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Abstract

Knowledge of optimal technical performance is used to determine match strategy and the

design of training programs. Previous studies in men’s soccer have identified certain techni-

cal characteristics that are related to success. These studies however, have relative limited

sample sizes or limited ranges of performance indicators, which may have limited the analyt-

ical approaches that were used. Research in women’s soccer and our understanding of opti-

mal technical performance, is even more limited (n = 3). Therefore, the aim of this study was

to identify technical determinants of match outcome in the women’s game and to compare

analytical approaches using a large sample size (n = 1390 team performances) and range

of variables (n = 450). Three different analytical approaches (i.e. combinations of technical

performance variables) were used, a data-driven approach, a rational approach and an

approach based on the literature in men’s soccer. Match outcome was modelled using vari-

ables from each analytical approach, using generalised linear modelling and decision trees.

It was found that the rational and data-driven approaches outperformed the literature-driven

approach in predicting match outcome. The strongest determinants of match outcome

were; scoring first, intentional assists relative to the opponent, the percentage of shots on

goal saved by the goalkeeper relative to the opponent, shots on goal relative to the opponent

and the percentage of duels that are successful. Moreover the rational and data-driven

approach achieved higher prediction accuracies than comparable studies about men’s

soccer.

Introduction

Professional women’s soccer is a relatively young sport compared to its men’s counterpart,

with the first official World Cup held in 1991 [1]. Currently, it is experiencing rapid growth,

both in numbers of participants [2–4] and professionalism [5]. Likewise, research attention is

growing; however, this has mainly focused on the physical aspects of the game [6–8] and only

a limited number of studies have investigated the technical side [9–11]. Understanding optimal
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technical performance enhances training programming and match strategy planning [12]. Of

those that have examined technical performance, it has been shown that a quarter of goals are

made from a cross [9], scoring first increases the likelihood of winning [10] and that free kicks

within 7 m of the penalty circle should be taken as a direct free kick (shot on goal) to increase

goal scoring [11]. Another study included some technical variables and found that duels both

in offense and defence, pass accuracy and effective execution of dead-ball moments were sig-

nificant contributors to victory [13]. These few studies give us the first insights into technical

actions required to increase the likelihood of scoring or winning in women’s soccer. In men’s

soccer, several studies have investigated technical performance related to success. It has been

found that technical actions such as shots on goal [14–17], passes [18, 19] and assists [15, 17]

were related to winning and these variables could also be important contributors to success in

women’s soccer.

The identification of optimal technical performance in women’s soccer should use the best

available analytical methods. This can be informed by an exploration of the strengths and limi-

tations of analytical methods that have been used previously in soccer. Some previous studies

may have been limited in sample size, as they were based on only one season or one tourna-

ment [9–11, 13, 14, 16, 17, 19–21], or a few seasons of a single tournament or league [15, 22].

While these sample sizes may not violate the statistical assumptions of the analytical methods

that were used, they may limit the generalisability of their conclusions.

Some studies may also have been limited in the range of technical variables used in their

analyses. The number of technical variables used in the limited studies in women’s soccer was rel-

atively small (n = 1–9), even when combining the studies together [9–11]. Most previous studies

in men’s soccer used 15–25 technical variables [14–17, 19–22] in their analysis and all except one

[17] did not provide a clear rationale for the use of those particular variables. Previous research in

Australian Rules football has shown that utilising a wide variety of variables gives more accurate

match outcome models [23] and this could apply to modelling of match outcome in soccer as

well. For some studies, the limited number of technical variables used may be ascribed to the

number of variables that were available. For other studies, the number of variables used may also

be a result of decisions based on the assumptions of statistical models chosen for analysis. The

classification accuracy or predictive accuracy of models increases when the number of variables

increases but so does the likelihood of overfitting [24]. Other than the variety of variables, it was

found in Australian Rules football that variables in their relative form (i.e. difference in value to

the opposing team in the same game) are better predictors than absolute values [23].

A further limitation of some studies of technical performance relates to the statistical mod-

els used. Some studies use statistical models that assume independence of observations [11, 13,

14, 20], which may not be met when observations from all teams appear repeatedly within a

dataset. Moreover, to the best of our knowledge, none of the studies in the literature validated

the performance of their modelling on a new data set or a part of the data set that is kept apart

from the model development phase. This is a common practice in data mining and has also

been suggested as an appropriate method to reduce overfitting [24]. Examples are splitting the

dataset into a model training and test-set or using a 10-fold cross-validation.

