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Abstract

Background: As stated by WHO, Cardiovascular disease (CVDs) are the number 1 cause of death globally, which means more
people die annually from CVDs than from any other cause. An estimated 17.9 million people died from CVDs in 2016,
representing 31% of all global deaths. Of these deaths, 85% are due to heart attack and stroke. In this study, we present a
benchmark comparison of various Artificial Intelligence (AI) architectures on predicting mortality of CVD patients using the
structured medical claims data.

Objective: This study mainly aims to support health clinicians to accurately predict mortality among patients with CVD using
only claims data before a clinic visit.

Methods: The used dataset was joined from Medical Benefits Scheme (MBS) and Pharmaceutical Benefits Scheme (PBS)
service information in the period between 2004 and 2014, released by the Department of Health Australia in 2016. It includes
346,201 records corresponding to 346,201 patients. A total of five AI algorithms including four classical Machine Learning
(ML) algorithms (Logistic Regression (LR), Random Forest (RF), Extra Trees (ET) and Gradient Boosting Trees (GBT)) and a
deep learning algorithm which is a densely connected neural network (DNN) were developed and compared in the study. In
addition, due to the minority of ‘deceased’ patients in the data set, a separate experiment using Synthetic Minority Oversampling
Technique (SMOTE) was conducted to enrich the data.

Results: Regarding model performance, in terms of discrimination, GBT and RF are the models with highest AUROC (97.8%
and 97.7% respectively), followed by ET (96.8%) and LG (96.4%) while DNN is the least discriminative (95.3%). In terms of
reliability, LG predictions are the least calibrated compared to those of four algorithms. In this study, despite increasing training
time, SMOTE is proved to further improve model performance of LG while other algorithms, especially GBT and DNN, work
well with class imbalanced data.

Conclusions: Compared to other research in the clinical literature involving AI models using claims data to predict patient health
outcomes, our models are more efficient since we only utilize a smaller number of features but still achieve high performance.
And this study could support health professionals to accurately choose AI models to predict mortality among patients with CVD
using only claims data before a clinic visit.
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Original Paper

Mortality Prediction of Patients with Cardiovascular Disease Using
Medical  Claims  Data  under  Artificial  Intelligence  Architectures:
Validation Study

Abstract

Background: Cardiovascular disease (CVD) is Australia’s greatest health problem, kills more people
than any other  disease and creates enormous costs  for the health care system. In this  study, we
present a benchmark comparison of various Artificial Intelligence (AI) architectures on predicting
mortality of CVD patients using the structured medical claims data. Compared to other research in
the clinical literature, our models are more efficient since we utilize a smaller number of features and
this study could support health professionals to accurately choose AI models to predict mortality
among patients with CVD using only claims data before a clinic visit.
Objective: This study mainly aims to support health clinicians to accurately predict mortality among
patients with CVD using only claims data before a clinic visit.
Methods:  The used dataset was joined from Medical Benefits Scheme (MBS) and Pharmaceutical
Benefits Scheme (PBS) service information in the period between 2004 and 2014, released by the
Department  of  Health  Australia  in  2016.  It  includes  346,201  records  corresponding  to  346,201
patients. A total of five AI algorithms including four classical Machine Learning (ML) algorithms
(Logistic  Regression (LR),  Random Forest  (RF),  Extra  Trees (ET) and Gradient  Boosting Trees
(GBT)) and a deep learning algorithm which is a densely connected neural network (DNN) were
developed and compared in the study. In addition, due to the minority of “deceased'” patients in the
data set, a separate experiment using Synthetic Minority Oversampling Technique (SMOTE) was
conducted to enrich the data.
Results: Regarding model performance, in terms of discrimination, GBT and RF are the models with
highest AUROC (97.8% and 97.7% respectively), followed by ET (96.8%) and LG (96.4%) while
DNN  is  the  least  discriminative  (95.3%).  In  terms  of  reliability,  LG  predictions  are  the  least
calibrated  compared to  those  of  four  algorithms.  In  this  study,  despite  increasing  training  time,
SMOTE is proved to further improve model performance of LG while other algorithms, especially
GBT and DNN, work well with class imbalanced data.
Conclusions: Compared to other research in the clinical literature involving AI models using claims
data to predict patient health outcomes, our models are more efficient since we utilize a smaller
number  of  features  but  still  achieve  high  performance.  And  this  study  could  support  health
professionals to accurately choose AI models to predict mortality among patients with CVD using
only claims data before a clinic visit.

Keywords:  mortality  prediction;  cardiovascular;  medical  claims  data;  imbalanced data;  machine
learning; deep learning.

