties. Stieglitz
and Dang-Xuan [26] proposed a social media analytics
framework in political context, aiming at continuously
collecting, storing, monitoring, analyzing, and summarizing
politically relevant user-generated content from different
social media to gain a deeper insight into political discourse
in social media.

However, few studies focus on the security analysis of
politician socialnet including politician label classification
from the perspective of adversarial graph attack. In com-
parison, we focus on studying security issues of politician
socialnet based on graph structure, targeting a GCN model
for politician label classification. Interestingly, politician
socialnet is highly vulnerable, and the attack cost is quite
cheap only by deleting few existing interactions or adding
few new interactions. As an important communication
bridge between politicians and citizens, the security analysis
of politician socialnet should be highly valued.

6.2. Adversarial Attack on Graphs. Recently, some studies
have investigated the adversarial attack on neural networks
for graph structure. Zügner et al. [17] first revealed the
existence of adversarial attack against GCN in node clas-
sification task, by slightly modifying graph structure or node
attributions to lead to misclassification of a target node. Dai
et al. [27] studied test-time nontargeted adversarial attacks
on both node classification task and graph classification [28]
task based on reinforcement learning. In addition to white-
box attack scenario, they also extended their attack method
into practical black-box and restricted black-box attack
scenarios. Zhang et al. [29] systematically investigated the
vulnerability of knowledge graph embedding for the first
time. By adding or deleting facts in the knowledge graph,
they destroyed the relation prediction model based on
representative knowledge graph embedding methods

Table 2: Experimental environment configuration.

Experimental environment Environmental configuration
Operating system Windows 10
CPU 2.4GHz intel core i5
Memory 16GB
Hardware 500G
Software Python 3.6
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including TransE [30] and RESCAL [31], which is also the
first investigation on adversarial attack for heterogeneous
graph. Chen et al. [16] explored the adversarial attack on
both node classification task and community detection task
[32] based on GCN-based gradient information.

However, most works about adversarial attack on node
classification only focus on the per-node attack, aiming to
achieve misclassification for a target node. Although, for
those per-node attack methods, the multinode attack can be
performed in a sequential way, the perturbation influence of
different per-node attacks is overlooked. In comparison, our
parallel attack method, which considers all target nodes and
perturbation influence at the same time, is better for mul-
tinode attack. In addition, as the first to propose the parallel
attack on graph structure, our work can provide an

inspiration for adversarial attack on other tasks in a parallel
way, such as parallel adversarial attack on prediction of
multiple links.

In addition to the benefits mentioned above, the main
drawback of our method is that it is time-consuming, es-
pecially the P-NETTACK (see Table 7), due to the reason
that, at each iteration, more candidate perturbations are
taken into computation compared with sequential per-node
attack. One of the solutions is developing more computa-
tionally efficient test statistic function and scoring function.
On the other hand, proposing a perturbation filtering
mechanism to reduce the size of multinode candidate
perturbations set is also an effective way. In addition, our
method does not consider the constraints of attributed
graphs [33], such as attribution-based node similarity

Table 3: ASR comparison between P∗, P-NETTACK, P-FGA, NETTACK, FGA, and Random Attack.

Perturbation budget P∗ P-NETTACK (k� 1) P-FGA (k� 0) NETTACK FGA Random attack
Δ1 � 1/5dsum 0.715 (k= 0.5) 0.710 0.715 0.453 0.480 0.0
Δ2 � 2/5dsum 0.880 (k= 0.7) 0.867 0.874 0.857 0.877 0.024
Δ3 � 3/5dsum 0.987 (k� 0.8) 0.963 0.953 0.995 0.985 0.025
Δ4 � 4/5dsum 1 0.993 1 0.992 0.992 0.012
Δ5 � 5/5dsum 1 0.992 1 1 1 0.01
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P-NETTACK
P-FGA

FGA
NETTACK

Random attack

Figure 4: ASR comparison under different perturbation budget Δ.

Table 4: ASR variation under different supplementary factor k.

Perturbation budget Δ k� 0.1 k� 0.2 k� 0.3 k� 0.4 k� 0.5 k� 0.6 k� 0.7 k� 0.8 k� 0.9
Δ1 � 1/5 dsum 0.705 0.713 0.706 0.711 0.715 0.703 0.695 0.698 0.697
Δ2 � 2/5 dsum 0.864 0.874 0.878 0.865 0.86 0.879 0.880 0.867 0.878
Δ3 � 3/5 dsum 0.958 0.967 0.962 0.978 0.982 0.983 0.973 0.987 0.978
Δ4 � 4/5 dsum 1 1 1 1 1 0.997 1 0.997 0.997
Δ5 � 5/5 dsum 1 1 1 1 1 1 0.997 0.998 0.998
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Figure 5: k influence on ASR value among different perturbation budgets Δ.

