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Abstract: In this paper, a novel deep neural network-based energy prediction algorithm for accurately
forecasting the day-ahead hourly energy consumption profile of a residential building considering
occupancy rate is proposed. Accurate estimation of residential load profiles helps energy providers
and utility companies develop an optimal generation schedule to address the demand. Initially,
a comprehensive multi-criteria analysis of different machine learning approaches used in energy
consumption predictions was carried out. Later, a predictive micro-grid model was formulated to
synthetically generate the stochastic load profiles considering occupancy rate as the critical input.
Finally, the synthetically generated data were used to train the proposed eight-layer deep neural
network-based model and evaluated using root mean square error and coefficient of determination
as metrics. Observations from the results indicated that the proposed energy prediction algorithm
yielded a coefficient of determination of 97.5% and a significantly low root mean square error of
111 Watts, thereby outperforming the other baseline approaches, such as extreme gradient boost,
multiple linear regression, and simple/shallow artificial neural network.

Keywords: deep learning; energy management systems; load forecasting; machine learning and
microgrids

1. Introduction

The Australian energy market has been operating on a centralised generation model
with state-owned power plants situated closest to fossil fuel resources such as coal, hy-
dro, wind, and natural gas for many years. The centralised electricity generation model
demonstrates several drawbacks to the environment and end-users due to the reduced
efficiency caused by large transmission losses. The electricity price keeps going up due
to the increased investment in distribution infrastructure required to connect households
and businesses to a stabilised power supply [1]. Therefore, the government has spent the
last couple of decades shifting its electricity generation model to a more decentralised
approach by incorporating more renewable resources. Despite the tremendous amount
of investment, there are still many transitional challenges to be solved, both in terms of
political and technological readiness. It is predicted that the role of grid-supplied power
will be inverted from being the primary source of energy to a backup source, having dis-
tributed renewable generation as the primary source [1]. This paper investigates a similar
distributed generation model commonly known as microgrids and addresses the systems’
technical barrier of accurate forecasting of load demand, aiming to enable broader adoption
of the decentralised generation model.
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The microgrid consists of a control unit that uses a robust energy management system
equipped with advanced load demand/generation capacity forecasting algorithms that
aids in achieving reliable power flow control, load sharing, grid protection, stability, and
smooth operation [2]. If successfully implemented, micro-grid systems promise to offer
distribution system congestion relief, the postponement of new generation or delivery
capacity, response to load changes, and local voltage support [2]. Accurate forecasting of
load demand is crucial to a microgrid’s energy management system because it ensures
energy savings and improves the operational or sizing efficiency of its supply and storage.
However, load forecasting can be a tricky task since the energy performance of a building
is influenced by various factors, such as occupancy rate, residence behaviour, household
income, number and type of appliances, and weather conditions.

This study aims to develop a novel deep neural network-based energy prediction
algorithm to synthesise hourly load profiles based on the occupancy rate. To achieve this,
a comprehensive multi-criteria analysis (MCA) was carried out on the existing literature
initially, and a novel synthetic load profile generator was formulated. The MCA aims
to identify the most suitable prediction algorithm by evaluating the accuracy, usability,
adaptability, computation time, randomisation, and implementation feasibility. The syn-
thetic load profile generator developed in this study is later used to generate the stochastic
load profiles. A state-of-the-art predictive microgrid model was created to generate the
load profile accurately using average load consumption data, occupancy rate, and sea-
sonality as the input. The microgrid’s mathematical model consists of realistic appliances
with predefined constraints that help synthetically generate the accurate load profile. The
proposed state-of-art eight-layered deep neural network model accurately predicts the
hourly energy consumption patterns, considering the occupancy rate and seasonality as the
critical inputs. Baseline models such as extreme gradient boost, multiple linear regression,
and simple/shallow artificial neural network are used to verify the proposed prediction
algorithm’s performance. Root mean square error (RMSE) and coefficient of determination
(R2) values are the metrics that the models are compared on the results indicated that the
proposed deep neural network model outperformed the other models.

The manuscript is structured as follows: A detailed background study on micro-grids
and their energy management systems (EMS), followed by the foundation of different
machine learning approaches used in load profile forecasting, is highlighted in Section 2. In
Section 3, the study’s methodology is deliberately discussed by highlighting the process of
MCA table construction, the synthetic load profiles’ generator model, and the assumptions
considered. A detailed overview of the proposed model and the baseline approaches
considered for evaluation is also discussed. In Section 4, the results and discussions
are highlighted. Finally, the concluding remarks and the significance of the paper are
highlighted in Section 5.