Introduction

Background

In Australia,  Cardiovascular Disease (CVD) is the most concerning health problem, killing more
people than any other disease and placing heavy burdens for the health care system due to enormous
costs and individuals and the community due to resulting disabilities. CVD was the leading cause of
death among Australians in 1997, accounting for 52,641 deaths, 41% of all deaths [1]. An estimated
1.2 million (5.6%) Australian adults aged 18 years and over had one or more conditions related to
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heart  or  vascular  disease,  including  stroke,  in  2017–18,  based  on  self-reported  data  from  the
Australian Bureau of Statistics (ABS) 2017–18 National Health Survey. The prevalence of CVD by
Age group and Sex, 2017-2018 is shown in Figure 1.

The major risk factors for CVD are tobacco smoking, high blood pressure, high blood cholesterol,
overweight, insufficient physical activity, high alcohol use and type 2 diabetes [1]. CVD treatments
are usually prescribed in combination, with the prevalence of use of drugs such as anti-diabetics,
anti-hypertensives, lipid-lowering drugs, anticoagulants and anti-platelet agents [2]. Besides eating a
healthy diet and maintaining fitness with regular physical activity, medication use is an important
management factor for patients diagnosed with heart disease conditions. Medications are used to
minimize symptoms, reduce the risk of exacerbation and improve quality of life.

Many methods have been approached to predict the mortality of patients with CVD, utilizing many
algorithms  and  predictor  variables.  There  are  three  main  methods  of  mortality  forecasting:
explanation, expectation and extrapolation [3]. Out of these, the most common basis of mortality
forecasting is extrapolation which assumes future state highly correlates to the past. In the clinical
literature, historical EHR are widely used to develop AI models that can predict health outcomes of
patients  contracting  with  a  disease.  Information  commonly  extracted  from EHR as  input  for  AI
models includes patient demographics,  health indexes,  medical  conditions,  biomedical  images or
clinical notes while structured medical claims data are rarely utilized. Even though medical claims
data little inform patient health conditions, this source of information is crucial in reflecting patient
healthcare access frequency and level of participation in disease prevention/treatment, holding great
impact in determining patient health outcomes.

In this study, we present a benchmark comparison of the performance of different AI architectures
such as four classical Machine Learning (ML) algorithms (Logistic Regression (LR), Random Forest
(RF), Extra Trees (ET) and Gradient Boosting Trees (GBT)) and a deep learning algorithm which is a
densely  connected  neural  network  (DNN)  in  using  medical  scheduling  and  pharmaceutical
dispensing  information  from  historical  claims  data  to  predict  mortality  of  patients  with  CVD.
Compared to other researches in the clinical literature involving AI models using claims data to
predict patient health outcomes, our models are more efficient since we utilize a smaller number of
features but still achieve high performance. Furthermore, we also propose SMOTE, a technique to
enrich training data  and handle class imbalance,  as an approach to  improve the performance of
developed AI models. 

Related Work

Recent day trends involve using artificial intelligence models to learn patterns from large datasets in
order  to  predict  mortality  with  higher  accuracy [4]. The  American  College  of  Cardiology
Foundation’s National Cardiovascular Data Entry (NCDR) conducted a study that used statistical
analysis to predict rate of risk in per-cutaneous coronary intervention. The study results show that
ML models  performed  better  in  terms  of  accuracy  than  classical  statistical  models  [5].  One
conducted  study shows  that  machine  learning  models  such as  random forest,  decision  tree  and
logistic regression perform exceptionally well due to today’s computational capacity which allows
them to process data from the electrical health records [6] of patients. Deploying machine learning
models on routine clinical data performed better than standard cardiovascular risk assessment models
and  found  great  merits  in  terms  of  preventive  treatment  and  avoidance  of  mistreatment  for
cardiovascular disease according to a study conducted on a large sample of patients in the UK [7].
Moreover, using neural networks for predictive analysis of illnesses have been shown to be fruitful
as early as 2005 [8]. Z. Wang et al. predicted the mortality rate due to heart failure by deploying a
convolutional  layered  neural  network  which  inculcated  feature  rearrangement  to  select  the  best
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features [9]. In another instance, studies have shown that deep neural networks performed better than
traditional machine learning models with respect to accuracy and available sample size [10].

Many factors  have  been considered  to  predict  health  outcomes  of  patients  suffering  from heart
disease. Some techniques used to extract learning features are automated imaging interpretation [11-
12], natural language processing or text mining [13-14] and electronic health records extraction [15-
18]. Imaging interpretation has been carried out by deep neural networks [12] with promising results.
Natural  language  processing  of  clinical  notes  has  been  able  to  correctly  identify  risks  of
cardiovascular disease patients [13] while systematic application of text mining to the EHR has had
variable success for the detection of cardiovascular phenotype [14]. It is proven that applying ML
helps finds clinically relevant patterns in the data [19]. Features extraction from EHR allows the
utility of many factors such as patient demographics, characteristics and health conditions including
cardiovascular  health (CVH) indexes [20] or per-cutaneous coronary interventions (PCI) indexes
[16-17] in predicting mortality risks.

