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I N TRODUC TION

Diet has long been recognised as a significant modulator of 
human health. It is now clear that the gastrointestinal (GI) 
microbiota is an essential mediator of this influence of diet 
on health. Dietary substrates are a key determinant of the 

structure and function of the GI microbiome, influencing 
the production of metabolites and microbe–host interac-
tions. Key observational studies1–3 and short-term extreme 
diet intervention trials1,4 provide examples of the nature and 
extent of its effect in the long- and short-term, respectively. 
For example, fibre deprivation alongside markedly increased 
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Abstract
Diet is one of the strongest modulators of the gut microbiome. However, the com-
plexity of the interactions between diet and the microbial community emphasises 
the need for a robust study design and continued methodological development. 
This review aims to summarise considerations for conducting high-quality diet–
microbiome research, outline key challenges unique to the field, and provide advice 
for addressing these in a practical manner useful to dietitians, microbiologists, gas-
troenterologists and other diet–microbiome researchers. Searches of databases and 
references from relevant articles were conducted using the primary search terms 
‘diet’, ‘diet intervention’, ‘dietary analysis’, ‘microbiome’ and ‘microbiota’, alone or 
in combination. Publications were considered relevant if they addressed methods for 
diet and/or microbiome research, or were a human study relevant to diet–microbiome 
interactions. Best-practice design in diet–microbiome research requires appropriate 
consideration of the study population and careful choice of trial design and data 
collection methodology. Ongoing challenges include the collection of dietary data 
that accurately reflects intake at a timescale relevant to microbial community struc-
ture and metabolism, measurement of nutrients in foods pertinent to microbes, 
improving ability to measure and understand microbial metabolic and functional 
properties, adequately powering studies, and the considered analysis of multivariate 
compositional datasets. Collaboration across the disciplines of nutrition science and 
microbiology is crucial for high-quality diet–microbiome research. Improvements in 
our understanding of the interaction between nutrient intake and microbial metabo-
lism, as well as continued methodological innovation, will facilitate development of 
effective evidence-based personalised dietary treatments.
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fat and protein intake has notable disruptive effects on mi-
crobial community structure, including the abundance of 
plant-metabolising Firmicutes.4 As such, the microbiome 
has become an attractive target for dietary interventions 
aiming to modulate health outcomes, with particular rel-
evance for conditions where the microbiome is considered 
important in disease pathogenesis (e.g., obesity, inflamma-
tory bowel disease and irritable bowel syndrome).5–7

There are intrinsic complexities with respect to conducting 
studies in humans to assess diet–microbiome relationships. 
For example, humans are both free to select the foods that 
they consume and are relied upon for an accurate self-report 
of dietary intake. This leads to significant challenges, with 
under-reporting estimated to occur in 18–54% of participants 
in large population surveys.8 Individuals also consume a wide 

variety of foods and, to date, food composition databases in-
adequately capture all dietary compounds that may have rel-
evant effects on the microbiota. Furthermore, although the 
advent of high throughput sequencing technologies means 
that it is now possible to profile the majority of the microbiota 
in a rapid manner, challenges remain in linking these data to 
dietary intake and health outcomes, and finding consensus 
across studies. This may partly be a result of the significant 
inter-individual variation in the composition of the microbial 
community in the human gut, which may prime certain indi-
viduals for response/non-response to dietary interventions.9

To address these challenges in human diet–microbiome 
research, partnership across the disciplines of nutrition sci-
ence and microbiology for planning, design, implementation, 
data analysis and interpretation is needed. The aim of this 

T A B L E  1   Dietary assessment methods and the key advantages and disadvantages that are relevant for diet–microbiome research

Dietary assessment method Description Output Study design Advantages in diet–microbiome research
Disadvantages in diet–microbiome 
research

Weighed food record Participants weigh and record all food and beverages in 
real-time

Usual duration 3–7 days

Energy, fibre, macronutrients, micronutrients, 
additional food constituents (depending on food 
composition data)

Food groups
Number of meals

Experimental ‘whole diet’ interventions; 
supplementation studies to check background 
intake

Cohort
Case–control
Cross-sectional
Longitudinal

Most precise measure of actual dietary 
intake

Useful for associating very recent dietary 
intake with microbiota profile

Good agreement with biological dietary 
biomarkers

Very burdensome for participant
Burdensome for researcher
May influence eating behaviour
May require assessment of inter-observer 

agreement between coders

Unweighed food record Participants record estimated quantities of food and 
beverages in real-time

Usual duration 3–7 days

As for weighed food record As for weighed food record Less burdensome for participant than 
weighed food record

Useful for associating very recent dietary 
intake with microbiota profile

Burdensome for researcher
May influence eating behaviour
Participants may under-or over-estimate 

quantities

24-h recall
Examples of online versions: 

ASA24, myfood24, 
Intake24

Food and fluid intake between midnight to midnight day 
prior collected through structured interview with 
trained interviewer