2. Background
2.1. Microgrid and Energy Management System

The decentralised electricity generation model has many advantages over the con-
ventional centralised systems that consist of remote generation units. In a centralised
generation model, power flows in one direction, from a small number of large generators
to many consumers over a long distance. Therefore, the centralised model requires large
power plants to meet the demand and significant transmission lines to connect house-
holds and businesses with their power source, resulting in colossal air pollutant emissions,
wastage of generation, and land use. The fact that it requires a high integration level
also means that its system is extremely vulnerable to disturbances in the supply chain.
Therefore, its attractiveness is reducing, and the penetration of small-scale decentralised
systems or microgrids is emerging and increasingly invested.

The microgrid is essentially a local energy grid with control capability and autonomous
operation, which can be disconnected from the primary grid when required [3]. In oppo-
sition to centralised systems, power in a microgrid flows in both directions. As it is built
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locally using renewable sources, it is more efficient, more reliable, lower cost, and cleaner
than the centralised model. The three main types of a microgrid are remote, grid-connected,
and networked microgrids. In this study, a grid-connected microgrid focuses on the most
suitable system for commercial and residential buildings. A grid-connected microgrid can
operate in either grid-connected mode or stand-alone mode based on the requirement. In
grid-connected mode, the microgrid imports or exports the power from and to the grid
depending on generation and load conditions and market policies based on contractual
obligations. On the other hand, in islanding mode, the microgrid disconnects from the
utility when an abnormal condition occurs in the grid, and the microgrid has to satisfy the
load with the required level of power quality by utilising the local storage and renewable
resources [4]. Therefore, the energy management strategies used are different, and a coor-
dinated control approach for microgrid energy management is required to minimise the
errors between the forecasting and real-time data in the schedule, and dispatch layers of
the system [5].

The setup of monitoring and optimising energy consumption to regulate the energy
flow is commonly known as an energy management system (EMS). A microgrid usually
requires an energy management system to assign active and reactive power references,
ensuring cooperation between the controllable units to achieve stable and economic opera-
tion [5]. The latest research shows that the objective of energy management of a microgrid
is to minimise the microgrid’s operating costs such as fuel costs, operating maintenance
costs, and purchase cost of electricity from the conventional power grids [5]. One of the
key features that allow a microgrid energy management system to achieve its objective is
to have a robust and accurate forecasting technique of load demand/generation profile
capability. In a residential setting, energy management works on optimising energy con-
sumption, equipment efficiency, detecting faults in a deteriorating system, implementing
ways to reduce energy wastage, and recovering energy wastage for other purposes. The
EMS inferences provide data visualisation to household owners to better understand their
usage patterns and recommendations on smart energy usage to drive better behaviour
in their daily use. As an effect, maintenance cost is reduced because equipment usage is
optimised [6]. Not only capturing and presenting historical data, but an EMS can also help
forecast a household or a building’s energy consumption by using an intelligent machine
learning algorithm. It also allows the developers to accurately identify the sizing of power
resources required to meet a built or a new unit’s demand. However, one of the main
drawbacks of using high-end machine learning algorithms is the lack of valid data set for
effective training. That is why our study focuses not only on developing an optimised
machine learning algorithm but also on establishing a novel synthetic load generator to
evaluate our proposed model.

For the synthetic load generator to be built, an investigation into standard controllable
loads, uncontrollable loads, and critical loads with their usage pattern in a typical house-
hold was carried out. Any device or appliance’s power consumption can be controlled
by adjusting their duration on and off time [7]. Controllable loads can be differentiated
from uncontrollable loads based on their ability to be turned off without sacrificing the
user’s comfort [8]. For example, air conditioners and refrigerators can be turned off for a
certain period to save power without significantly affecting household comfort. However,
microwave ovens or toasters, examples of uncontrollable load, should not be turned off
because this directly impacts the occupant’s comfort. The critical loads are loads that will
result in a significant loss or damage when power off [9]. Examples of essential loads are
a smoke alarm, a water pump, and critical load panels in an energy storage system [10].
Following these definitions, in a distributed power system, popular controllable loads,
such as refrigerators, HVAC systems, entertainment devices, and fans are considered in the
mathematical model formulated in this study. The most commonly used loads in residential
settings are supposed to generate an extensive data set of load profiles with artificially
induced non-linearity. A list of loads being considered is explained in the methodology
section below.
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Another fact about microgrids is that majority of them are built-in integration with
renewable energy sources such as wind turbines, solar photovoltaic (PV), and fuel cells due
to the global transition to green technologies. In addition to the eco-friendly advantages
of such systems, the renewable resources add more non-linearity into the system due to
their stochastic nature, resulting in an advanced/robust energy management algorithm.
In 2009, for the EU, nearly 55% of the new installed capacity based on renewable sources
corresponded to the wind and PV intermittent generation (39% and 16%, respectively) [11].
According to the Australian Department of Industry, Science, Energy, and Resources, in
2019, 21% of Australia’s total electricity generation was based on the renewable energy
resources, which consisted of 7% of wind, 7% of solar, and 5% of hydro, making the share
of renewables the highest recorded since the 1970s [12]. On this note, the study of load
forecasting methodology is critical because it will enable an accurate sizing/scheduling of
renewable sources for a microgrid system, preventing resource wastage or shortage and
many other system failures.