Little is known about optimal technical performance in women’s soccer and the findings of

research in men’s soccer probably has restricted transferability to women’s soccer. It is known

that there is a difference in physical performance between genders [25, 26] which could also be

the case for technical performance. The limitations of research regarding technical perfor-

mance in soccer, taken with the limited transferability of findings from the men’s game to

women’s game, indicate the scope for further research. Given the apparent increase in the pro-

fessionalism of women’s soccer, there is a need to improve our knowledge of optimal technical

performance and how it may differ from men’s soccer. Therefore, our aim was two-fold:
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understand the technical determinants of success in women’s soccer using a large sample size

and a large number of variables, and identify analytical approaches that provide the most accu-

rate and reliable information based on the prediction accuracy of the models.

Materials and methods

Data collection

Data was acquired from Opta Sports (London, United Kingdom) and covered the British Foot-

ball Association Women’s Super League (FAWSL) 2015, 2016 and 2017/18 seasons, the Ameri-

can National Women’s Soccer League (NWSL) 2016–2018 seasons, the 2013 and 2017 Union

of European Football Associations (UEFA) Women’s Euros Championships (EC) and the

2011 and 2015 Fédération Internationale de Football Association (FIFA) Women’s World

Cups (WC). This resulted in 695 matches and 1390 samples (sets of technical variable values

per team per match) (see Table 1). Data consisted of team aggregates per match of all events

that Opta Sports collects (i.e. 266 variables per team in each game). A detailed description of

the events can be found on the Opta Sports website [27]. Empty variables were removed

(n = 3), and match outcome (Win/Loss/Draw) was calculated based on the goals scored per

team relative to the opponent. All analyses were done in R [28] and ethical exemption was

received from the Deakin University Human Research Ethics Committee (2018–392) because

of the use of pre-existing non-identifiable data.

Analysis

Outlier detection. A search for outlying samples was done using a K-nearest neighbour

outlier detection method [29] by adjustment of the do_knno()-function of the adamethods-
package [30]. This identified 14 samples (7 matches) standing out from the rest of the data.

Further investigation identified that all those matches were valid data points and it was decided

to retain them in the dataset. Numerical variables were checked for normality, which was vio-

lated. An analysis for typographical errors within variables was done with the Adjusted Outly-

ingness, a method suitable for skewed data [31], using the adjbox()-function of the robustbase-
package [32]. No errors were identified. In order to identify the relationship between technical

performance and match outcome, 31 variables that were a function of score were removed,

examples are: winning goal, goals from corners and goals conceded. All remaining variables

that were not considered sample identifiers were expressed in absolute and relative forms

(value relative to the opposing team in each match).

Table 1. Distribution of matches per league or tournament.

League/Tournament Team performances

EC 2013 50

EC 2017 62

FAWSL 2015 112

FAWSL 2016 144

FAWSL 2017–18 180

NWSL 2016 206

NWSL 2017 246

NWSL 2018 222

WC 2011 64

WC 2015 104

Total 1390

https://doi.org/10.1371/journal.pone.0240992.t001
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Outline of analysis process. Initially, a feature selection process was executed, followed

by two phases of modelling and then a comparison of the results for the different models. Dur-

ing the modelling in each phase, three different approaches (i.e. sets of technical variables)

were used to identify the relationship between technical performance and match outcome.

This was to allow comparability with the previous literature, but also to determine whether

newer approaches may provide better outcomes. The first approach was data-driven (DDA)

and for the first phase, it was decided that all 450 variables were used for feature selection. For

the second phase, 152 variables were included. The second approach was a rational approach

(RA) in which two authors selected a broad range of variables (n = 156 in phase one and

n = 74 in phase two) that were considered relevant to coaches. This was done to reduce

overfitting and increase the practical application. In the third approach, variables were selected

that had been used previously in the literature on men’s soccer (n = 43 in phase one and n = 16

in phase two) [14–17, 22] in order to make some form of comparability possible. Henceforth,

this will be called the literature-driven approach (LDA). After a multicollinearity check and

the first phase of modelling, a second phase of modelling was executed. For this second

phase, all variables that were considered pseudo-score related were removed. Pseudo-score

related in this context meant variables that will almost certainly precede a goal scored or by

their definition mean that a goal was scored, such as ‘shots on goal’ and ‘scoring the first goal’.

