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Abstract—The chest computed tomography (CT) images have 
been used for COVID-19 detection. Automating the process of 
analyzing can save great amount of time and energy. In this 
paper a deep bayesian ensembling framework is proposed for 
automatic detection of COVID-19 cases using the chest CT scans. 
Data augmentation is applied to increase the size and quality of 
training data available. Transfer learning is utilized to extract 
informative features. The extracted features are used to train the 
three different bayesian classifiers. The uncertainty of the neural 
network predictions is estimated by anchored, unconstrained 
and regularized bayesian ensembling methods. The reliability 
of predictions is then delineated. The epistemic and aleatoric 
uncertainties are estimated and different bayesian classifiers are 
compared from different perspectives. We use a small dataset 
containing only 275 CT images of positive COVID-19 cases. 
The results sounds promising and they can be improved in the 
future, as the performance of deep neural networks is reliant 
to big datasets. Prediction accuracy and predictive uncertainty 
estimates for unseen chest CT images indicate that the deep 
bayesian ensembling is a promising framework for COVID-19 
detection.

Index Terms—Bayesian Ensembling, Uncertainty quantifica­
tion, Deep Neural Networks, COVID-19, CT images.

I. INTRODUCTION

Several cases of pneumonia with unknown origins were 
reported by Wuhan Municipal Health Commission in 31 
December 2019 [1]. This was the first officially reported of 
a novel contagious disease called COVID-19 that is labeled 
as pandemic by the World Health Organization. As of 9 May 
2020, 3855812 confirmed cases of COVID-19 and the total 
death of 265862 reported globally.

Diagnosing the new cases can be considered as one of the 
great challenges that the world face in this crisis. COVID-19 
tests are used extensively to detect new cases but unfortunately 
not enough number of tests are available and they can not be 
produced fast enough. On the other hand it is reported that in 
some cases fake COVID-19 test kits were found.

The limitation of COVID-19 testing kits, caused to look 
for other alternative ways to diagnose it. As the corona virus

involves respiratory tract including the lungs at the early 
stages, chest CT is prescribed in suspicious cases [2].

Analyzing the X-ray images needs radiology experts and it 
will take relatively long time. Whereas there are increasing 
number of patients around the world, novel solutions are 
required to remove the burden from the healthcare system.

Recently many researches have focused on automatic diag­
nosing COVID-19 using chest CT images [3]-[14]. Different 
dataset are gathered and many deep neural networks are 
proposed and different algorithms are applied for automatically 
diagnosing if a patient is affected by corona virus or not. In 
[15] a dataset containing 275 chest CT images of COVID-19
positive cases is prepared and a deep neural network (NN) is
trained on the available images to be able to diagnose whether
a patient infected by corona virus or not by analyzing his/her
chest CT image. Comparing the predicted NNs results with
the ground truth, whenever it is applicable define the accuracy
of the NN prediction.

While many studies focuses on improving the accuracy and 
performance of NNs predictions, the uncertainty quantification 
(UQ) of the predictions has been largely overlooked [16]- 
[18]. Quantifying uncertainties associated with NN predictions 
is of vital importance in safety critical applications such as 
healthcare. In particular, the epistemic uncertainty must be 
properly quantified as it represents how much the end user can 
trust network predictions on new samples [19]. The epistemic 
uncertainty is mainly related the data deficiency and can be 
reduced through collection of more quality data. The UQ 
should also include the aleatoric uncertainty. This represents 
the inherent uncertainty in data and mainly relates to the 
measurement noise or image quality.

Bayesian neural networks (BNNs) were proposed to model 
the uncertainty in NNs, where the parameters of NNs are 
modeled with probability distributions [20]. While BNNs 
works ideally in small scale problems, they face infeasibility 
for larger ones.

On the other hand, ensembling used as an alternative for 
determining the uncertainty. Various NNs with different initial 
conditions are trained and the variance of the predictions is

1584
© IEEE 2020. This article is free to access and download, along with rights for full text and data mining, re-use and 
analysis

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 18,2021 at 01:02:24 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. A few examples of the chest computed tomography (CT) images 
that is used in this study [15]. The positive and negative cases for COVID-19 
are marked with Covid and Normal respectively.

regarded as the uncertainty. Also ensembling was successful 
in many applications [21]-[23] it was criticized for not being 
bayesian [24].

The so called Bayesian ensembling proposed in [25], 
bridges the BNNs with ensembling method to take advantage 
of both strengths.