2.2. Machine Learning

The complexity of residential load forecasting lies in the significant volatility and
stochastic nature of the load profiles. Many researchers worldwide are working towards
addressing this complexity by developing an accurate forecasting technique that addresses
this uncertainty. The statistical learning approaches are based on the predefined relationship
between variables and require a smaller data set but whereas the more accurate and
advanced machine learning algorithms require a big data set. In recent years, the rise of big
data with machine learning makes it a potential solution to address load forecasting in a
residential energy management system. Traditional methods tend to avoid such uncertainty
by load aggregation to offset uncertainties, customer classification to cluster uncertainties,
and spectral analysis to filter out uncertainties [13]. Therefore, many studies are carried out
to evolve the current machine learning techniques to learn the uncertainty at the building
level directly due to the many influencing factors.

According to Lars Hulstaert, a data scientist at Johnson and Johnson, most machine
learning systems require the ability to explain to stakeholders why specific predictions
are made [14]. The accuracy and interpretability trade-off is typically considered when
choosing a suitable machine learning model. Generally, there are two types of machine
learning models, namely, black-box and white-box. Black-box models such as neural
networks and gradient boosting models yield highly accurate predictions. However, their
computational operation is difficult to understand. On the other hand, white-box models
such as linear regression and decision trees, despite being much easier to interpret, produce
less predictive capacity. In this research, an initial comprehensive multi-criteria analysis
of the most common machine learning techniques in models such as linear regression,
gradient boosting, decision tree, and neural network was performed to determine the best
potential method optimised for load forecasting application.

Machine learning approaches are generally used to address supervised and unsu-
pervised learning problems. Since the proposed methodology aims to predict energy
consumption, supervised learning is a more suitable option as its primary function is to
model the value of the target variable based on the predictor variables. Machine learn-
ing and artificial intelligence techniques are used in a wide variety of applications, such
as load forecasting [15], determining product quality [16], and fault quality [17]. Linear
regression, decision trees, and neural networks are all examples of supervised learning.
Despite the similarities, their computation principles are different. Regression analysis is
a methodology that allows finding a functional relationship among dependent variables
and independent variables [18]. For complex systems, such as the energy consumption
in buildings, the regression analysis is considered as an iterative process, in which the
outputs are used to diagnose, validate, criticise, and possibly modify the inputs [18]. In the
decision tree approaches, an empirical tree represents a segmentation of the created data
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by applying a series of simple rules. Through the repetitive process of splitting, predictions
are made, and the logic is usually comprehensible [19].

On the contrary, the neural network is a class of algorithms loosely modelled on
connections between neurons in the human biological brain, which is designed to imi-
tate the natural nervous system information process and decision making [20]. There are
many choices of neural network optimising architecture that significantly influences the
performance of the model. This study proposes a novel deep neural network model by
optimising the hyper-parameters to enhance neural networks’ performances. A compre-
hensive literature review in the form of multi-criteria analysis (MCA) was carried out.
The next section of the paper will critically highlight how the MCA analysis is performed
and evaluated.

3. Multi-Criteria Analysis (MCA)
3.1. MCA Development

A MCA to choose the most suitable machine learning technique for estimating energy
consumption in a residential building is an evaluation process that considers different
measurable criteria to rank, compare, and select the best performing models considered
in the literature. A list of benchmarks is identified to evaluate the identified techniques’
performance and measured either qualitatively or quantitatively. The MCA was established
by following the procedure shown in Figure 1, the set of chosen criteria are listed in Table 1.

Figure 1. Procedures for establishing multi-criteria analysis (MCA).

Table 1. The set of chosen criteria for the MCA.

Implementation
Feasibility The level of ease to implement the technique in the restricted amount of time and resources.

Usability The capacity to provide a condition for its users to perform the tasks safely, effectively, efficiently and
satisfactorily.

Computational time The amount of time it takes for the technique to converge to an outcome.

Accuracy The size of the dispute between the technique’s outcome and the real statistic.

Randomisation The ability of the technique to draw a pattern from a random dataset.

Adaptability The same technique can be combined with other optimisation technique or can be used in a different
environment.
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There are six main analysis criteria considered in this study, each with different
weighting depending on their relative importance to the study’s objectives. In this study,
accuracy is assumed to have the highest weightage because it aims to identify the most
accurate predictive method for estimating residential buildings’ energy consumption. A
rating from 1 to 10 is applied to each criterion, with a higher value representing a favourable
outcome. Each technique will be ranked according to its MCA score, where the higher the
score, the more suitable the approach fits for purpose. Furthermore, the MCA was done
with three separate sets of scoring systems for different perspectives of business managers,
electrical engineers, and data scientists to ensure the final result is not biased to one specific
area. The three scoring systems used the same papers from the literature review, with the
final scores being the average of the individual scores.