This step was intended to allow us to determine whether these variables are/not important

in match outcome and then exclude them from further modelling. This allowed the identifica-

tion of aspects of technical performance that might not have been identified if pseudo-score

related were retained. This resulted in 152 variables being used for feature selection in the

DDA, 74 in the RA and 16 in the LDA. A flowchart of the full analysis process can be found in

Fig 1.

Feature selection. For all three approaches (DDA, RA and LDA), variables were checked

for multicollinearity and selected/excluded using correlation-based feature selection [33]

applying the findCorrelation-function [34] and a cut-off Pearson correlation coefficient of

>0.90. For phase one, this left 367 variables in the DDA, 140 in the RA and 41 in the LDA and

for phase two, 52 variables in the DDA, 74 in the RA and 16 in the LDA for further analysis.

Thereafter, drawn matches (n = 292) were removed from further analysis since they can nei-

ther be considered clearly successful nor unsuccessful.

Following a wrapper method, recursive feature selection (RFS) using a random forest [35],

was applied using the rfe-function and a 10-fold cross-validation (CV) repeated 5 times in the

caret-package [34] to reduce the number of variables for the DDA and RA in both phases. This

was done to avoid reduced model accuracy caused by a high number of variables in the model-

ling phase (i.e. too many variables risks adding noise to the model and or overfitting). In the

first phase for both approaches, the RFS showed that the optimal number of variables was

around 50 and therefore it was decided for each approach, to select the 50 variables with the

highest score on the variable importance measure. The same analysis was done in the second

phase, but this gave an optimal number of 30 for the DDA and 60 variables for the RA. Follow-

ing this, the same procedure was applied to determine a variable importance measure for all

variables in the LDA for both phases. The first 20 variables after feature selection for the three

different approaches can be found in Table 2.

Modelling. For the modelling phase, the samples were split into a training and testing set,

with an 80:20 ratio. For each approach a binominal generalized linear model (GLM) with lasso

penalized maximum likelihood [36] using the glmnet()-function of the caret-package [34] was

utilised. In order to compare a partially interpretable model with an interpretable model, a

decision tree (DT) was applied for each approach using the rpart()-function of the rpart-pack-

age [37] within caret. All modelling was done with a 10-fold CV repeated 10 times. Model
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performance was evaluated by determining their prediction accuracy using the testing data.

Accuracies are presented on scale 0–1 with a 95% Confidence Interval (CI).

Results

The dataset provided by the RA in the first phase (i.e. inclusive of pseudo-score related vari-

ables) allowed the creation of the most accurate models from both the GLMs (0.99 CI 0.97–

1.00) and the DTs (0.89 CI 0.84–0.92) (see Table 3). Moreover, of all 12 models, the GLM

using the RA in the first phase is the most accurate. For all approaches, the models that

retained pseudo-score related variables, outperformed models without. In both phases, the

Fig 1. Flowchart of the analysis process. Details of the techniques are explained in the text.

https://doi.org/10.1371/journal.pone.0240992.g001
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dataset provided by the LDA gives the lowest prediction accuracy, both for the GLM (phase 1:

0.78 CI 0.72–0.84; phase 2: 0.65 CI 0.58–0.71) and the DT (phase 1: 0.75 CI 0.68–0.80; phase 2

0.66 CI 0.59–0.72). The accuracies of the models based upon data from the LDA in the second

phase, perform just slightly higher than a 50% chance of win/loss.

In the second analysis phase (i.e. where pseudo-score related variables were excluded), the

DDA allowed the creation of a more accurate model GLM (0.87 CI 0.82–0.91), compared to

both the RA (0.78 CI 0.72–0.83) and the LDA (0.65 CI 0.58–0.71) (Table 3). In general, the

DTs did not perform as well as the GLMs, although there were combinations of approach and

phase where they performed almost equally.

When looking at the specific variables that were included in the models in the first analysis

phase, the most important technical action for winning a match in women’s soccer is scoring

the first goal. With 20.3% of the matches won with 1–0 (141 out of 695 matches) and 55.3% of

teams who scored a goal also winning their game (992 teams scored one or more goal, and 549

of those teams won their game). Following this, the next most important technical actions are

intentional assists relative to the opponent and percentage of shots on goal saved by the goal-

keeper relative to the opponent. The different models relied on different combinations of tech-

nical actions (e.g. relative big chances on target, relative right foot shots on target, relative

shots on conceded inside box, relative percentage shots on goal saved and relative shots on

from inside box) to explain match outcome. The LDA only had one significant contributor,

namely shots on goal relative to the opponent, both in the GLM and the DT. For all models,

variables that are expressed relative to their opponent are stronger contributors to match out-

come than variables in their absolute form.