Based on these studies in the literature, it can be reviewed that mortality rate of patients in cardiology
cohort has been accurately predicted using a variety of algorithms, methods and predictor features.
However, there has been little focus on utilizing medical claims for predicting health outcomes of
patients with CVD. This information reflects patient medication usage as well as health care access
frequency and level  of  participation  in  disease  prevention/treatment  which  hold  great  impact  in
determining patient health outcomes [21]. Hence, in order to contribute to closing this literature gap,
in  this  paper,  mortality  will  be  predicted  based  on  patient  medical  schedule  information  and
pharmaceutical dispensing history acquired from medical claims.

The Pharmaceutical Benefits  Scheme (PBS) and Medicare Benefits Schedule (MBS) claims data
collected by the Department of Human Services and held by the Department of Health has great
potential to provide further insight into medical scheduling and pharmaceutical dispensing history for
patients with CVD. This study utilizes the PBS and MBS claims data in the period between 2004 and
2014 in investigating the mortality rate of patients having heart disease conditions in Australia and
building and comparing five AI models to  predict  the mortality  risk of a  patient  being in  these
conditions.  We  built  the  prediction  models  based  on  patient’s  age,  gender,  relevant  medication
prescriptions, medical schedule information and pharmaceutical dispensing history obtained from the
dataset.  We  then  assessed  and  compared  the  performance  of  each  model  and  suggested
recommendations for future work.

Objectives

The primary aim of this research is to support health clinicians to accurately predict mortality among
patients with CVD using only claims data before a clinic visit. Compared to other researches in the
clinical  literature involving AI models  using claims data  to  predict  patient  health  outcomes,  our
models  are  more  efficient  since  we  utilize  a  smaller  number  of  features  but  still  achieve  high
performance.  This  study  has  applications  to  supporting  health  clinicians  to  accurately  predict
mortality among patients with CVD using only claims data before a clinic visit. 

Methods: Artificial Intelligence Architectures

In this study, four classical machine learning algorithm architectures which are logistic regression
(LR), random forest (RF), extra trees (ET) and gradient boosting trees (GBT) along with a deep
learning algorithm called densely connected neural network (DNN) are used to develop mortality
prediction models. The MBS & PBS dataset is a well-structured and very informative one which
allows simple algorithms to better learn. Since our study is a probabilistic prediction problem, we put
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more  emphasis  on  the  discrimination  and  calibration  of  model  performance.  Through  initial
experiments, we found that LR, RF, ET and GBT are classical machine learning algorithms that
produce best performance in terms of these two criteria. On the other hand, we were also curious on
how the state-of-the-art  deep learning might  perform on the dataset,  we developed the simplest
neural network which is a densely connected neural network for further comparison and insights. The
reason why we do not choose to develop more complex deep learning architectures such as RNN or
CNN is because these algorithms are not necessary for such structured dataset to highly perform. In
this section, these experimental algorithms are described and their architectures are proposed.

Logistic Regression (LR)

LR is a supervised machine learning algorithm. It is a powerful and well-established method for
binary classification problem [24]. LR is extended based on linear regression and can be used to
calculate  the  probability  of  an event  that  has  two possible  outcomes by assigning weights  to  a
number of predictor variables (features). Let’s say, given a set of independent variables 

                                                                                                                                (1)

and a dependent variable  which takes values between 0 and 1. First, LR is designed to find a set of

weights 

                                                                                                                                (2)

for each of the independent variables so that the following linear equation is able to output a 

score: 

                                                                       (3)                                                                                           

Then from this  score, probability  is derived by the following formula:

                                                                                                          (4)

To use the LR as a binary classifier, a threshold needs to be assigned to differentiate two classes.
Normally, LR will classify an input instance with a probability value higher than 0.50 as positive
class; otherwise, negative class. Depending on the problem, 0 and 1 can be translated into different
meanings.