3.2. MCA Results Evaluation

The MCA matrices and final scoring table obtained from the study are indicated
in Figure 2 and Table 2. The MCA consisted of eight different approaches used in load
forecasting from the existing literature that were critically analysed. By considering differ-
ent perspectives and analysing different performance criteria, the framework yielded an
accurate shortlist of the most effective ML techniques in estimating energy consumption in
a residential building.

Figure 2. MCA matrices and scoring table.
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Table 2. MCA total scoring table.

Techniques Total Score

ANFIS (Adaptive Neural Fuzzy Inference System) 187
ANN (Artificial Neural Network) 189
MLR (Multiple Linear Regression) 170
XGBoost (eXtreme Gradient Boosting) 185
WNN (Wavelet Neural Network) 181
SVM (Support Vector Machine) 169
ARIMA (Auto Regressive Integrated Moving Average) 140
GPR (Gaussian Process Regression) 144

As the results, it was demonstrated that ML techniques based on neural networks
such as ANN (MCA score = 189), ANFIS (MCA score = 187), and WNN (MCA score = 181)
exhibited better performance in estimating energy consumption than those based on
decision trees such as XGBoost (MCA score = 185) and regression analysis such as Gaussian
process regression (MCA score = 144) and ARIMA (MCA score = 140). ANN produced
the most accurate predicting results as it is well-known for its ability to handle noise and
perform non-linear analysis of data-set like the investigated load profiles [21]. Furthermore,
ANN also tends to ignore excess input data that are of minimal significance and concentrate
on the more critical input [21]. On the other hand, despite performing better than MLR,
XGBoost or the decision tree method generally does not outperform neural networks
for non-linear data and is susceptible to noisy data [19]. The technique is more suitable
for predicting categorical outcomes, and unless visible trends and sequential patterns
are general, decision trees are less appropriate for application to time series data [19].
Regarding the MLR, despite being the most comfortable and most intuitive approach of
prediction, it is the least appropriate for predicting energy usage due to its weakness in
working with data with no apparent pattern.

Additionally, more criteria can be included for analysis to cover all the aspects of
each ML technique. As a next step of the MCA, we model the performance of ANN,
XGBoost, and MLR to validate the literature review on the performance of neural networks,
decision tree, and regression analysis using python. The shallow or a simple ANN model
is also used as a benchmark for testing the proposed prediction model’s performance.
Furthermore, a new hyperparameter-tuned deep neural network model will be developed
and evaluated based on the prediction of energy consumption load profiles.

4. Methodology

The methodology adopted to rationalise the approach used in the study to maintain
focus on critical research aspects is clearly illustrated in Figure 3.

The detailed procedures and assumptions of the load profiles synthesis and machine
learning modelling are critically explained in the subsections below.
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Figure 3. Research methodology.

4.1. Synthetic Load Profile Generation

In order to obtain a wide variety of load profiles based on the occupancy rate and sea-
sonality, we developed a synthetic load profile generator that considers basic mathematical
models of individual appliances to generate a set of load profiles programmatically. Initially,
the model includes a load profile of different households with varying factors, such as the
type of residence and number of people, as shown in Tables 3–8. Figure 4 provided a visual
representation of the individual load profiles considered in the study. The synthetically
generated household load profile models consist of a randomised algorithm that creates
different appliance loads and the usage time. The load profiles are constrained to schedule
the total amount of power consumption in kWh randomly and the electricity cost per day
of the load profile to closely resemble real-world usage. The synthetic load profile generator
is later used to generate a data sample of 100,000 data points (load profiles) for each type
of occupancy rate, and these data are used by the proposed forecasting model to train and
make predictions based on the limited number of inputs. The mathematical models are
provided with a pre-defined set of constraints to generate the different non-linear load
profiles replicating the real-time load profiles. Inferences from the power consumption
studies on households are used as the basic input for the models to systematically generate
numerous number of random samples of load profiles. These generated load profiles
are then used to train a novel prediction algorithm to forecast the load profile at higher
accuracy. The following factors are taken into consideration:

• The hourly electricity usage data used in the study were obtained from residential
buildings with a different number of occupants in Victoria, Australia.

• Electricity bills and statistics provided by energy providers and distributors were used
to identify the average daily usage, which was then considered as a reference point to
fine-tune the load profiles to represent the daily usage in Victoria, Australia in 2020,
and it was programmatically generated using the synthetic load profile generator.
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• The power ratings for all of the appliances present in the load profile table were
taken from the existing appliances and from the Daftlogic website, which provides
the typical power consumption list of households [22].