Table 2. The most valuable 20 technical variables identified in feature selection for the three analytical approaches.

Rank Data-Driven Approach Rational Approach Literature-Driven Approach

1 First Goal Relative Percentage Shots On Saved Relative Shots On

2 Relative Intentional Assist Relative Intentional Assist Shots On

3 Assists First Goal Relative Total Shots

4 Relative Big Chances On Target Percentage Shots On Saved Relative Aerial Duels Won

5 Relative Shots On Conceded Inside Box Relative Shots On From Inside Box Total Shots

6 Intentional Assist Intentional Assist Relative Successful Crosses Corners

7 Relative Attempts Open Play On Target Shots On Total Clearances

8 Relative Big Chance Created Relative Total Shots Relative Total Passes

9 Relative Right Foot Shots On Target Shots On From Inside Box Relative Total Clearances

10 Shots On Conceded Relative Saves Made Relative Offsides

11 Shots On Conceded Inside Box Relative Recoveries Relative Corners Conceded

12 Big Chances Faced Total Shots Relative Unsuccessful Crosses Corners

13 Big Chances On Target Relative Shots On Target Outside Box Successful Crosses Corners

14 Shots On From Inside Box Relative Second Assists Corners Conceded

15 Relative Touches Open Play Opponent Box Percentage Successful Duels League Or Tournament

16 Relative Shooting Accuracy Right Foot Relative Successful Dribbles Total Passes

17 Relative Recoveries Saves Made Unsuccessful Crosses Corners

18 Relative Defensive Aerial Duels Won Relative Percentage Total Successful Passes Corners Taken

19 Total Shots Conceded Relative Successful Crosses Corners Aerial Duels Won

20 Relative Second Assists Relative Aerial Duels Lost Offsides

All variables were used in the first phase of analysis, which included variables that have a pseudo-relationship with scoring. The pseudo-score related variables

(underlined) were removed in the second phase of the analysis.

https://doi.org/10.1371/journal.pone.0240992.t002
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For the second phase of the analysis, in both the DDA and the RA, relative intentional

assists are still strong contributors to the model. They are the first contributor in the data-

driven approach GLM and DT, rational approach DT and the second in the rational approach

GLM. Other important contributors to success in this second phase are intentional assists in

their absolute form, normal assists and the percentage of successful duels. The coefficients of

the literature-driven approach GLM are relatively small. Finally, for both phases in the LDA,

intentional assists do not appear in the models since this variable has not been identified in the

existing literature in men’s soccer and therefore was not included in the LDA. The DT for the

DDA of the second phase is shown in Fig 2, and it can be seen that a value increment of one

can make a difference.

Discussion

This study aimed to identify technical determinants of match outcome in women’s soccer and

to compare different analytical approaches. The main findings are that scoring first and having

more assists than an opponent are very important in women’s soccer. When pseudo-score

related variables are removed, technical actions such as successful duels, become important,

which have not previously been identified in men’s soccer. In addition, this study highlights the

value of using a larger number of games and variables in this type of analysis, as they tend to

produce improvements in model accuracy and reveal novel aspects of technical performance.

Table 3. The structure and performance of the generalised linear (GLM) and Decision Tree (DT) models in both phases of the analysis.

Phase 1 Data Driven Approach (DDA) Rational Approach (RA) Literature Driven Approach (LDA)

Variable Coefficient Variable Coefficient Variable Coefficient

GLM Predictors First Goal -1.47 First Goal -1.24 Relative Shots On Goal -0.20

Relative Intentional Assist -0.58 Relative Percentage Shots On Goal

Saved

-0.95

Relative Big Chances On Target -0.07 Relative Intentional Assist -0.49

Relative Right Foot Shots on Target -0.01 Relative Shots On From Inside Box -0.06

Relative Shots On Conceded Inside

Box

0.01

GLM Accuracy (95%
CI)

0.96 (0.93, 0.98) 0.99 (0.97, 1.00) 0.78 (0.72, 0.84)

DT Accuracy (95%
CI)