Table 5: Test statistics Λ comparison between P∗, P-NETTACK, P-FGA, NETTACK, and FGA.

Perturbation budget Δ P∗ P-NETTACK (k� 1) P-FGA (k� 0) NETTACK FGA
Δ1 � 1/5 dsum 0.005 0.003 0.035 0.008 0.022
Δ2 � 2/5 dsum 0.006 0.005 0.100 0.013 0.091
Δ3 � 3/5 dsum 0.005 0.007 0.147 0.017 0.126
Δ4 � 4/5 dsum 0.005 0.005 0.166 0.016 0.134
Δ5 � 5/5 dsum 0.006 0.004 0.204 0.014 0.156

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

Te
st 

st
at

ist
ic

s ^

0.005 0.006 0.005 0.005 0.005 0.006
0.004

0.014
0.005

0.016

0.134

0.166
0.156

0.204

0.007
0.017

0.126

0.147

0.013

0.003
0.008

0.022

0.035

0.091
0.1

∆1 ∆2 ∆3 ∆4 ∆5

P*
P-NETTACK

P-FGA
FGA

NETTACK

Figure 6: Test statistics Λ comparison under different perturbation budgets Δ.
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constraint [34] and attribution cooccurrence constraint [17].
Parallel multinode adversarial attack on attributed graph
and Heterogeneous Information Network (HIN) [35] still
needs further exploration.

7. Conclusions

In this paper, we propose a multinode parallel adversarial
attack framework on node classification in socialnet of
graph structure, based on considering perturbation in-
fluence between per-node attacks. /rough redesigning

new loss function and objective function for non-
constraint and constraint perturbations, respectively, and
constructing intersection and supplement mechanisms of
perturbation, we integrate nonconstraint P-FGA and
constraint P-NETTACK into a unified attack framework.
Based on politician socialnet Polblogs of 1222 nodes and
16714 edges, we evaluate attack success rate, test statistics,
and average attack speed for our approach. Our approach
shows a high attack success rate of 71.5% at the lowest
perturbation budget of 1/5 dsum, keeping a satisfied test
statistic of 0.005.

Table 6: Test statistics Λ variation under different supplementary factors k.

Perturbation budget Δ k� 0.1 k� 0.2 k� 0.3 k� 0.4 k� 0.5 k� 0.6 k� 0.7 k� 0.8 k� 0.9
Δ1 � 1/5 dsum 0.033 0.026 0.018 0.017 0.014 0.011 0.008 0.006 0.005
Δ2 � 2/5 dsum 0.092 0.059 0.050 0.035 0.026 0.020 0.010 0.008 0.006
Δ3 � 3/5 dsum 0.124 0.098 0.081 0.045 0.033 0.021 0.019 0.006 0.005
Δ4 � 4/5 dsum 0.138 0.110 0.077 0.066 0.035 0.027 0.017 0.011 0.005
Δ5 � 5/5 dsum 0.160 0.120 0.101 0.080 0.051 0.028 0.019 0.013 0.006
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Figure 7: k influence on test statistics Λ value among different perturbation budgets Δ.

Table 7: AAS comparison between P-NETTACK, P-FGA, NETTACK, and FGA.

Methods AAS (second)
P-NETTACK 11.17
P-FGA 0.17
NETTACK 1.30
FGA 0.14

Table 8: Filtering influence on ASR of P-NETTACK and P-FGA.

Perturbation budget Δ P-NETTACK P-NETTACK (without filtering) P-FGA P-FGA (without filtering)
Δ1 � 1/5 dsum 0.710 0.45 0.715 0.551
Δ2 � 2/5 dsum 0.867 0.662 0.874 0.653
Δ3 � 3/5 dsum 0.963 0.736 0.953 0.721
Δ4 � 4/5 dsum 0.993 0.818 1 0.759
Δ5 � 5/5 dsum 0.992 0.887 1 0.813
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/is work severs as a first step to take security analysis on
multinode parallel adversarial attack in politician socialnet.
It is expected to inspire a series of follow-up studies, in-
cluding but not limited to (1) adversarial attack on pre-
diction of multiple links; (2) more concrete defense design
and implementation.
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