As for weighed food record Cohort
Case–control
Cross-sectional
Longitudinal

Low burden for participant
Online versions available
Multiple 24-h recalls demonstrate good 

agreement with dietary biomarkers
Single 24-h recall acceptable for large cross-

sectional studies

Risk of recall error
Requires trained interviewer
Interviewer bias (data accuracy dependent 

on interviewer expertise, consistency 
between interviewers)

Single 24-h recall usually not appropriate 
due to day-to-day variation in dietary 
intake

Food frequency questionnaire
Examples:
Harvard FFQ, EPIC FFQ, 

AES, Food4Me

Questionnaire that assesses frequency of consumption of 
individual foods over a defined period (e.g., 1 year)

Most include 80–120 items

Energy, fibre, macronutrients, micronutrients and 
additional food constituents (dependent on food 
composition data)

Food groups

Experimental studies requiring long-term diet data
Cohort
Case–control
Cross-sectional
Longitudinal

Accounts for weekly/seasonal variation in 
intake

Useful for assessment of habitual diet–
microbiome associations

Low burden for participant
Simple to administer
Practical for large scale studies
Validated tools available for specific 

populations, specific nutrients

Time consuming for participant (up to 
60 min)

Requires mathematical skill to calculate 
intake using frequency categories

Infrequently consumed foods may be 
missed due to fixed food lists

Greater risk of under-reporting and error 
compared with other methods

Diet quality and dietary patterns

Diet quality
Examples:
HDI, HDS, HEI, AHEI, MDS

A priori score measuring overall healthfulness of the diet 
based on current evidence

Components aggregated to obtain a final score. Higher 
score indicates better diet quality

Cohort
Case–control
Cross-sectional
Longitudinal

Accounts for complexity of the diet and 
interactive effects of dietary factors

Many indices validated by relating index 
score against health outcomes

Majority require nutrient intake assessment 
(i.e. food record, 24-h recall or FFQ) for 
calculating final score

Diet pattern analysis A posteriori approach
Derives patterns using principal components/ exploratory 

factor analysis or cluster analysis. Patterns such as 
‘prudent’ or ‘Western’ can be derived

Identifies foods consumed together (principal 
components analysis) or clusters individuals with 
differing dietary intakes (cluster analysis)

Cohort
Case–control
Cross-sectional
Longitudinal

Accounts for complexity of the diet and 
interactive effects of dietary factors

Can be used as a covariate to determine if 
the effect of a nutrient is independent of 
the overall dietary pattern

Requires nutrient intake assessment
Patterns empirically derived from data not 

from diet-health evidence
Arbitrary decisions required (e.g., food 

groups, number of factors/clusters to be 
retained)

Abbreviations: AES, Australian Eating Survey; AHEI, Alternate Healthy Eating Index; ASA-24, Automated Self-administered 24-hour Dietary Assessment Tool; FFQ, food  
frequency questionnaire; HDI, Healthy Diet Indicator; HDS, Healthy Diet Score; HEI, Healthy Eating Index; MDS, Mediterranean Diet Score.
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review is to discuss ongoing challenges in diet–microbiome 
research and issues for best-practice study design, as the field 
moves towards a goal of personalised nutrition for disease 
prevention, as well as therapeutic diets for a broad spectrum 
of microbiome-associated disorders.

Ongoing challenges in 
diet–microbiome research

Precision in dietary data collection

One of the most acknowledged intrinsic complexities of 
dietary research is that dietary intake data are measured 
subjectively via self-report. Provision of clear instructions 

to participants prior to completion of diet recording, utili-
sation of resources (e.g., food models) to enhance portion 
size accuracy, and comprehensive cross-checking of col-
lected data are simple yet often overlooked strategies that 
can improve accuracy of dietary data. With regard to energy 
intake, implausible data can be identified using calculations 
based on low and high energy intake cut-offs10 or predicted 
energy requirements.11 The expertise of a nutrition profes-
sional for implementing these measures, as well as coding 
and analysing dietary data, is essential. There has also been 
increasing interest in capturing 24-h recall through mobile 
phone-based applications, some of which employ image-
based technology. These tools are potentially of great value, 
particularly for reducing respondent burden and improving 
adherence and accuracy.12 Table 1 details the major dietary 
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assessment methods and their key advantages and disadvan-
tages in diet–microbiome research.

To overcome the limitations of self-report, biological 
markers can also be used as surrogate markers of recent di-
etary intake. Urinary nitrogen, as a marker of protein intake, 
is the most well validated of these biomarkers,13 although 
a variety of other metabolites have also been used to esti-
mate food intake, including wholegrain wheat or olive oil, 
or nutrients, such as carbohydrate and vitamins.14 Recently, 
metabarcoding techniques have also been used to quantify 
the plant component of humans diets that is recovered in 
stool samples.15 Currently, these biomarker methods are 
limited to a finite list of dietary constituents, can be expen-
sive, and the validity, reproducibility and sensitivity of some 
available biomarkers is still suboptimal.16 Furthermore, 
some metabolite biomarkers may also be a by-product of 
microbial activity, which complicates their use for estimat-
ing dietary intake. Although diet self-report will continue 
to be necessary for years to come, future research aiming to 
refine existing biomarkers and identify new biomarkers of 
food intake using cost-effective technologies will be import-
ant for advancing our understanding of diet–microbiome 
relationships.