0.88 (0.83, 0.92) 0.89 (0.84, 0.92) 0.75 (0.68, 0.80)

Phase 2

GLM Predictors Relative Intentional Assist 0.75 Percentage Successful Duels -2.01 Relative Aerial Duels

Won

-0.05

Assists 0.17 Relative Intentional Assist -0.69 Relative Offsides -0.04

Relative Touches Open Play

Opponent Box

-0.002 Intentional Assist -0.24 Relative Total Passes -0.001

Relative Successful Dribbles -0.02

Relative Recoveries -0.01

Relative Aerial Duels Lost 0.003

GLM Accuracy (95%
CI)

0.87 (0.82, 0.91) 0.78 (0.72, 0.83) 0.65 (0.58, 0.71)

DT Accuracy (95%
CI)

0.76 (0.70, 0.82) 0.77 (0.70, 0.82) 0.66 (0.59, 0.72)

Phase 1 of the analysis included pseudo-score related variables, whereas in phase 2 they were excluded. There were also three analytical approaches that reflect different

sets of variables that were used for modelling. Accuracies presented on scale 0–1 with 95% Confidence Interval (CI).

https://doi.org/10.1371/journal.pone.0240992.t003
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The most important contributor to success in women’s soccer is scoring the first goal. It is

not clear why this occurs but it may relate to the psychological impact on both teams. This

aligns with the findings of previous research in women’s [10] and men’s soccer [38, 39]. Even

though this might be hard to implement in training and is very dependent on the match situa-

tion, awareness of this fact is important to coaches. It could be included in a women-specific

match strategy or incorporated in the tactical plan for after the first goal. Another important

contributor to success in women’s soccer is intentional assists relative to the opponent. Inten-

tional assist refers to a player making an intentional pass to a teammate who then makes a shot

on goal, so there is no deflection of the pass before the shot [40]. This finding is novel and

might be women-specific, as our models suggest that assists were more important than shots

on goal. However, given that shots on goal precedes assists, it is difficult to definitively separate

the importance of these two actions. Shots on goal did not appear in 11 of our 12 models

whereas assists or intentional assists were a strong contributor in 8 of our 12 models. The

Fig 2. Decision tree for the data-driven approach in the second phase. The tree indicates the association between the

values of the key performance indicators and the likely match outcome. This model predicted match outcome with a

classification accuracy of 76%. Percentages mentioned are the proportion of the total dataset. Probability shown is the

likelihood of a match with those conditions falling into the final category. The number on the branches of the tree

indicates the cut off value for the technical action.

https://doi.org/10.1371/journal.pone.0240992.g002
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number of goals saved by the goalkeeper relative to the opponent was also an important deter-

minant of match outcome. Furthermore, to our knowledge, no previous study has presented

evidence that the performance of the goalkeeper is an important determinant of match

outcome.

The second phase of modelling excluded pseudo-score related variables that were considered

to be difficult to train in a game-play setting. The analysis revealed that relative intentional

assists are still very important. In addition, intentional assists, assists, percentage successful

duels, relative aerial duels won, relative defensive aerial duels won, relative total passes and rela-

tive offsides were important contributors to match outcome. Interestingly most of those vari-

ables could be considered typical of an aggressive style of offensive and defensive play. These

findings could imply that a more aggressive style of play is associated with winning matches in

women’s soccer, which could be incorporated in the women-specific match strategy.

The literature-driven approach in the present study was designed to permit the comparison

of men’s and women’s soccer. Previous studies in men’s soccer showed that passes [16–18],

shots on goal [14–19, 41], and assists [15, 17] were important determinants of match outcome.

Our literature driven approach also identified these variables as being important in women’s

soccer, with the exception of assists. However, comparisons should be made with caution con-

sidering the lower prediction accuracy of the LDA models compared to the DDA and the RA

models.

Similar studies have presented models of match outcome in soccer with classification accu-

racies of 69.5 to 76.9%. This includes models that work as a three-class problem (win, draw,

loss) and models that use player-ratings [42]. The relatively high performance of the models

(65–99% classification accuracy) in the present work, demonstrates the value of utilising a

broad variety of variables when trying to understand the optimal technical characteristics of

performance in women’s or men’s soccer. The present work may also demonstrate the value of

training models on relatively large datasets and the use of variable values expressed as relative

to the opponent.

This study has some limitations. We used a wide variety of data covering several seasons of

two major leagues and two tournaments to increase generalisability to the larger population.