Random Forest (RF)

Before going to the description of RF algorithm, it is important to understand the concept of decision
tree algorithm [25]. DT is one of the simplest and earliest machine learning algorithms. It structures
the decision logic into a tree-like model. The nodes in a DT tree are partitioned into different levels
where the up-most node is called the root node while other nodes which have at least one child
represent tests on input variables/features [26]. Depending on some criterion of the test, higher nodes
are split into lower nodes repeatedly towards the leaf nodes [27] which have no child at all and
correspond  to  the  decision  outcomes.  An  illustration  of  a  simple  DT is  depicted  in  Figure  2.
According to Figure 2, three circles  ,   and   are tests on corresponding input variables

while the rhombuses at the end are the classification outcomes ('deceased' or 'alive').
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A random forest (RF) is an ensemble classifier consisting of many DTs similar to the way a forest
has many trees [28]. Different DTs in an RF are trained using different parts of the training dataset
and tested on different subsets of input variables. To classify a new instance, the input vector of the
instance is pushed through each of DTs in the forest. Each DT makes decisions on a different part of
that  input  vector  and gives  a  classification  outcome.  The forest  then  makes  final  prediction  by
majority vote in classification problems and arithmetic average in regression problems. Since the RF
algorithm aggregates outcomes from many different DTs to make decision, the result has smaller
variance compared to the consideration of a single DT for the same dataset. In addition, similar to
other tree-based ensemble,  variables for each tree in RF is randomized while node splitting cut-
points are locally optimized according to the criterion [28]. Figure 3 shows an illustration of the RF
algorithm. According to Figure 3, the training dataset is randomly split into the desired number of
trees in the forest; next, each random sub-sample is used to train a decision tree that is tested on a
randomly selected subset of input variables.

Extra Trees (ET)

The Extremely randomized trees or Extra-Trees algorithm is also an ensemble classifier consisting of
many single DTs similar to RF. ET method also uses a random subset of features to train each base
estimator [29]. However, its two main differences from RF and other tree-based ensemble methods
are that it splits nodes by choosing cut-points fully at random (or random selection of threshold) and
it uses the whole learning sample to grow each tree in the ensemble rather than subset of training
data [30]. The final prediction produced is the aggregated predictions of all trained trees, yielded by
majority  vote  and  arithmetic  average  in  classification  problems  and  in  regression  problems
respectively.  In  terms of  bias-variance,  ET is  able  to  reduce  variance  more  effectively  than  the
weaker randomization schemes used by other ensemble methods. On the other hand, full training
sample rather than bootstrap batches is used to train each base estimator in an attempt to minimize
bias [30]. A simple illustration of an ET model is depicted in Figure 4.

Gradient Boosting Trees (GBT)

GBT  is  another  popular  ML  algorithm  using  tree-based  ensemble  method,  first  proposed  by
Friedman  [31].  This  approach  trains  learners  (decision  trees)  based  upon  minimizing  the  loss
function which is computed by gradient descent method [32]. To train a GBT, the algorithm first
builds a very simple decision tree from the learning sample with equal weights. Based on results of
this weak learner, it tries to create a new learner that gives higher weights to nodes that are more
difficult to split and lower weights to those that are easier to split [32]. By doing this, the new learner
is able to minimize the errors of the previous leaner. While this process continues, the loss function is
optimized [31] making each new model has better goodness of fit to the observation data. Figure 5
illustrates the mechanism of GBT algorithm.

Densely connected neural network (DNN)

Artificial neural network (ANN) [3] is a deep learning architecture that replicates the neuron system
inside human brain. McCulloch and Pitts first proposed ANN in 1943 [33] and the concept was later
popularized by the research work of Rumelhart et al. in the 1980s [34]. In human brain, neurons are
linked together by numerous axon connections [35] and are responsible for adapting, processing and
storing  information towards  (inputs)  and away (outputs)  from the brain.  Likewise,  an ANN has
hundreds or even thousands of artificial neurons called processing units, which are interconnected by
nodes.  In  ANN  architecture,  nodes  are  grouped  into  layers  depending  on  the  activation  they
implement on the data. In ANN, the output of one node goes as input to another node. Subsequently,
the input node after receiving information from previous output node, based on an internal weighting
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system, attempts to produce the next output node. Through repeated training, the weight system can
amplify or weaken the level of communication between nodes. After mature training, which has
optimized the weight system, a trained ANN can make predictions on the test data. Due to the fact
that ANN can be constructed by many layers and neurons, this method is considered deep learning
algorithm.  There  are  many kinds  of  ANN currently used in  the literature including feedforward
neural network, recurrent neural network, convolutional neural network, modular neural network and
so on. In this study, since our input data is well structured allowing neural network to effectively
learn,  we  present  the  simplest  form of  ANN which  is  a  densely  connected  feedforward  neural
network (DNN). Figure 6 shows the illustration of our proposed DNN with three hidden layers.