In this paper we use a small chest X-ray image dataset 
[15]. A pretrained network that was previously trained on a 
big and general dataset is applied to address this issue (trans­
fer learning). Data augmentation is applied to prepare more 
diversity to the available train dataset. Then three bayesian 
ensembling algorithms are applied to analyze the CT images 
of suspicious cases to detect if they are infected by COVID-19 
or not. On the other hand uncertainties of the predictions are 
estimated to determine how dependable the predictions are. 
The three bayesian ensembling methods are compared from 
different perspective and the results are reported. This can 
be considered as the main contribution of this study. To the 
best of the authors knowledge, the UQ of automatic detection 
of COVID-19 has not been referenced in the literature yet. 
Collecting big datasets may be a little time consuming but it 
will be surely fulfilled in near future. So the promising results 
achieved can also be improved as well.

where P (6) is the prior distribution of the parameters. It 
illustrates our prior knowledge about 6.

P  (D |6 )=  n P(y<- |xi ,6) (2)
(xi,yi)eD

P (D|6) is known as the likelihood and it is defined as the 
probability of observing D, given the parameter 6. Given a test 
input x, the posterior predictive distribution of y is as follows:

P  (y|x,D) =  y  P  (y|x, 6)P (6|D)d6 (3)

As equation (3) is intractable, different bayesian approaches 
have been developed to estimate it [26]. In variational infer­
ence (VI), the posterior is approximated through a simple form 
and the parameters are obtained by optimizing the evidence 
lower bound [27], [28]. In stochastic gradient Langevian 
dynamics, the gradient noise is added during training to 
approximate samples from the posterior [29]. Dropout [30], 
batch normalization [31] and ensembling [32] can also be 
interpreted as bayesian approaches.

It is worth mentioning that maximum likelihood estimation 
(MLE) and maximum a posterior (MAP) estimate the param­
eter 6 as follows:

6ml e  = argmaxe {P  (D|6)} (4)

6 m a p  =  argmaxe {P (6|D)} =  argmaxe {
P (D |6)P (6)

P (D )
= argmaxe {P (D ^)P  (6)} (5)

From equations (4) and (5), one can conclude that MLE 
and MAP are both point estimators, whilst bayesian inference 
methods returns probability density function.

B. Randomized MAP Sampling(RMS)
In recent years randomized MAP sampling is proposed as 

a bayesian inference method. In this approach a regularization 
term is added to the standard MLE loss function and a MAP 
parameter estimate is returned. In addition adding noise to the 
this loss and sampling frequently, build a distribution of MAP, 
that is the estimated of the true parameter posterior distribution 
[25], [33]-[36] .

II. Ba c k g r o u n d  

A. Bayesian Neural Networks

Deep NNs achieved great success in recent years. However 
in real world application the reliability level and robustness 
of the NNs predictions was always an issue. Bayesian NNs, 
by joining the probability theory and NNs tries to address this 
concern.

Consider a supervised learning problem where D =  
{xi ,yi}N=1 is the set of training examples, considering:

P(6|D) a  P (D |6 )P (6) (1)

C. Transfer Learning
Obtaining large and comprehensive dataset in medical imag­

ing domain is considered as a challenge. When sufficient data 
are not available one popular approach is transfer learning.

Transfer learning is a well known approach that is used in 
computer vision tasks where we do not have access to a large 
enough dataset. In this method a convolutional neural network 
(CNN) model that is already trained on a large and general 
dataset (pretrained model) is used for a task even completely 
different from its origin one.
In medical imaging domain, as sufficient data is always an 
issue, transfer learning was applied extensively. Typically, the
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Figure 2. The bayesian ensembling framework for detecting COVID-19 form 
chest X-ray images. The input chest CT images are fed to the feature extraction 
and then to three bayesian ensembling classifiers.

pretrained CNN is chosen and applied to the image data, 
the output are features and they are used to train a separate 
classifier [37]. For instance [38], [39] used pretrained CNNs 
as feature extraction for chest pathology and in [40] , [41] the 
extracted features are used for pulmonary nodule detection.

In this paper we use pretrained network that was trained 
on ImageNet (where the classes are mostly every day objects 
such as animals, plants and etc.) to diagnose COVID-19 in 
chest X-ray images.

III. Me t h o d s

We develop a bayesian ensembling framework for diagnos­
ing the Covid-19 from chest X-ray images. We also quantify 
the uncertainty of the proposed NN predictions. It is worth 
mentioning that also the dataset we use is the largest currently 
available dataset it is actually very small for training a deep 
NN. The main issue with such a small dataset is overfitting. 
To address this we use two main techniques called transfer 
learning and data augmentation.