Measuring dietary substrates available 
to the microbiome

Food composition data
Despite ongoing efforts to more precisely quantify dietary 
intake, challenges remain with regard to applying this to 
diet–microbiome research. First, although many dietary 
constituents relevant to diet–microbe interactions have 
been measured in foods, not all are readily quantifiable in 
human diets or have simply not yet been measured com-
prehensively across the entire food supply. For example, 
total fibre intake can be estimated using current methods 
of dietary analysis, although this is without discrimina-
tion of fibre types. This is an important shortcoming con-
sidering the vastly different physico-chemical attributes 
of individual fibres (including degree of polymerisation, 
viscosity), which influences their availability for micro-
bial fermentation.17 Similarly, plant phenols have been 
shown to alter the composition of the human GI micro-
biota,18 although they are rarely included in food composi-
tion databases. Progress in composition analysis of these 
food components and development of validated tools to 
measure their intake will be an important step forward. 
Even with such advances, measurement of availability of 
dietary components to intestinal microbes will remain 
problematic. Food composition tables are based on chemi-
cal analysis of foods, which fails to account for variation 
in bioavailability of dietary substrates, particularly those 
found in plant foods.17 This, together with inter-individual 
variation in absorption, especially of minerals,19 limits our 
ability to precisely quantify the level of dietary substrates 
accessible to microbes.

Dietary assessment: Granular or global?
Another relevant consideration is whether a nutrient-
centric or global dietary assessment should be conducted. 
Much of the cross-sectional work examining diet–
microbiome associations in health3 or disease20–22 has fo-
cussed on the relationship between individual nutrients 
and the microbiome. This has substantially enhanced our 
understanding of these relationships and will continue 
to be relevant to measure. However, data at this granular 
level are increasingly recognised as failing to capture the 
complexity of the diet–health relationship. Dietary intake 
occurs in the form of food and meals, and assessing diet 
in this way may better explain the impact of diet on the 
microbiome.23,24 As such, a global dietary parameter, such 
as diet quality,25,26 or dietary pattern analysis,27 may be 
an important adjunct measure. These may prove invalu-
able as they can be used to capture the combination and 
interaction of foods and nutrients consumed and assess 
the overall healthfulness of the diet relative to healthy eat-
ing guidelines or adherence to a specific beneficial dietary 
pattern such as the Mediterranean diet. Complex mod-
elling of food intake using a tree-based alpha-diversity 
measure of food diversity is also possible. A recent study 
utilised this novel method to show that food choices are 
very variable across a 17-day period and that foods them-
selves are more strongly associated with the microbiome 
profile of healthy individuals than macronutrient intake, 
which remains relatively stable.9 These data further sup-
port the notion that traditional analysis of macronutrients 
alone may fail to uncover diet–microbiome relationships.

Relevance of microbial niches
As a result of digestion and absorption, nutrients are not 
universally available to microbes across the various niches of 
the human GI tract. In combination with variable digestive 
processes and motility, this leads to a unique microbiome 
across each GI region.28,29 Interpreting links between dietary 
intake and the GI microbial community must therefore con-
sider substrate availability in the region sampled. However, 
to date, much of our understanding of diet–microbiome in-
teractions is based on microbial profiles of stool, as a result 
of the relative ease of collection. Here, the luminal micro-
bial compartment of the distal colon is reflected,30 which 
represents the bulk of GI microbial biomass. Dietary com-
ponents that are host-indigestible, namely fibre, form the 
key substrates for colonic fermentation, and are therefore 
central to microbial composition in this region. However, 
spill-over of excess dietary protein and fat,31,32 as well as the 
other impacts of macronutrients on host physiology, such 
as bile production,33 can also influence colonic microbes, 
and this must be considered particularly in the interpreta-
tion of whole diet interventions in which multiple dietary 
changes are required. By contrast, the small intestinal mi-
crobiome is comparatively poorly characterised as a result 
of lower microbial densities and difficulties in sampling. 
However, emerging evidence suggests it also plays an im-
portant role in disease pathophysiology,34,35 and is involved 
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in immune-microbe interactions and modulating small in-
testinal permeability.36 Although the majority of digestible 
dietary substrates are absorbed here, including sugars, lipids 
and amino acids, microbes are in competition with the host 
for these simple substrates, signifying the important modu-
latory role of diet in this region.37

Microbes adherent to the mucosa, although lower in bio-
mass, have a greater ability to interact directly with host 
cells compared with luminal microbes.38–40 Substantial ev-
idence supports these compartments as distinct communi-
ties.28,40–42 Enriched with mucin-utilising organisms, the 
mucosal compartment, particularly in the colon, has been 
shown to play important regulatory roles in preserving the 
intestinal barrier.43 Together with the small intestinal niche, 
the mucosal microbial community is almost never sampled 
in diet–microbiome studies. Emerging evidence suggests 
that it is influenced by host diet, including fibre availability 
and overall diet quality,44,45 and this may influence mucosal 
barrier function. This region may therefore be more import-
ant for the health implications of diet–microbiome interac-
tions than previously recognised.