Table 3. Initial load profile 1 created for the project (summer).

Type of
Household

No. of
Occupants Load Wattage (W)

Amount of
Time per
Day (h)

Prefer Usage
Time

Energy Con-
sumption

(Wh)

Cost per Day
(AUD)

Household 1: 1 Fridge 80 24 00:00–23:59 1920
University

student
Washing
machine 800 0.1 10:00–11:00 80

Fan 200 10 13:00–23:00 2000
Microwave 800 0.1 12:00–13:00 80

Heater 2000 0 - -
Chargeable

devices 150 8 22:00–6:00 1200

Rice cooker 830 0.5 11:00–12:00 415
Toaster 850 0.05 7:00–8:00 42.5

TV 150 4 18:00–22:00 600
Gaming
console 150 4 18:00–22:00 600

Other
chargeable

devices
200 6 10:00–16:00 1200

Total
Average
S = 7.5,

W = 10.4 kWh
8137.5 3.2924425

Table 4. Initial load profile 2 created for the project (summer).

Type of
Household

No. of
Occupants Load Wattage (W)

Amount of
Time per
Day (h)

Prefer Usage
Time

Energy Con-
sumption

(Wh)

Cost per Day
(AUD)

Household 2: 2 Fridge 120 24 00:00–23:59 2880

20 s couple Washing
machine 800 0.3 13:00–14:00 240

Fan 200 10 17:00–3:00 2000
Microwave 1000 0.2 12:00–13:00 100

Heater 2000 0 - -
Chargeable

devices 400 8 22:00–6:00 3200

Blender 500 0.1 9:00–10:00 50
Toaster 850 0.1 6:00–7:00 85

Iron 1200 0.1 19:00–20:00 120
Vacuum
cleaner 1000 0.2 16:00–17:00 200

Gaming
console 300 2 19:00–21:00 600

Coffee
machine 1000 0.1 6:00–7:00 100

Total
Average
S = 11.5,

W = 14.6 kWh
9675 3.669745
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Table 5. Initial load profile 3 created for the project (summer).

Type of
Household

No. of
Occupants Load Wattage (W)

Amount of
Time per
Day (h)

Prefer Usage
Time

Energy Con-
sumption

(Wh)

Cost per Day
(AUD)

Household 3: 3 Fridge 120 24 00:00–23:59 2880

Young family Washing
machine 800 0.7 9:00–10:00 560

Fan 200 12 12:00–0:00 2400
Microwave 1000 0.5 11:00–12:00 500

Heater 2000 0 - -
Chargeable

devices 300 12 16:00–4:00 3600

TV 150 6 13:00–19:00 900
Rice cooker 850 1 11:00–12:00 850

Toaster 850 0.3 4:00–5:00 225
Iron 1200 0.5 20:00–21:00 600

Vacuum
cleaner 1000 0.2 14:00–15:00 200

Dish washer 1500 1 18:00–19:00 1500
Gaming
console 300 2 17:00–19:00 600

Coffee
machine 1000 0.3 4:00–5:00 300

Total
Average
S = 13.1,

W = 17.6 kWh
15,345 5.061163

Table 6. Initial load profile 4 created for the project (summer).

Type of
Household

No. of
Occupants Load Wattage (W)

Amount of
Time per
Day (h)

Prefer Usage
Time

Energy Con-
sumption

(Wh)

Cost per Day
(AUD)

Household 4: 2 Fridge 120 24 00:00–23:59 2880
Middle age

couple
Washing
machine 800 0.3 19:00–20:00 240

Fan 200 4 20:00–0:00 800
Microwave 1000 0.05 17:00–18:00 50

Heater 2000 0 - -
Chargeable

devices 200 12 18:00–6:00 2400

TV 150 3 20:00–23:00 450
Rice cooker 830 0.2 17:00–18:00 166

Toaster 850 0.1 5:00–6:00 85
Iron 1200 0.2 19:00–20:00 240

Vacuum
cleaner 1000 0.1 16:00–17:00 100

Gaming
console 150 1 20:00–21:00 150

Coffee
machine 1000 0.2 5:00–6:00 200

Total
Average
S = 11.5,

W = 14.6 kWh
10,461 3.8626294
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Table 7. Initial load profile 5 created for the project (summer).