However, it is possible that different leagues have different playing styles and that there is a dif-

ference in playing style between leagues and tournaments (although we have not assessed this).

This could have increased the noise within the data and specific variables important for one

league might not be important for another and therefore stay hidden. The initial selection of

variables in the rational approach was done by the authors and one could argue that this

should have been done by coaches. The feature selection method we used, may retain and

remove different variables if used in the future on different data. Furthermore the collinear

variables that were excluded from analysis should not be considered unimportant. Finally, our

focus on technical performance should not eclipse the importance of other types of factors that

affect match outcome (e.g. physical, tactical, etc.).

To conclude we found that the technical actions; scoring first, intentional assists relative to

the opponent, the percentage of shots on goal saved by the goalkeeper relative to the opponent,

shots on goal relative to the opponent and the percentage of duels that are successful, are the

strongest determinants of success in professional women’s soccer. These findings will increase

the ability for coaches to plan more women-specific match strategies and training plans. We

also found that a wider range of variables selected for analysis increases the prediction accuracy

of the models. It is important for analyst to collect enough data to create accurate models, but

not too much to avoid overfitting.

Recommendations for future research in modelling match outcome based on technical per-

formance in men’s soccer are to increase the number and variety of variables used, to include

PLOS ONE Technical determinants of success in professional women’s soccer

PLOS ONE | https://doi.org/10.1371/journal.pone.0240992 October 22, 2020 9 / 12

https://doi.org/10.1371/journal.pone.0240992


the use of variables in their relative form, to use a relatively large sample of matches, to apply

more accurate modelling techniques and to report the accuracy of the method used. Future

research should also make a direct comparison of the modelling of match outcome for both

genders within the same study using data mining approaches. Currently, only comparisons

between genders on technical performance exists using methods that look at the differences in

absolute values of technical variables. The results of the two studies using this type of analysis

could indicate a different playing style between the genders. It was found that women players

were less accurate in their passes and had higher numbers of lost balls [43, 44], but also have a

more attacking style of play. Which is a results of higher number of attacks, interceptions,

recoveries and successful challenges and tackles [44]. The more attacking playing style is in

line with the results of this study.

Our models included novel variables that provide new insights about optimal technical per-

formance in women’s and possibly men’s soccer. While a wide range of variables is beneficial,

it is also important to avoid redundant data collection in the applied sport science setting [45]

and one way to achieve this is to evaluate the importance of variables collected. The feature

selection provided an indication of what is and is not important, and the models themselves

revealed the most important variables that should be the focus of coaching and feedback.

Finally, our findings reinforce the idea that variables that are expressed in their relative form

are more important than in their absolute form [23]. Performance analysts and coaches should

evaluate the difficulties associated with applying technical performance indicators in their rela-

tive form (e.g. not seek to achieve 6 assists in a game, but to seek 2 more assists than their

opponent).
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38. Lago-Peñas C, Gómez-Ruano M, Megı́as-Navarro D, Pollard R. Home advantage in football: examining

the effect of scoring first on match outcome in the five major European leagues. International Journal of

Performance Analysis in Sport. 2016; 16(2):411–21.

39. Bilek G, Ulas E. Predicting match outcome according to the quality of opponent in the English premier

league using situational variables and team performance indicators. Int J Perform Anal Sport. 2019:1–

12.

40. Opta Sports. F24 Appendices 2018 [cited 2018 31 August]. Available from: http://praxis.optasports.

com/documentation/football-feed-appendices/f24-appendices.aspx.

41. Castellano J, Alvarez-Pastor D, Bradley PS. Evaluation of research using computerised tracking sys-

tems (Amisco® and Prozone®) to analyse physical performance in elite soccer: a systematic review.

Sports Med. 2014; 44(5):701–12. https://doi.org/10.1007/s40279-014-0144-3 PMID: 24510701

42. Bunker R, Susnjak T. The Application of Machine Learning Techniques for Predicting Results in Team

Sport: A Review. arXiv preprint arXiv:191211762. 2019.

43. Bradley PS, Dellal A, Mohr M, Castellano J, Wilkie A. Gender differences in match performance charac-

teristics of soccer players competing in the UEFA Champions League. Human Movement Science.

2014; 33:159–71. https://doi.org/10.1016/j.humov.2013.07.024 WOS:000333487200014. PMID:

24139663
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