Understanding the microbial 
community structure

Methods of community assessment
The majority of diet–microbiome studies utilise amplicon 
sequencing of a segment of the 16S ribosomal ribonucleic 
acid (rRNA) gene, providing a rapid snapshot of the over-
all microbial community (Figure 1). Extensive, curated da-
tabases of 16S rRNA gene sequences are available that map 
sequences to the taxonomic assignment of organisms.46–48 
Amplicon-based profiling studies have typically grouped se-
quences into clusters (operational taxonomic units, OTUs) 
based on a set sequence similarity. However, this reduces 
resolution and makes comparisons across studies difficult 
because each analysis will result in a unique set of OTUs.49 
More recent bioinformatics developments have led to exact 
determination of amplicon sequence variants (ASVs). These 
techniques do not rely on clustering of similar sequences, 
but retain all unique sequences, removing only those deter-
mined to represent sequencing error.49–51 This leads to im-
proved resolution and reproducibility, with the same ASVs 
potentially identified across multiple different studies.

Despite these advances, the 16S rRNA gene approach has 
several limitations. Amplicon sequencing is based on only 
a short gene segment, which may not differentiate closely 
related organisms, and certain taxonomic groups may be 
under-represented depending on the hypervariable region 
of the gene used.52–54 In addition, taxonomic assignment of 
partial-length 16S rRNA gene sequences is often inaccurate 
below genus level.55 This approach also restricts analyses to 
identification of bacteria and archaea, although approaches 
to capture fungi56 and viruses57 are increasing in scope. 
Metagenomic sequencing, and the resultant generation of 
more complete genomic data, is able to resolve some of the 

aforementioned issues, as well as provide information on 
the potential metabolic properties of an organism based on 
presence of relevant genes58–60 (Figure 1). However, metage-
nomic sequencing is more costly and analytically intensive. 
The use of this technique on a select number of samples in 
combination with 16S rRNA gene amplicon sequencing rep-
resents an alternative approach.

Reporting on taxonomy
Identifying the specific microbes that respond to dietary 
substrates is one of the cornerstones for understand-
ing diet–microbe interactions and their implications 
for health. Sequence-based analysis of the microbiome, 
using ASVs/OTUs or metagenomics-based species iden-
tification, allows for very granular reporting, which is 
valuable given the metabolic variability of the microbial 
community. However, this level of detail also highlights 
the inter-individual variability of the microbiome from 
one human to the next. Reporting at higher taxonomic 
levels may overcome some of this variability, allowing 
key trends to be identified, although it will also mask 
potentially important detail because microbes within a 
taxonomic group can have different metabolic activities 
or differential responses to dietary substrates. Overall, 
there remains little consistency as to which classification 
or taxonomic levels are reported (e.g., ASV, genus, fam-
ily and/or phylum); thus, synthesising the findings across 
studies remains difficult.61,62 Generation of publicly avail-
able raw datasets provides scope for meta-analysis of data, 
regardless of original analysis techniques, metrics used or 
taxonomic level reported. These syntheses will be invalu-
able for establishing further consensus in terms of specific 
diet–microbiome interactions.

Shortcomings of relative abundance
A key outcome in microbiome studies is microbial rela-
tive abundance, which describes the ratios of microbes that 
make up a given community. However, without quantifica-
tion of cell numbers, it is not clear whether change in rela-
tive abundance over time is driven by a change in absolute 
abundance of that specific microbe, or rather collinear re-
lationships with other members of the microbial commu-
nity.63,64 Change in absolute abundance, as well as overall 
density of microbes in the GI tract, is more likely to reflect 
biologically relevant differences in functional outputs, such 
as how much of a metabolite is produced, although this is 
also influenced by gene/protein expression. Recently, tech-
niques have been developed that provide quantitative data 
in combination with sequencing; for example, through the 
addition of known quantities of exogenous DNA65,66 or the 
use of flow cytometry.63,64

The limitations of relative abundance are particularly 
important when considering responses to dietary sub-
strates. These can take the form of ‘consumption’ type 
responses, where microbes can increase their population 
size when their preferred dietary derived substrate(s) are 
in excess. By contrast, those microbes with a ‘limitation’ 
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type response, are able to maintain their population when 
dietary substrates are limited, often as a result of the use 
of host-derived substances such as mucin.67 Microbes 
may also appear to increase in relative abundance in 
certain circumstances, such as when fibre availability is 
low, but may actually have a stable population that be-
comes a proportionally larger component of the overall 
community because of the reduced abundances of other 
microbes.68 Such collinear relationships are also compli-
cated by microbial cooperation and cross-feeding, which 
is increasingly recognised as key to microbial community 
structure in the gut and production of health-associated 
metabolites such as short chain fatty acids (SCFAs).69–71 
An enhanced understanding of these relationships will be 

required for optimising intervention strategies that target 
the microbiome.69

Perspectives on diversity
Diversity within the microbial community of an individual 
(alpha-diversity) is a frequent outcome measure in diet–
microbiome studies. Individuals following a traditional 
agrarian-style diet higher in microbiota-accessible carbohy-
drates harbour higher microbial diversity than those con-
suming a Western-style diet.72–74 Despite this, short-term 
fibre supplementation alone does not increase diversity,61 
suggesting that habitual diet may be a more important deter-
minant. Lower diversity is frequently associated with disease 
states, such as Crohn's disease and obesity, and, although 