Type of
Household

No. of
Occupants Load Wattage (W)

Amount of
Time per
Day (h)

Prefer Usage
Time

Energy Con-
sumption

(Wh)

Cost per Day
(AUD)

Household 5: 4 Fridge 150 24 00:00–23:59 3600

Family Washing
machine 800 0.7 9:00–10:00 560

Fan 200 10 8:00–18:00 2000
Microwave 1000 0.5 10:00–11:00 500

Heater 2000 0 - -
Chargeable

devices 300 12 20:00–8:00 3600

TV 150 3 19:00–22:00 450
Toaster 850 0.3 6:00–7:00 255

Iron 1200 0.5 6:00–7:00 600
Vacuum
cleaner 1000 0.2 11:00–12:00 200

Dish washer 1500 1 18:00–19:00 1500
Air fryer 1000 0.2 11:00–12:00 200
Gaming
console 150 2 20:00–22:00 300

Coffee
machine 1000 0.3 6:00–7:00 300

Total
Average
S = 14.5,

W = 18.9 kWh
15,215 5.029261

Table 8. Initial load profile 6 created for the project (summer).

Type of
Household

No. of
Occupants Load Wattage (W)

Amount of
Time per
Day (h)

Prefer Usage
Time

Energy Con-
sumption

(Wh)

Cost per Day
(AUD)

Household 6: 5 Fridge 180 24 00:00–23:59 4320

Big family Washing
machine 800 0.7 12:00–13:00 560

Fan 200 12 12:00–24:00 2400
Microwave 1000 0.5 11:00–12:00 500

Heater 2000 0 - -
Chargeable

devices 300 12 20:00–8:00 3600

TV 150 6 16:00–22:00 900
Rice cooker 850 1 11:00–12:00 850

Toaster 850 0.3 6:00–7:00 255
Iron 1200 0.5 19:00–20:00 600

Vacuum
cleaner 1000 0.2 14:00–15:00 200

Dish washer 1500 1 19:00–20:00 1500
Air fryer 1000 0.2 17:00–18:00 200
Gaming
console 300 3 19:00–22:00 900

Coffee
machine 1000 0.3 6:00–7:00 300

Total
Average
S = 15.8,

W = 20.8 kWh
17,085 5.488159

However, the proposed deep neural network based model aims at predicting the
hourly load profile of a residential building with just having the occupancy rate the input
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to the prediction model. In general, machine learning models require a feature (input) and
a label (output) to learn and be successful in doing estimation. The randomly generated
load profiles are appropriated tagged, such that it could be used to train the prediction
algorithms considered in the study. The energy consumption values from the corresponding
hour were then added together using Equation (1) to obtain a new version of the load
profile for the different household. Hence, the hourly daily usage load profile is developed
and shown in Table 9.

EH =
n

∑
i=0

Pi (1)

where EH is the energy amount in a particular hour and Pi is the power used in that hour
by appliance i.

Table 9. Initial load profile created for the project (summer).

Time Energy
Consumption (Wh) Time Energy

Consumption (Wh)

00:00 230 12:00 360
01:00 230 13:00 480
02:00 230 14:00 480
03:00 230 15:00 480
04:00 230 16:00 480
05:00 230 17:00 280
06:00 230 18:00 580
07:00 123 19:00 380
08:00 80 20:00 380
09:00 80 21:00 380
10:00 360 22:00 230
11:00 695 23:00 230

Figure 4. Visual representation of all the load profiles.

The background research indicated that the load forecasting techniques based on
the occupancy rate and seasonality were niche and an area left unexplored which is
considered as one of the key contribution of the proposed work. Based on which the



Appl. Sci. 2021, 11, 2229 13 of 19

randomised load profile generator was modelled. The load profile generator randomly
generates several combinations of occupancy rate, season, and time resulting in a dataset
that replicates the hourly generation pattern associated with the input feature as illustrated
in Table 9. The equation used for generating the energy consumption patterns is expressed
in Equation (2), where EH is the energy amount in a particular hour; EO is the base energy
value; random(numbermin, numbermax) generates a random number between minimum
and maximum values. The final load profiles can be seen in Table 10, which includes
100,000 data sets. The advantage of using the synthetic load profile generator for building
more custom load profiles is that the system’s randomness can be fine-tuned based on the
requirement, making it a more robust and adaptable solution. This approach decreases the
latency that can occur with the dataset focused on a particular context.

EH = random(0.8, 1.2) ∗ EO + random(0, 50) (2)

Table 10. The Final version of the load profile.

Index Season Number of Occupants Hour Energy Consumption (Wh)

1 0 1 0 230
2 0 1 1 230
3 0 1 2 230
4 0 1 3 230
5 0 1 4 230
: : : : :

99,996 0 2 2 303.92
99,997 1 1 22 272.93
99,998 0 3 18 784.27
99,999 1 1 3 177.36
100,000 1 4 7 518.85

4.2. Machine Learning Modelling

In general, machine learning models work with the dataflow of taking in input features,
extracting a relationship with the input feature and the output label, and predicting the
future. In our proposed model, the input features of occupancy rate, seasonality, and
datetime are given to the deep neural network model as input features. The deep learning
models output is essentially the estimated value of energy consumption as illustrated in
Figure 5. As indicated in the previous section, the synthetic load generator was used to
generate the dataset in this pattern, and then the full set of data was then fed into the
proposed deep learning model. The learning requires two stages, the training stage to
create the prediction model and the testing stage to verify the prediction model’s prediction
performance.