Results

Benchmark Data

On 1 August 2016, the Department of Health released approximately 1 billion lines of anonymous
historical health data relating to approximately 3 million Australians on data.gov.au. The information
released includes details on medical services provided to Australians by health professionals along
with details of subsidized information. Claims data for a random 10% sample of Australians are
made  available  for  research  institutions,  health  professionals  and  universities.  The  data  release
includes historical Medicare data (from 1984) and PBS data (from 2003) up to 2014. The release
comprises two files corresponding to the two types of service information (MBS and PBS), and a
separate patient demographic file. The dataset used in this study was joined from MBS, PBS service
information  and  patient  demographic  data  by  patient  ids.  It  originally  includes  346,201 records
corresponding to 346,201 patients; however, there are 19 patients that have inadequate information
being removed. Following this exclusion, the final dataset comprises of a total number of 346,182
patients.
The data set included 4 classes of variables (ie, features):

 Demographic variables: year of birth, sex and age (calculated until 1/1/2015)
 Numerical variables: A total of 13 continuous measurements are presented in the dataset,

including number of MBS records, number of states, total amount of medical fee charged,
total amount of medicare schedule fee, total amount of medical rebates paid, total number of
MBS services, total length of patient accessing medicare services, number of PBS records,
number of patient’s PBS codes, total amount of medication cost paid by government, total
amount of medication cost self-paid, total number of prescriptions and total length of patient
accessing PBS services.

 Categorical  variables:  They are  three  relevant  medications  classified  by  the  Anatomical
Therapeutic Chemical (ATC) code and patient state.  The medications presented are drugs
used in diabetes (code: A10), drugs used for cardiovascular system and hypertension (code:
C0) and lipid modifying agents or drugs used for patients with high cholesterol (code: C10).

 Date  variables:  Four  date  variables  include  date  of  first  medical  schedule,  date  of  last
medical schedule, date of first PBS claim and date of last PBS claim.

Among these variables, except for year of birth, age and numerical variables which were kept as they
are, other variables were transformed as follows: Sex and medication variables were mapped into
binary values while patient state was converted into 6 binary variables corresponding to 6 states.
Year of birth, date of first medical schedule and date of first PBS claim were used to calculate age at
which  patient  had  first  medical  schedule  and  first  PBS  claim  respectively  and  then  removed.
Regarding the  prediction  target  variable,  since  PBS and MBS claims data  on their  own do not
include information about patient’s health outcome, the labels must be inferred. Between date of last
medical schedule and date of last PBS claim, the later was used to calculate the length of patient
discontinuing PBS and MBS services until 1/1/2015. Following this calculation, any patient with
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more than 180 days  (6 months) discontinuing PBS and MBS was labeled ‘deceased’,  otherwise
‘alive’.  After  pre-processing,  the  dataset  has  26  features  and  one  label  that  is  used  for  model
development. 

In terms of features scaling, each feature values were standardized to center around its mean with a
unit standard deviation. This means that the mean of the attribute becomes zero and the resultant
distribution has a unit standard deviation [22]. This step allows algorithm to effectively learn as it
eliminates sensitivity towards multiple features spanning varying degrees of magnitude, range, and
units. 

In terms of class distributions, there are only 93,164 patients out of the total number of 346,182
classified into ‘deceased’ group while the rest are ‘alive’ patients. This reflects a highly imbalanced
class  distributions  which  might  affect  learning  performance  of  the  infrequent  class  [23]  due  to
lacking samples. To handle this issue, a separate experiment using synthetic minority oversampling
technique (SMOTE) is conducted as a proposal to enrich the training set.

Evaluation Metrics

Descriptive statistics  is  used to  learn characteristics of  the study population,  stratified by health
outcome status (ie, alive or deceased). Models are derived from training set and then assessed on
testing set by calculating the traditional accuracy, precision, recall scores with an addition to brier
loss. Other than that, reporting discrimination and calibration is important for assessing a prediction
model [36]. Area Under the Receiver Operating Characteristic curve (AUROC) score and plotting
reliability  diagram (calibration  curves)  will  also  be  calculated  to  assess  the  performance  of  AI
models.

 Brier loss (from https://scikit-learn.org/) measures the accuracy of probabilistic predictions
by calculating the mean squared difference between the predicted probability assigned to the
possible classes and the actual classes. It is composed of refinement loss and calibration loss
so that the lower the Brier score is for a set of predictions, the better the predictions are
calibrated or the better the model is.

 AUROC score is used to measure the probability that the model ranks a random deceased
patient more highly than a random alive patient in terms of mortality rate. Higher AUROC
score means that the model has better ability to discriminate between the deceased and alive
populations.

 Calibration curve, a reliability diagram, is a line plot of the relative frequency of what was
observed versus the predicted probability frequency. The closer the points appear along the
main diagonal from bottom left to top right, the better calibrated a forecast or more reliable a
model [37].