F I G U R E  1   Overview of microbial analysis techniques and applications. The use of 16S ribosomal ribonucleic acid (rRNA) gene amplicon sequencing 
provides an overview of the microbial community and the analysis is based on relative abundance. Metagenomic sequencing, in which total genomic 
DNA is analysed, enables insight into potential functions encoded by microbes (e.g., substrate degradation and metabolite production). These microbial 
functions can be measured more directly from biological samples through techniques such as metabolomics and proteomics. Quantification of absolute 
abundance of microbes can be achieved directly by assessing cell numbers (culturing or flow cytometry), or through surrogate analysis of DNA, such 
as by a quantitative polymerase chain reaction (qPCR). Although the culture of individual microbes is low throughput, a renaissance in culture-based 
assessment of gastrointestinal microbes is being driven by sequence-based identification of new organisms, and is essential for fully characterising these 
organisms and their metabolic and functional properties
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meta-analyses may not always support this concept,75,76 
diversity is an endpoint in many diet intervention studies. 
Although greater microbial diversity is often considered an 
indicator of GI health, greater diversity may not equate to 
increased abundances of microbes that perform beneficial 
functions,77 nor is it an absolute requirement for stability 
and resilience of the microbial ecosystem.78 Therefore, al-
though alpha-diversity is an indicator of microbiota struc-
ture, it is most useful when assessed in combination with 
other measures of the microbial community.

Assessment of beta-diversity, in combination with anal-
yses such as principal coordinates analysis, allows for de-
termination of global differences between samples, and can 
be based on the presence or absence, or abundance, of par-
ticular organisms (e.g., Jaccard's dissimilarity, Bray–Curtis 
metrics), as well as phylogeny (evolutionary relationships 
between microbes; e.g., UniFrac).79,80 This has also led to 
the identification of characteristic microbial communities 
within the human population, termed enterotypes, which 
have been broadly linked to long-term dietary intake.81 
The presence of such differing community structures may 
be useful for stratification of patient groups and identifica-
tion of individuals likely to respond to dietary interventions. 
However, the microbial networks and interactions, such as 
cross-feeding and competition that drive assembly of these 
communities, as well as the implications for nutrient utili-
sation, metabolite production and human health, remain to 
be completely understood. In this context, a focus on guilds 
or networks of co-abundant organisms that respond to the 
same dietary substrates, may be informative.82

Importance of microbial function
A consideration of taxonomy alone does not provide mecha-
nistic insight into the effect of diet on the microbial utilisa-
tion of nutrients. This is because the metabolic functional 
properties of microbes are not necessarily linked to taxo-
nomic identity, as per the ecological principles of functional 
redundancy and strain variation. Functional redundancy 
refers to taxonomically distinct organisms that possess 
similar metabolic properties. For example, distantly related 
Bifidobacterium adolescentis (Actinobacteria phylum) and 
Ruminococcus bromii (Firmicutes phylum) both have the 
ability to degrade and utilise resistant starch.83,84 Therefore, 
it is unsurprising that an increased faecal SCFA concentra-
tion in response to resistant starch supplementation is as-
sociated with a greater abundance (relative or absolute) of 
different organisms across individuals.83,85 By contrast, 
strain variation refers to closely related microbes with vastly 
different functional capabilities, as a result of varying gene 
content.86 This is highly relevant in the context of the GI mi-
crobiota, as exemplified by Escherichia coli, for which there 
are both probiotic and pathogenic strains.

The direct measurement of metabolites in combination 
with characterising microbial profile may be more informa-
tive for health outcomes, enhancing understanding of how 
microbes respond to habitual diet and dietary interventions. 
A focus on specific microbial metabolites such as by-products 

of fibre fermentation (e.g., SCFA), choline metabolism (e.g., 
trimethylamine/trimethylamine N-oxide) and sulphur-
containing compounds (e.g., hydrogen sulphide) has been 
extremely valuable for discovering associations between diet 
and clinical endpoints, such as intestinal barrier function 
or metabolic and cardiovascular health, and, in combina-
tion with microbial profiling, can explain inter-individual 
responses to dietary intake.87,88 Metagenomic analysis as-
sesses microbial gene content, and therefore provides not 
only information on taxonomic composition but, also some 
inference of microbial metabolic activity. Although meta-
transcriptomic analysis provides a direct assessment of mi-
crobial transcriptional activity, the very short half-life of 
microbial RNAs means that this is highly confounded by 
timing of sample collection.89 Metagenomic and metabolite 
analyses are also constrained by the volume of microbial 
‘dark matter’ that still exists. Many organisms remain un-
cultured and lack sequenced genomes, and many (possibly 
up to 70%) genes, proteins and metabolites have unknown 
functions.90,91 The generation of readily accessible, inte-
grated data that captures the metabolic properties and activ-
ity of the microbiome, especially where relevant to nutrient 
utilisation, will represent a key step forward in the field.