Finally a bayesian ensembling classifier is applied to clas­
sify the images and determine the level of uncertainty of our 
predictions.

A. Extract Features Using VGG16
We apply VGG16 [42] (also known as the OxfordNet). This 

deep convolutional neural network was already trained on a 
big dataset (ImageNet). ImageNet contains over 15 millions 
high quality images belonged to 22000 categories. Also our 
dataset is completely different in nature from ImageNet, it 
is very helpful. It was due to the fact that the main duty of 
VGG16 in our codes is to extract the features of the images.

Our feature extraction that is VGG16 followed by average­
pooling and flatten layers has 14,714,688 non trainable param­
eters. The extracted features that has 512 features are used as 
inputs to train the bayesian classifier.

B. Data Augmentation
The deep learning success in recent years was partially 

attributed to availability of large and diverse dataset. In addi­
tion, having too few data to learn from leads to overfitting. 
Infinite dataset helps the model to learn every aspect of 
the data and the model never overfit. Data augmentation is 
a technique to artificially generate more training data by

modifying the existing training samples [43]. In other words 
data augmentation provide more diversity in dataset without 
the need to collect new data.

Cropping, padding and horizontal flipping and other minor 
alterations are popular techniques for applying data augmenta­
tion. The NN considers the augmented data as distinct images.

C. Loss Function
Considering equation (5), one has:

6m a p  = argmaxe {P  (D ^)P  (6)} (6)

Assuming normal distribution for the prior, P (6) =
N (», E):

6ma p  = argmaxe log(P (D^))

-  1(9 -  E- 1(6 -  n ){P (D |6)P (6)} (7)

Choosing prior covariance as diagonal and ^  =  0, one has:

6m a p  = argmaxelog(P(D |6)) -  2 ||e —.6||2 (8)

Equation (8) is standard L2 regularization. For classifi­
cation, multinomial distribution is common choice for the 
likelihood.

N C
p (d |6) < * n  , n  , (9)

where C is the number of classes, N  is data points and y e 
{0,1} is the predicted probability and true targets are denoted
by yn,c e {0,1}.

6MAP
N C

argmaxe EE yn,c log(yn,c )
n=1c=1

1
2

-1
E -2- .6 22

(10)

Applying RMS, p,prior is replaced with a random variable 
6anc. A typical choice for 6anc is:

6anc = N  (yp r io r ,^^  prior) (11)

For classification task the following loss function is opti­
mized:

1 N C

Losso = n  yn
n=1c=1

Jog(yn ,c) + N | | r 2. (6 6a
) 2 

cj ) ||2

(12)

Here, we choose diag(ri) = 2 ~2r—  [25]. Choosingap r - i o r i

r  =  0 is the so-called unconstrained ensembling, we refer 
it as free ensembling in our results. In addition considering 
6anc,j = 0 will return the regularized ensembling. In anchored 
ensembling the parameters are regularized around the prior 
distribution parameters (equation (12)).

1586

Authorized licensed use limited to: IEEE Xplore. Downloaded on June 18,2021 at 01:02:24 UTC from IEEE Xplore.  Restrictions apply. 



D. Validation
Accuracy is not always a good measure to determine the 

model performance. In diagnosing a disease it is of vital im­
portance to consider other measures as well because over and 
under diagnosis may cause bad effects. If our model wrongly 
determine a healthy person as an infected by corona virus, 
leads to subject the patient to treatment that is unnecessary. It 
will also cause unneeded anxiety for the patient. On the other 
hand if our model diagnose an infected by Covid-19 as healthy, 
it will lead to spread the virus and can impose huge costs to 
the community. Sensitivity, specificity, precision, recall, etc are 
considered as popular measures in medical testing that tell us 
what the model can not tell us. [44]-[46]
Sensitivity:The sensitivity also known as true positive rate is a 
measure to determine how accurate is the model in diagnosing 
positive results for people who have the disease.The sensitivity 
is calculated as follows:

T P
Sensitivity = T p  + F N  (13)

Table I
S ta tistic s  o f  data s p l it . T h e  im a g e s  a r e  d iv id e d  to  te st  a n d

TRAIN SETS.

Item COVID-19 Normal Total
Train 220 156 376
Test 55 39 94

Table II
Da taset  a n d  p r e p r o c e s s e in g  in f o r m a t io n .