Hyper-parameters

To develop the models, the study population was stratified into a training set, in which the mortality
risk algorithms were derived, and a testing set, in which the algorithms were applied and tested. The
training set consisted of 90% of the study dataset, and the testing set consisted of the remaining 10%.
Training and testing sets were split at the patient level and in a stratifying manner according to class
ratio so that patients do not appear in both the training and testing sets and ratio of patient labels
(‘deceased’ or ‘alive’) in both sets are equivalent to that of the study population. After stratified
assignment, hyper-parameters were determined by using a grid search of 5-fold cross validation to
determine the values that leads to the best accuracy. After grid search, each algorithm was re-fitted to
the training set with its best hyper-parameters to derive final models. Table 1 presents the parameter
search space of four algorithms and the grid results.
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Algorithms Parameter Name Search Space Optimal
Logistic

Regression
penalty
C
tol
solver

multi_class

[‘l1’, ‘l2’, ‘none’]
[0.01, 0.1, 1.0]

[0.0001, 0.001, 0.01]
[‘lbfgs’, ‘liblinear’, ‘sag’,

‘saga’] [‘auto’, ‘ovr’,
‘multinomial’]

l2
1.0

0.0001
lbfgs
auto

Random
Forest

n_estimators
max_depth
max_features

min_samples_split
min_samples_leaf

[5, 10, 50, 100, 150] 
[1, 2, 3, 5, None] 

[’auto’, ’sqrt’]
[2, 5, 10]
[1, 2, 4]

100
None
auto

2
1

Extra Trees n_estimators
max_depth
max_features

min_samples_split
min_samples_leaf

[5, 10, 50, 100, 150]
[1, 2, 3, 5, None]

[’auto’, ’sqrt’]
[2, 5, 10]
[1, 2, 4]

100
None
auto

2
1

Gradient
Boosting

loss
n_estimators
max_depth
learning_rate
criterion

[‘deviance’, ‘exponential’]
[5, 10, 50, 100, 150]

[1, 2, 3, 5]
[0.001, 0.01, 0.1]

[’friedman_mse’, ’mse’, ’mae’]

deviance
100

3
0.1

friedman_mse
Table 1: Hyper-parameters for Grid Search

After the grid search, it  is found that LR with L2 regularization, which is also known as Ridge
Regression [38], produces most accurate predictions in cross validation, its C value and tolerance
rate are 1.0 and 0.0001 respectively. This can be explained by the fact that our dataset has a small
number of features making L1 regularization, which is Lasso Regression and works well for feature
selection in data set with high dimensionality [39], less favorable. Next, RF and ET both achieve
optimal accuracy after grid search with   'None' scheme (from https://scikit-learn.org/).

According to scikit-learn team, this scheme means that nodes are expanded until all leaves are pure
or until all leaves contain less than   samples, which is optimized at 2 in both

cases.  Besides,  the number of trees grown in both algorithms is the same, 100 ( ).

Lastly, errors in GBT is minimized using  loss function, there are also 100 trees built with

the maximum number of nodes equal to 3. 

To develop DNN model, the study population was also stratified into training and testing sets with
ratio 90% and 10% respectively. Then, the training set was one more time broken down into training
and validation sets  with the same ratio.  The purpose of validation set  is  to provide an unbiased
evaluation  of  the  model  while  tuning  model’s  weights  [40].  The  input  layer  has  26  units
corresponding to the number of features while the output layer has one unit. Activation function used
in output layer is  . The architecture of DNN used is composed of three fully connected

hidden layers. The numbers of neurons in each hidden layer are 128, 64 and 32 respectively, and
Rectified Linear Unit (ReLU) is used as the activation function. During the training process, the
parameters of DNN are initialized using the uniform initialization [41]. For each batch of training
data, parameters of DNN were modified gradually to decrease the cross entropy of loss function. A
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callback was set  to  stop the training process after  10 epochs since when the model  reaches  the
highest value of AUROC.

All models after the training process were evaluated using the holdout (10%) testing set. Final results
were then compared and used to make recommendations.

Model Performance

In our  experiments,  we trained the  models  using the  original  learning sample first  then applied
SMOTE in order to further improve their performance.