Analysis challenges

Collinearity
The issue of collinearity pervades both diet and microbial 
datasets. For diet, this is the notion that changing one com-
ponent of the diet precipitates compensatory changes in oth-
ers. This is less relevant in nutrient supplementation studies 
but is important in food or whole diet interventions. For ex-
ample, a whole diet intervention aiming to modulate the mi-
crobiome through increasing intake of fruit, vegetables and 
wholegrain foods will likely result in a compensatory reduc-
tion in protein and/or fat intake, assuming that energy intake 
remains constant. This change in protein and/or fat intake 
will in itself have distinct effects on the microbiome. As an 
added complexity, these dietary changes will lead to higher 
fibre, polyphenol92 and unsaturated fatty acid intake,93 each 
of which specifically impact the microbiome. Hence, collin-
earity limits the degree to which specific microbial changes 
can be attributed to altered intake of individual nutrients in 
most dietary intervention trials. Despite this, comprehensive 
assessment of all relevant nutrients will assist in the inter-
pretation of findings. Three-dimensional modelling, or ‘nu-
tritional geometry’ to simultaneously assess combinations 
of dietary components may also prove useful in deciphering 
some of the complexity of diet–microbiome interactions in 
human studies.94

Sequence-based microbiome profiling studies, and other 
‘omics datasets, also result in large collinear datasets. This 
presents a variety of statistical challenges, and highlights 
the importance of involvement of an experienced biostatis-
tician. Many commonly used statistical methods are not de-
signed for proportional data.95 There has been considerable 
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debate over the normalisation strategies that should be ap-
plied to overcome this.95–97 Importantly, data normalisa-
tion/transformation should be applied, such as centred-log 
ratio, when utilising parametric statistical tests. In addition, 
specific metrics developed for analysis of sequence-based 
microbial profiling data are available to assess changes in 
abundance,98,99 correlations,100,101 or to identify biomark-
ers,102 and can complement standard statistical tests. When 
combining multiple large datasets (multi-omics), including 
dietary data, the statistical challenges are even more com-
plex; however, method development is progressing in this 
area.103

Type-1 error and power calculations
Another major analysis challenge in cross-sectional stud-
ies is the presence of type-1 errors that result when a large 
number of outcome measures (e.g., hundreds of bacteria, 
multiple dietary variables) are derived from a small number 

of study participants. Correction for multiple compari-
sons, using false discovery rate or Bonferroni correction, 
can reduce the risk of type-1 error, although even these 
may be suboptimal as a result of the non-parametric and 
non-Gaussian distribution of microbiome data.104 Hence, 
care must be taken not to over-interpret the significance of 
changes in abundance of individual OTUs/ASVs. Further 
complicating data analysis is the presence of ‘rare microbes’ 
that are present in some individuals but absent in the ma-
jority (i.e. zero-inflated data), increasing the risk of type-1 
error97; however, stringent data filtering methods (e.g., only 
considering microbes present in at least 25% of participants) 
can help alleviate this problem.

Background dietary change during intervention trials is 
also a common problem when interpreting diet–microbiome 
findings. In well-powered studies, randomisation theoret-
ically controls for this. However, under-powering is com-
mon in microbiome-targeted supplementation research, and 

T A B L E  2   Best-practice guidelines for diet–microbiome research

Study design
•	 Hypothesis-driven (design all aspects of study to answer a question regarding a specific diet–microbiome interaction)
•	 Power calculations; use largest sample size possible

Participant selection and characterisation
•	 Thoroughly characterised study participants (e.g., anthropometric data, disease status and severity, medications, lifestyle factors)
•	 Consider whether any factors warrant exclusion (e.g., recent antibiotic use)

Dietary data collection
•	 Utilise expertise of a nutrition professional
•	 Consider strengths and limitations of dietary assessment methods relevant to the research questions (see Table 1)
•	 Align dietary data collection with microbiota sampling (e.g., one day prior to stool collection)
•	 Employ strategies to reduce under-reporting and other recall errors

Biological sample collection
•	 Select region of GI tract appropriate to research question (e.g., stool versus mucosa, small versus large intestine)
•	 Align collection of microbiota and other biological samples (e.g., plasma)
•	 Transport and store samples appropriately (preservative or cold temperature)
•	 Ensure procedures are standardised for all participants to avoid methodological-induced variation
•	 Collect multiple samples to address intra-individual temporal variability