Item Value
Number of images 470
Number of COVID-19 images 275
Number of Normal images 195
Image size 224x224
Augmentation parameter (rg) 15

Table III
T h e  e p is t e m ic  a n d  a le a to r ic  u n c e r t a in t ie s  fo r  A n c h o r e d

ENSEMBLING (ANC), REGULARIZED ENSEMBLING (REG) AND
Un c o n s t r a in e d  e n s e m b l in g  (F r e e ). A n c h o r e d  e n s e m b l in g
PREDICT THE HIGHEST UNCERTAINTIES IN COMPARISON TO OTHER 

METHODS.

where, T P  (True Positive), stands for number of patients 
who labeled as positive and are truly positive and F N  (False 
Negative), stands for patients that was predicted as negative 
but they are really positive.
Specificity:The specificity also known as true negative rate is a 
measure to determine how accurate is the model in predicting 
negative results for healthy people. The specificity is calculated 
as follows: T N

Specificity  = T N  + F p  (14)

where, T N  (True Negative), stands for number of patients 
who labeled as negative and are truly negative and F P  (False 
Positive), stands for patients that was predicted as positive but 
they are really negative.
Precision: precision determine the ability of the model to 
return relevant samples. In other words if the focus is on 
minimizing F P  it is a suitable measure.

T P
Precision =  ----—— (15)

T P  +  F P  ’
Recall: recall is a suitable measure when the focus is on
minimizing F N .

Recall
T P

T P  + F N (16)

F1: F1 is a weighted mean of precision and recall and it is 
calculated as follows:

2 x Precision x Recall 
Precision +  Recall (17)

ROC (Receiver Operating Characteristic curve): ROC is the 
plot of sensitivity against specificity at different thresholds. 
The area under the ROC curve is known as (AUC). AUC is a 
measure to determine the quality of the classifier.
Notice that all the measures above are ranged between 0 and 1. 
The best value for them is 1 and the worst is 0. For instance a 
random classifier has the AUC  =  0.5 while the for the perfect 
classifier the AUC  =  1.

Method Total Uncertainty
10 x  NNs Anc 1.040 ±  1.38
10 x  NNs Reg 0.192 ±  0.515
10 x  NNs Free 0.676 ±  1.435

IV. Ex p e r i m e n t s

In this section our finding on detecting if a patient is 
infected by COVID-19 by analyzing his/her chest CT images 
is described in details. The dataset we use includes 470 CT 
scans, where 275 images are COVID-19 positive. It is worth 
mentioning that some of the positive COVID-19 images are 
the X-ray images of one patient in different stages of his/her 
illness. We split the dataset to train and test set, the number of 
Covid and Normal images in each set is represented in Table I. 
Table II also provides information about the number of images 
and images per class. All the images are resized to 224-by- 
224. The data augmentation is applied by randomly rotating 
the train images in 15 degree rotation range. The pretrained 
VGG16 is utilized as the feature extraction model.

We apply three popular approximate and inference methods 
for classification. The methods are tested for 5, 10 and 15

Table IV
C o m pa r in g  th e  a c c u r a c y , s e n s it iv it y  a n d  s p e c if ic it y  r epo r te d  

fo r  A n c h o r e d  e n s e m b l in g  (A n c ), R e g u l a r iz e d  e n s e m b l in g  (R e g ) 
a n d  Un c o n s t r a in e d  e n s e m b l in g  (F r e e ). r esu l ts  a r e  r epo r te d  

fo r  5 ,10  a n d  15 N N s .

Method Accuracy (%) Sensitivity Specificity
5 xN N s Anc 79.7 0.86 0.83
10xN N s Anc 82.6 0.85 0.80
15xN N s Anc 81.9 0.85 0.81
5 xN N s Reg 82.6 0.86 0.80
10xN N s Reg 80.5 0.81 0.81
15xN N s Reg 82.6 0.823 0.80
5 x  NNs Free 81.2 0.899 0.77
10x  NNs Free 83.2 0.87 0.81
15xN N s Free 83.9 0.886 0.77
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Table V
Co m pa r in g  th e  p r e c is io n , r e c a l l  a n d  F1 fo r  An c h o r ed
ENSEMBLING (ANC), REGULARIZED ENSEMBLING (REG) AND 

Un c o n s t r a in e d  e n s e m b l in g  (Fr e e ). Resu lts  a r e  t e st e d  fo r  5,10 
a n d  15 NN s .