Performance without SMOTE

Details of model performance without SMOTE is presented in Table 2. After adjusting for multiple
comparisons, there was no significant difference in accuracy among Random Forest (RF 98.5%),
Gradient Boosting Trees (GBT 98.4%), Logistic Regression (LR 97.8%), Extra Trees (ET 97.9%)
and Densely Connected Neural Network (DNN 97.1%). In terms of discrimination, GBT and RF
achieved highest AUROC (97.8% and 97.7% respectively),  followed by LR and ET (96.4% and
96.8% respectively) while DNN was the least discriminative (95.3%). In terms of brier loss, GBT
and RF produced the smallest difference between the probability assigned to the predicted classes
and  the  probability  of  the  actual  class  (both  0.012)  while  DNN  predictions  seen  the  biggest
difference (0.024) yet still a good result.

Algorithms Accuracy AURO
C

Precision Recall Brier Loss

Logistic Regression
Random Forest

Extra Trees
Gradient Boosting Trees 

Artificial Neural Network

97.8
98.5
97.9
98.4
97.1

96.4
97.7
96.8
97.8
95.3

98.5
98.1
98.1
97.5
96.6

93.4
96.1
94.2
96.5
91.8

0.016
0.012
0.016
0.012
0.024

Table 2: Performance metrics of Machine Learning models without SMOTE

According to the table with training time (Table 3), LR turns out to be superior compared to other
models with only less than 1-minute training time. However, DNN takes up to half an hour to train.
This could be explained by the complexity level of two algorithms, while LR is a very simple and
straight forward model which is based on a linear regression equation, DNN is an architecture that is
composed of many neurons, layer and more complex activation functions.

Algorithms Training Time (seconds)
Logistic Regression 

Random Forest
Extra Trees

Gradient Boosting Trees
Artificial Neural Network

6.6
106.8
46.8
186

1277.4
Table 3: Training time of Machine Learning models without SMOTE

Clearly, all of our models show a very similar behavior for two classes (see Figure 7. According to
the  confusion  matrices,  RF  and  GBT  managed  to  identify  'deceased'  patients  with  higher
performance than other algorithms. Meanwhile, compared to other models, there are a larger number
of cases where DNN classifies 'deceased' patients to be 'alive'.
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In terms of prediction reliability, calibration curves for the five models appear in Figure 8 showing
LG was the least calibrated compared to other four algorithms, highly overestimating patient death
risks in all level of probabilities. RF was well-calibrated for patients with lower mortality rate while
overestimated the risk of death when the probability of risk is over 50%. ET’s good of fit was only
seen in  the  probability  of  death  at  30% while  underestimation  and overestimation  appeared  for
patients with lower and higher probabilities of death than 30% respectively. Predictions by GBT and
DNN were the most well-calibrated while DNN slightly overestimated patients with probabilities of
death greater than 10% and below 90%.

Performance with SMOTE

Details of model performance with SMOTE is presented in Table 4 and their calibration plots are
displayed in Figure 9. As can be seen in Table 4, SMOTE just slightly improves performance (in
italic) of five models. However, using SMOTE helps significantly calibrate predictions of LR. After
up-sampling,  LR model  no longer  overestimates  death  risks  of  patient,  its  predictions  are  more
closely aligned with the perfectly calibrated line.  Meanwhile, ET is now seen goodness of fit  in
predictions of patients with death risk between 50-60% but still underestimates and overestimates
those with low and high death risks respectively. On the other hand, RF predictions change from
being well-calibrated in under 50% probabilities of death risk and overestimating higher ones into
being well-calibrated in over 80% probabilities of death risk and underestimating the rest.  More
interestingly,  DNN and  GBT receive  adversarial  affects  from up-sampling  technique,  becoming
generally risk underestimating.

Algorithms Accuracy AURO
C

Precision Recall Brier Loss

Logistic Regression
Random Forest

Extra Trees
Gradient Boosting Trees 

Artificial Neural Network

98.2
98.4
98.1
98.1
96.7

97.4
98.0
97.4
97.9
96.2

97.3
96.8
97.1
95.2
93.0

95.9
97.3
95.8
97.7
95.1

0.015
0.012
0.016
0.014
0.026

Table 4: Performance metrics of Machine Learning models with SMOTE

In short, SMOTE is only helpful to further improve model performance and prediction calibration of
LG. Meanwhile, using or not using SMOTE makes no difference to the performance of RF and ET in
predicting mortality of patients with CVD. Lastly, SMOTE introduces an adversarial effect into GBT
and DNN models, making their predictions less reliable, and these two models already work well
with class imbalanced data.

Algorithms Training Time (seconds)
Logistic Regression 

Random Forest
Extra Trees

Gradient Boosting Trees
Artificial Neural Network

292.9
497.9
347.5
648.1

5480.3
Table 5: Training time of Machine Learning models with SMOTE

In terms  of  training  duration,  using  SMOTE  requires  more  computing  time  for  all  algorithms.
However, LR is still the most time-efficient model even when applying SMOTE and produces higher
accuracy  and  better  prediction  performance  in  terms  of  AUROC,  recall  as  well  as  brier  loss
compared to LR with original data. Furthermore, SMOTE helps LR outperform ET and become the
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second-best algorithm, after RF. Clearly, when bringing SMOTE into the table, ET and LR are those
worth considering for this dataset.