Dietary analysis
•	 Utilise expertise of a nutrition professional
•	 Single nutrient versus global (e.g., diet quality) approach
•	 Quantification of microbiota-accessible components (e.g., types of dietary fibre)
•	 Collinearity (consider nutritional geometry)

Microbial community analysis
•	 Develop analysis strategy with input of microbiome expert prior to commencing study
•	 Consistency across all aspects of sample processing and analysis (e.g., DNA extraction protocols; inclusion of controls to account for reagent 

contamination and batch effects; consistent use of bioinformatics pipeline)
•	 Select analysis method based on research question (e.g., metagenomic sequencing to identify capacity to utilise particular nutrients; direct 

measurement of metabolites)
•	 Consider multiple methods of microbial analysis (e.g., microbial profiling with metabolite quantification)
•	 Measure and report both relative and absolute abundance (e.g., using qPCR)
•	 Consider the impacts of intra- and inter-individual variability when designing analysis strategy

Statistical analysis
•	 Utilise expertise of an experienced bioinformatician for integration and analysis of diet–microbiome data
•	 Data proportional / not normally distributed: transform data (e.g., centred-log ratio)
•	 Sparse data (multiple zero datapoints): use statistical methods validated for microbiota data
•	 Where there are many more outcome measures than number of samples: apply stringent correction for multiple comparisons
•	 Multi-omics data: integrate datasets prior to analysis; use of modelling
•	 Confounding effects: multivariate/mixed models
•	 Utilise metrics and statistical tests developed specifically for microbiome analysis

Abbreviation: DNA, deoxyribonucleic acid; GI, gastrointestinal; qPCR, quantitative polymerase chain reaction.
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lack of dietary assessment creates uncertainty over whether 
microbiome findings are indeed a result of the effect of 
supplementation per se or, instead, are influenced by change 
in background diet secondary to the Hawthorne effect or 
other unintentional variability in dietary intake. More par-
ticipants clearly provide enhanced study power, although 
the numbers required even for small effect sizes in diet–
microbiome research readily reach thousands because of the 
inter-individual variability in the baseline gut microbiome.76 
Although there has been exploration of how to apply power 
calculations in microbiome profiling studies,105,106 this is 
highly challenging when considering the microbiome as a 
complex ecosystem and the multivariate nature of datasets 
generated. Longitudinal studies provide a means to address 
some aspects of inter-individual variation, although many of 
the same statistical challenges remain. This highlights the 
utility of placing datasets from individual studies in con-
text, such as through meta-analysis, to delineate trends from 
type-1 errors.79,107

Recommendations for best-practice study design

Despite the challenges of diet–microbiome research, best-
practice study design (Table 2, Figure 2) can aid in overcoming 
many of the aforementioned challenges. Hypothesis-driven 
approaches are key, where studies are designed to answer 
specific questions regarding host-diet–microbe interactions 
or interventions are tested in specific contexts. Overall trial 
design and planning for congruence in diet and biological 
sample collection, along with a consideration of the analysis 
and statistical challenges highlighted above, will facilitate 
high-quality research and greater confidence in reported 
outcomes.

The study population

Clearly, characterising the study population is funda-
mental in diet–microbiome research. Confounding fac-
tors are particularly important to measure, some of which 
exert a stronger inf luence on microbial profiles than host 
genetics.108 These factors broadly include ethnicity, an-
thropometric data, health status, primary disease and 
comorbidities, medication use, and lifestyle factors,108–111 
and may also serve as exclusion criteria, such as the re-
cent use of antibiotics or probiotics. The microbiome 
composition in individuals with chronic disease, often 
characterised by reduced microbiome richness (such as 
in inf lammatory bowel disease)112 or temporal instability 
(such as in irritable bowel syndrome),113 is often not mir-
rored in healthy individuals, who have relative stability of 
the microbiota over time.114 In disease, and particularly in 
GI disorders, altered dietary habits may partially mediate 
this divergent response.115 Hence, perhaps one of the most 
important characteristics to measure and report is partici-
pant disease status (e.g., relapse/remission) and severity.

Trial design

There are three major possible types of trial design in diet–
microbiome research and, as in any other field, the choice 
of design should primarily be guided by the research hy-
pothesis. First, cross-sectional studies measuring diet and 
the microbiome at one point in time allow for evaluation 
of the associations between these two variables. These 
studies are highly subject to external confounding and, al-
though they have an implicit inability to establish whether 
the condition (microbiome profile) or the exposure (diet) 
came first, they are important in helping generate testable 
hypotheses.2,3,116 Second, longitudinal studies that repeat-
edly measure diet and microbiome over time can provide 
deeper insight into diet–microbiome relationships because 
they allow measurement of the effect of temporal dietary 
variation on microbial composition and stability within 
an individual.9 Third, intervention studies are those that 
supplement or restrict a nutrient, food or food component, 
or implement a ‘whole diet’ alteration (e.g., Mediterranean 
or Atkins diet) and are therefore able to demonstrate more 
direct influences of dietary variables on the microbiome. 
Confounding effects of habitual diet and baseline microbial 
communities remain a challenge in intervention studies; 
however, effects will become more completely understood 
as further RCTs recruit participants based on pre-defined 
background diet,117 and we benefit from learnings of rel-
evant longitudinal data.