Furthermore, the Python programming language with Tensor flow and Keras libraries
was used to develop the MLR, XGB, and shallow/basic ANN models, and the proposed
deep neural network model. A different number of hyper-parameter tuning approaches
were included in the shallow/simple or conventional ANN model to obtain the proposed
deep neural network model. Results indicated that after the hyper-parameter tuning, the
prediction accuracy of the model had improved significantly.

4.2.1. Proposed Deep Neural Network Model

A machine learning model’s performance is heavily dependent on its hyper-parameters
and in general, the hyper-parameters are tunable, and finding an optimised value for these
parameters can directly influence the performance of the model [23]. It is essential to un-
derstand that this study focuses on optimising a shallow ANN model’s hyper-parameters
to obtain a more accurate and useful deep learning model. On the other hand, hyper-
parameters are external parameters that are set by the operator of the network [24]. For
example, there are two types of hyper-parameters: Hyper-parameters related to neu-
ral network structure (number of hidden layers, dropout, activation function, etc.) and
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hyper-parameters related to training algorithm (learning rate, epoch, iterations, batch
size, etc.) [24]. In this study, an iterative process of fine-tuning the shallow ANN model’s
hyper-parameters is performed by optimising the number of hidden layers, activation
function, and dropout layers to result in the proposed deep ANN model. A deep neural
network, also known as a multi-layer neural network, has more hidden layers than a
shallow one. Which enables the deep neural network models to learn more abstractions
relationships within the input data and how the features interact with each other on a
non-linear level [25].

Figure 5. Data-flow of machine learning with the input and output choices.

Hidden layers are the layers of neurons in between the input layer and the output layer.
Increasing the number of hidden layers increases the network model’s ability. However,
there is a limit to the number of hidden layers added before its effectiveness declines.
Optimising this value is a challenging task in creating deep neural network models, and
in this proposed model, the optimised number of hidden layers was roughly around six.
Besides that, two dropout layers were also added. Dropout layers are the layers that
randomly “kill” a certain percentage of neurons in every training iteration to ensure some
information learned is randomly removed, reducing the risk of over-fitting the data during
the training phase [24]. Having the right combination of hidden and dropout layers in
ANN makes it a useful prediction model, and in this case, we are calling this developed
model a deep ANN.

Additionally, the activation function is a set of rule that determines if a neuron should
“fire” or not [23]. There are many types of activation functions, and each one is suited for
distinctive situations. For example, a sigmoid function returns an output of “1” when the
neuron’s input is one or higher. Similarly, it produces a negative one when the input is
below the negative one and returns the same value to the input when the input is between
“−1” to “1”. Rectified Linear is another activation function. This function outputs 0 when
input is negative, while the output matches the input when input is positive. In this
study, the sigmoid function was used for the network’s hidden layers, while rectified linear
function was used for the output layer.

Apart from the modification mentioned above, the number of neurons was also
varied and tested to find an optimum neuron number for the effective deep ANN model.
Ultimately, the study is aimed to introduce a new optimised and finely tuned deep ANN
model. Figure 6 below depicts the improvements being made on the neural network to
transform it from a shallow ANN model to a deep ANN model, while Figure 7 demonstrates
the architecture of the optimised deep neural network.
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Finally, we use root mean squared error (RMSE) and coefficient of determination
(R2) to evaluate the models created. The RMSE produces an average difference between
the estimated value and the actual value. The desired RMSE value is to be as small as
possible to indicate the predicting model is accurate. On the other hand, the R2 indicates
how closely the model can follow the expected estimate of energy consumption value in
percentage. The R2 value is desired to be as close to 100% as possible. The proposed deep
ANN model is compared with the baseline models of XGBoost, MLR, and shallow ANN.
The inferences from this evaluation are discussed in detail in the results and discussions
section below.

Figure 6. Layout summary of our ANN designs, shallow ANN (left), and deep ANN (right).

Figure 7. The proposed deep ANN layout for this study. * Layer 3 and layer 6 are the dropout layers.
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Figure 8. The graph shows the predication from each techniques: MLR (top left), XGB (top right), shallow ANN (bottom
left), and deep ANN (bottom right).

5. Results and Discussion

Figure 8 illustrates the hourly error in the prediction for each techniques. The final
results of the study comparing the performance of the proposed deep ANN with the other
baseline approaches is shown in Table 11. It is very clear from the results that the proposed
deep ANN and XGB were more accurate in prediction than the shallow ANN and MLR
models. The observations reinforce the finding from the MCA analysis carried out on the
literature illustrating the proposed model’s acceptance. However, the result from Table 11
also emphasises that a simple shallow ANN would perform as weak as an MLR model
unless it is adequately tuned. It is shown that hyperparameter tunning allowed the shallow
ANN to achieve much higher accuracy, with an exceptional coefficient of determination
of 97.5%.