Discussion

Principal Results

This study shows that structured medical and pharmaceutical claims data can be used as input for AI
models to accurately predict the mortality risk of individuals with CVD. The logistic regression,
random forest, extra trees, gradient boosting trees and artificial neural network models trained in this
study had high accuracy (i.e.,  97-98%) and discrimination (i.e.,  AUROC, 95-98%) in predicting
mortality rate, much higher than traditional statistical models such as the Cox Proportional-Hazards
model [42] or the models trained with traditional electrical health record [43-45]. 

Although there was no statistically significant difference in accuracy among the all experimental
algorithms, the random forest model had an advantage compared with other models. Additionally, the
random  forest  model  also  outperformed  other  models  in  recall  and  brier  loss.  In  terms  of
discrimination and calibration, the gradient boosting trees is proved to be the most superior. Without
SMOTE, logistic regression is unable to produce highly calibrated prediction while using SMOTE
significantly improve this  model  predictions'  reliability.  All  models  with SMOTE had very high
precision  (i.e.,  93-97%)  and  recall  (i.e.,  95-97%),  particularly  compared  with  other  logistic
regression and random forest prognostic models which did not deal with class imbalance published
in the literature [44, 45]. On the other hand, although the artificial neural network had the most
moderate performance among experimental algorithms, it was proved to be efficient even with class
imbalanced data. It is also suggested that artificial neural network is capable of predicting CVD
mortality  rate  more  accurately  than  other  ML algorithms  if  applied  more  feature  engineering
techniques [46, 47], indicating a very promising area of further research.

To our knowledge, this is the first paper comparing AI algorithms using medical and pharmaceutical
claims  data  to  predict  mortality  in  a  large  general  cardiology  population.  Unlike  previously
developed ML-based prognostic tools in cardiology which utilized clinical information of patients
including clinical features [43-45], our models were trained on only claims data of patients with
CVD.  This  claims  data  primarily  provides  information  about  patient’s  medical  scheduling  and
pharmaceutical dispensing history which reflects patient’s disease treatment cost, access patterns and
medications but not patient’s state of health or other clinical indexes. Furthermore, compared with
previously  published  classifiers  in  cardiology,  our  models  used  fewer  features,  which  is
comparatively more efficient than previously trained models in the general cardiology setting.

Limitations

Despite  high  accuracy  and  strong  discrimination,  some  models  still  have  not  yielded  optimal
calibration including random forest, extra trees and artificial neural network. This means that the
distribution and behavior of the probability predicted is not similar to the distribution and behavior of
probability  observed  in  training  data.  In  order  to  increase  reliability  of  AI  algorithms,  other
techniques  should  be  investigated  to  better  calibrate  and improve performance of  these  models,
especially artificial neural network.

Conclusions

In conclusion, we developed, validated and compared five AI architectures to predict the mortality
rate of patients with CVD. Based on the evaluation results, we can draw the following conclusions or
insights  that  could  help  with  the  choice  of  AI  models:  first,  without  health  indexes  or  health
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condition information, AI architectures are able to accurately predict mortality of patients with CVD
before  a  clinic  visit  using  only  medical  scheduling  and  pharmaceutical  dispensing  claims  data;
second, although there was no statistically significant difference in accuracy among all experimental
AI algorithms, the tree-based i.e. random forest and gradient boosting tree models have an advantage
compared  with  other  models;  third,  while  the  regression-based  i.e.  logistic  regression  method
produces predictions having the least calibration level due to lack of minority class samples, up-
sampling  technique  SMOTE  helps  significantly  improve  the  reliability  of  this  algorithm's
predictions; fourth, tree-based algorithms and densely connected neural network perform well with
class imbalanced data. Finally, this study showed the feasibility and effectiveness of different AI
architectures based on structured medical scheduling and pharmaceutical dispensing claims data in
identifying patients with CVD who had risk of mortality, which can be a useful tool for precise
decision making. In future work, considering the promising potential of the artificial neural network,
research should focus on improving prediction performance of this algorithm. It is suggested that
artificial neural network is capable of predicting CVD mortality rate more accurately than other ML
algorithms  if  applied  more  feature  engineering  techniques,  indicating  a  very  promising  area  of
further research.
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(a) Calibration curves of Logistic Regression with SMOTE.
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(e) Calibration curves of Artificial Neural Network without SMOTE.
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