Method Precision Recall F1
5 x NNs Anc 0.85 0.86 0.85
10 x NNs Anc 0.83 0.85 0.84
15 x NNs Anc 0.83 0.85 0.84
5 x NNs Reg 0.83 0.83 0.83
10 x NNs Reg 0.84 0.84 0.84
15 x NNs Reg 0.84 0.86 0.85
5 x NNs Free 0.85 0.85 0.85
10 x NNs Free 0.85 0.84 0.84
15 x NNs Free 0.83 0.86 0.84

Table VI
Co m pa r in g  th e  AUC fo r  An c h o r e d  e n s e m b l in g  (An c ), 

Re g u l a r iz e d  e n s e m b l in g  (Re g ) a n d  Un c o n s t r a in e d  e n s e m b l in g  
(Fr e e ). Resu lts  a r e  r epo r te d  fo r  5,10 a n d  15 NN s .

Method COVID-19 Normal Micro-average Macro-average
5 x NNs Anc 0.85 0.85 0.85 0.86
10 x NNs Anc 0.88 0.88 0.87 0.88
15 x NNs Anc 0.87 0.87 0.87 0.88
5 x NNs Reg 0.89 0.89 0.89 0.89
10 x NNs Reg 0.88 0.88 0.88 0.88
15 x NNs Reg 0.88 0.88 0.88 0.89
5 x NNs Free 0.90 0.90 0.90 0.91
10 x NNs Free 0.89 0.89 0.89 0.90
15 x NNs Free 0.89 0.89 0.90 0.90

NNs. The NNs structure is constructed by 3 fully-connected 
layers. Anchored ensemble that is trained using equation (12), 
unconstrained ensembles (where r  =  0) and regularized 
ensembles (where 6a n c , j  = 0).

In regularized ensembles all NNs are encouraged to the 
same solution and the diversity is decreased, while in uncon­
strained there is no sense of prior and may cause overfitting.

Table III compares the epistemic and aleatoric uncertainties 
for these ensembling methods. It can be concluded that the 
anchored ensembling produces the most conservative predic­
tions in comparison to other ensembling methods. Table IV 
compares the accuracy, sensitivity and specificity of these 
methods for three-layer NNs with ReLU nonlinearity. Table 
V illustrate the precision, recall and F1. Table VII and Table

Table VII
Th e  n o r m a l iz e d  c o n f u sio n  m a tr ix  fo r  A n c h o r e d , 

Un c o n s t r a in e d  a n d  Re g u l a r iz e d  e n s e m b l in g . The  resu lts  a re  
REPORTED FOR 5, 10 AND 15 NNS. TN, FP, FN AND TP STANDS FOR 

NORMALIZED TRUE NEGATIVE, FALSE POSITIVE, FALSE NEGATIVE, AND 
TRUE POSITIVE RESPECTIVELY.

NN TN FP FN TP
5 x NNs Anc 0.83 0.17 0.14 0.86
10 x NNs Anc 0.80 0.20 0.15 0.85
15 x NNs Anc 0.81 0.19 0.15 0.85
5 x NNs Reg 0.80 0.20 0.16 0.84
10 x NNs Reg 0.81 0.19 0.16 0.84
15 x NNs Reg 0.81 0.19 0.14 0.86
5 x NNs Free 0.83 0.17 0.15 0.85
10 x NNs Free 0.81 0.19 0.15 0.85
15 x NNs Free 0.80 0.20 0.14 0.86

Figure 3. The ROC curve for Anchored ensembling with 10 NNs. The area 
under the ROC curve (AUC) is an important performance measurement. AUC 
for random classifier is 0.5 and AUC for a perfect classifier is 1. Class 1 is 
positive covid-19 and class 0 is negative cases.

Figure 4. The training and validation loss per epochs for Anchored, Uncon­
strained and Regularized ensembling.

IV show the confusion matrices and AUC for all the scenarios. 
In Fig. 3 the ROC curve for anchored ensembling with 10 NNs 
is illustrated.

The training and validation loss for anchored ensembling, 
regularized ensembling and unconstrained ensembling is illus­
trated in Fig. 4. It can be concluded that all the methods con­
verge after 60 epochs and regularized ensembling converges 
best among others.

V. Co n c l u s i o n

This paper aimed to apply bayesian framework for detecting 
COVID-19 from chest X-ray images. VGG16 with the weights 
trained on ImageNet is applied as feature extraction. The 
extracted features are applied to three bayesian ensembling 
classifiers. Anchored ensembling, regularized ensembling and 
unconstrained ensembling are tested separately and the results 
are reported and compared. The reported results show the 
effectiveness of all in this task however it is concluded that the 
anchored ensembling is the most conservative one as it predicts 
the highest uncertainties in comparison to others. Although the 
proposed framework achieves good results, access to bigger
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dataset will definitely lead to more accurate diagnosis with 
higher confidence.
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