Table 11. The result of the simulation.

Technique RMS Error (Watts) Coefficient of Determination (%)

Deep ANN 111.20 97.5

XGB 270.85 84.9

MLR 634.65 17.2

Shallow ANN 636.74 16.6

The MLR prediction model graph showed that the estimated values followed a linear
pattern and did not adequately represent the actual values. MLR machine learning method
achieved an average RMSE value of 635 W and 17% accuracy. Similarly, the shallow ANN
prediction model achieved an average RMSE value of 637 W and 18% accuracy. Therefore,
it is clear that a lack of hidden layers and hyperparameter tuning significantly reduces the
ANN model’s predicting performance. On the other hand, the XGB prediction model’s
estimated value was much closer to the expected values. XGBoost machine learning



Appl. Sci. 2021, 11, 2229 17 of 19

method achieved an average RMSE value of 271 W and 85% accuracy. Even better, the
deep ANN model’s estimated values were able to resemble the original data set to a greater
extent. The deep ANN machine learning method achieved an average RMSE value of
111 W and 98% accuracy. Overall, this trend in the results is consistent with the inferences
obtained from the MCA in Section 3.2 and the machine learning model’s design objectives
highlighted in Section 4.2.1.

The line graph in Figure 9 reveals a better visual representation of all models’ perfor-
mance. The deep ANN model achieved the highest accuracy of all the techniques examined
in this study, indicated by the fact that it had the lowest RMSE curve compared to the
rest. The increased accuracy is due to its ability to model the randomness in the model
and deal with input noises, unlike linear regression methods, which are only suited for
linear modelling. The XGB models are also susceptible to noisy data, evident from the
accurate prediction results obtained. However, despite performing well in predicting
energy consumption values, deep ANN took a significant longer computation time (2738 s
or 45 min and 38 s) to build the model compared to 4 s and 28 s for MLR, XGB respectively.
Based on the accuracy required and computational availability, the type of prediction
model is chosen.

Figure 9. The graph of RMSE of estimated energy consumption value using MLR (cyan), XGBoost
(blue), shallow ANN (red), and deep ANN (green).

6. Conclusions

In this study, a predication algorithm of a residential building based on the occupancy
rate was investigated. The synthetic load profile generator model proposed in this study
is close to realistic model were used to generate the random load profiles which were
used to train the proposed state-of-the-art deep ANN model. The computation time
and the accuracy of different machine learning models were then compared, and the
results indicated that the proposed deep ANN model was the most appropriate for energy
consumption prediction.

This study’s main contribution was the novel predictive algorithm for load forecasting
based on occupancy rate and the establishment of the finely tuned deep ANN model. Other
findings from the research include:

• MLR was the least accurate in prediction (17.2%), but it was the fastest in computation
(28 s). Since the energy consumption values do not have a close linear relationship
with time but instead present significant randomness in peak consumption, it was
difficult for MLR to find the best fit function, and hence, accurately predict values.

• XGBoost performs better than MLR in predicting energy consumption (84.9%) but
does not handle noise well and is not suitable for time series data set. Therefore, it
falls in the middle range of the ranking.



Appl. Sci. 2021, 11, 2229 18 of 19

• Deep ANN performs better than shallow ANN and can take hours or days to train
the data and create a prediction model. However, the model can be very accurate in
prediction (97.5%) since it works well with random data set and can handle noise.
It is at the top of the chart for its ability to accurately predicting energy consump-
tion. In the cases where computation time is not a significant concern, deep ANN is
highly recommended.

Further research can be performed to optimise the hyper-parameters related to the
ANN model, such as learning rate, momentum, epoch, iterations, and batch size. Ad-
ditionally, the novel deep neural network based forecasting algorithm proposed can be
later evaluated with realistic historical load profile data in the future. Overall, the authors
believe that the novel synthetic load profile generator and the finely tuned deep ANN
model developed in this study would be enhancing the performance of the load profile
forecasting and can be used in future with wide variety of data sets. The synthetic profile
generator could be of ideal use when we are not having access to historical data where the
novel MG model can assist in generating the load profiles that can be used for forecasting
the hourly energy consumption profile. The prediction algorithms also provide a great
opportunity to a market operator to predict their customers’ energy consumption with
limited inputs, to help them identify the most optimal energy generation schedule.
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Nomenclature

MLR Multiple linear regression
XGB Extreme gradient boost
ANN Artificial neural network
ML Machine learning
ANFIS Adaptive neural fuzzy inference system
WNN Wavelet neural network
SVM Support vector machine
ARIMA Auto regression integrated moving average
MCA Multi-criteria analysis
EMS Energy management system
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