Data collection: Diet

Timing dietary assessment so that it is immediately adjacent 
to biological sample collection is extremely important given 
the rapid effects of diet and other host factors on microbiome 
composition.1,4,9 Of the multiple methods used to assess diet 
(Table 1), the 24-h recall or unweighed food record are typi-
cally used to measure short-term intake. Reducing the num-
ber of recording days may ease participant burden, although 
this must be balanced against the importance of capturing 
daily dietary variation, which is of particular importance 
in diet–microbiome research.118,119 Importantly, short-term 
dietary data can also be used to confirm dietary composi-
tion remains stable throughout microbiome-targeted (e.g., 
probiotic or prebiotic) supplementation studies. Remarkably, 
assessment of diet is frequently overlooked in such trials, as 
highlighted in recent systematic reviews of fibre61 and probi-
otic supplementation.120

Assessment of long-term dietary intake is also rele-
vant, particularly in cross-sectional studies, and provides a 
broader nutritional context for how diet shapes overall com-
munity structure. Food frequency questionnaires (FFQ) are 
typically used for this, and nutrient-specific FFQs are also 
available, including some with high relevance to the micro-
biome, such as those measuring intake of prebiotic carbo-
hydrates.121 Validated culturally-specific questionnaires are 
also available, enabling capture of aspects of diet unique to 
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specific geographic regions. Broader measures of dietary 
composition, such as diet quality (Table 1), may also be 
applied as measures of long-term dietary intake122,123 and, 
in contrast to measuring nutrients alone, provide a global 
assessment of diet as previously described. In addition to 
cross-sectional research, habitual long-term intake may also 
be of relevance in intervention studies as mentioned previ-
ously, helping to explain inter-individual variation in micro-
bial response to certain dietary interventions.117

Data collection: Microbiome

Collection of samples for microbiome analyses and related 
downstream processes including storage, processing and 
analysis methods, should be consistently applied across all 
samples to avoid technical variation.124 Although time for 
biological sample transport and storage prior to analysis is 
required, care should be taken to limit sample degradation 
by using timely and appropriate preservation methods.125 

If a large number of samples need to be processed in 
batches, or after different lengths of storage, controls (such 
as mock microbial communities) should be included to ac-
count for batch effects and accounted for during statistical 
analysis.126

As highlighted previously, the selection of suitable exper-
imental analysis techniques for microbial samples, as well as 
the statistical approaches to be used and the metrics or out-
comes to be reported, is crucial, and can potentially elevate 
(or appropriately downgrade) the significance of research 
outcomes. Ideally, a variety of microbiome analysis meth-
ods should be employed in concert with best-practice data 
analysis (Table 2), and these choices must be considered at 
the trial design phase prior to participant recruitment and 
sample collection. Example strategies could include comple-
mentary use of 16S rRNA gene amplicon sequencing for mi-
crobial profiling along with metabolite detection in the stool 
and blood87; or the addition of metagenomic sequencing to 
facilitate assessment of how functional redundancy shapes 
individual responses.60

F I G U R E  2   Summary of key considerations in diet–microbiome research. A robust study design includes a well characterised participant group, 
consideration of the availability of dietary substrates to microbes within intestinal niches, alignment of diet and microbiome data collection, rigorous 
choices of dietary and microbial assessment methods informed by experts, and appropriate statistical integration of these collinear datasets. GI, 
gastrointestinal



      |  11DIET–MICROBIOME ASSESSMENT

CONCLUSIONS

A strong body of evidence exists regarding the importance 
of diet–microbiome interactions in facilitating health, or 
driving disease pathophysiology. However, the field contin-
ues to be dominated by a wealth of associative studies, fewer 
intervention trials and a lack of research providing mecha-
nistic insights that identify the distinct diet-driven micro-
bial alterations beneficial for human health. From a dietary 
perspective, tools that facilitate less onerous yet accurate es-
timations of dietary intake will be key. There is a need for the 
further development of methods that enable the measure-
ment of nutrients in foods that are relevant to microbes (such 
as types of fibre and polyphenols), methods that estimate the 
availability of nutrients at the luminal substrate–microbe 
interface, and cost-effective methods that identify valid bio-
logical biomarkers of nutrient intake. From a microbiome 
perspective, improvements in our ability to measure and 
understand microbial metabolic properties, the response to 
nutrient availability, and interactions between microbes that 
drive community structure and function will move the field 
beyond taxonomic lists. Studies that investigate human diet–
microbiome interactions using best-practice techniques, 
with collaboration across the disciplines of nutrition science 
and microbiology, are essential (Figure 2); this will drive re-
search and clinical practice towards the goal of personalised 
nutrition recommendations for disease prevention, as well as 
the development of therapeutic diets for a broad spectrum of 
microbiome-associated disorders.
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