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ABSTRACT Deep learning-based side channel attacks are burgeoning due to their better efficiency and
performance, suppressing the traditional side-channel analysis. To launch the successful attack on a particular
public key cryptographic (PKC) algorithm, a large number of samples per trace might need to be acquired
to capture all the minor useful details from the leakage information, which increases the number of features
per instance. The decreased instance-feature ratio increases the computational complexity of the deep
learning-based attacks, limiting the attack efficiency. Moreover, data class imbalance can be a hindrance
in accurate model training, leading to an accuracy paradox. We propose an efficient Convolutional Neural
Network (CNN) based approach in which the dimensionality of the large leakage dataset is reduced, and
then the data is processed using the proposed CNN based model. In the proposed model, the optimal number
of convolutional blocks is used to build powerful features extractors within the cost limit. We have also
analyzed and presented the impact of using the Synthetic Minority Over-sampling Technique (SMOTE) on
the proposed model performance. We propose that a data-balancing step should be mandatory for analysis
in the side channel attack scenario. We have also provided a performance-based comparative analysis
between proposed and existing deep learning models for unprotected and protected Elliptic curve (ECC)
Montgomery Power ladder implementations. The reduced network complexity, together with an improved
attack efficiency, promote the proposed approach to be effectively used for side-channel attacks.

INDEX TERMS Side-channel attacks, machine learning analysis, elliptic curve security, embedded system

security.

I. INTRODUCTION

Embedded device security in the internet of things (IoT)
based systems is of paramount importance, and security mea-
sures should be integrated at the design level [1]. Public Key
(asymmetric key) algorithms like Elliptic Curve Cryptogra-
phy (ECC) are recommended for such resource-constraint
environments [2]-[6]. These algorithms are theoretically and
mathematically secure, but their weak implementations can
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lead to security breaches through side channel attacks. Side
channel attacks can exploit the secure algorithm implemen-
tations by analyzing the side-channel leakages, including
power signals, electromagnetic emanations, timing infor-
mation, etc. [7]-[10]. Traditionally, profiled-based template
attacks are considered one of the strongest side-channel prac-
tical attacks. In these attacks, the adversary has access to the
open copy of the target device [11]. Successful practical tem-
plate side-channel attack designs have been proposed over the
past decade [12]. Machine learning (ML) analysis has been
proposed as a mechanism to improve the side-channel attacks
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due to the similarities between template attacks and machine
learning-based data analysis [13]-[15].

Elliptic Curve Cryptography (ECC) based public-key algo-
rithms are the preferred choice for authentication, digital
signatures, certificates etc. in the resource-constraint envi-
ronments due to their efficient processing and small key
size [2]-[6]. ECC algorithms are mathematically secure but
their weak implementations can introduce many exploitable
side-channel attack vulnerabilities. Machine Learning attacks
have been extensively performed and studied for side chan-
nel leakages from symmetric key algorithms (for example
Advanced Encryption Algorithm, AES). However, very lim-
ited analysis exists for the asymmetric key-based public-
key algorithms like RSA and Elliptic Curve Cryptography
(ECC) [16], [17]. Some of these attacks use simple machine
learning algorithms (including Random Forest or Support
Vector Machine) [17]; however, deep learning (DL) tech-
niques seem more promising for side channel analysis due
to the noisy nature of the side channel leakage signals.

Additionally, in most of the scenarios side channel leak-
ages are misaligned, and require pre-processing to exploit
the leakages for recovering the secret information, which can
be a tedious and possibly discouraging task for an attacker.
Convolutional Neural Network (ConvNet) based deep learn-
ing technique constitutes an ideal candidate for eliminat-
ing the leakage traces’ excessive noise. More specifically,
the convolutional layer in ConvNet reduces the leakage trace
samples by extracting and learning from only essential fea-
tures by assigning weights and eliminating noise. Cagli et al.
have proposed to use ConvNets for side-channel attacks
and have shown successful results on data, for symmet-
ric algorithm implementations, without requiring any pre-
processing or alignment [18]. Kim et al. have shown the
impact of adding noise to existing samples, which helps
recover the secret information with reduced samples [19].

Furthermore, selecting important features or points of
interest is crucial while launching side-channel attacks.
Traditionally, various methods are proposed to select
POIs [20]. Recently, Picek et al. and Mukhtar et al. have
proposed feature engineering techniques to achieve optimal
results by analyzing the impact of using the feature engineer-
ing techniques on side-channel leakages and processing them
further by using machine learning classifiers [21], [22].

However, using ConvNets for side channel analysis still
suffers from several problems. Firstly, ConvNets require a
huge amount of traces/instances to extract sensitive infor-
mation from the side channel leakages. This requirement
becomes more exacting in complex cryptography algorithm
implementations (like public-key cryptography algorithms),
where the high sampling frequency is needed to ensure that
enough leakage information is acquired. Hence, generating
an enormous leakage dataset that is processed further to
recover the secret information by utilizing the deep learning
classifiers’ pattern recognition capability, as proposed by
various studies without applying any pre-processing or align-
ment on the data [19], [23]. This removes the need to use
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any pre-processing at a considerable computational complex-
ity cost. The huge datasets lead to increased computational
complexity and hardware resource usage of the deep learning
based side channel attacks which, in turn, leads to substantial
time to train the model and launch the attack. In several
security scenarios where the secret information’s life span is
important, this delay in retrieving the secret might be unac-
ceptable. One possible solution in such scenarios is to reduce
the input dataset size by using feature extraction techniques.
In non Machine Learning (classical) side channel analysis,
principal component analysis (PCA) has been proposed as a
pre-processing step to select the important features [24]. For
machine learning-based side-channel attacks, Golder et al.
have presented results for using PCA as a pre-processing
step for classification using ML on symmetric ciphers [25].
However, all the existing machine learning-based side chan-
nel analysis with PCA pre-processing are applied to sym-
metric cipher datasets, and no substantial work has been
done on public-key cryptosystems. Moreover, the number of
samples (or features) per instance is generally small (ranging
from 400 - 6000) in the existing studies [19], [23]. However,
in the presented case of an asymmetric cipher, the number of
samples per trace/instance is very large (33000 precisely).

Secondly, another aspect that can create problem while
training side-channel leakages with the deep learning algo-
rithms is the amount of data instances/traces per target class.
If class data is highly imbalanced, it can hinder accurate
modeling by giving rise to an accuracy paradox. Tradition-
ally, there are data-level and algorithm-level data balancing
techniques that can balance the target classes and improve
the trained model performance [26], [27]. Picek et al. have
recommended using the Synthetic Minority Over-sampling
Technique (SMOTE) to balance data, based on the experi-
mental findings for symmetric-key algorithm leakage infor-
mation [28]. However, there is no analysis using SMOTE
for side channel leakages of the public-key cryptography
algorithm implementations.

Contributions: In this paper, we provide solutions to the
above problems and offer a thorough study for performing
ConvNet based deep learning side channel attacks on Ellip-
tic Curve Cryptography scheme implementations, efficiently.
We propose a hybrid deep learning-based attack methodol-
ogy and an analysis framework to improve the side-channel
attacks on imbalanced leakage datasets by using the com-
bination of dimensionality reduction and class imbalance
techniques along with the proposed simple Convnet model.
The optimal number of convolutional blocks are used to
build the powerful features extractor within the cost limit.
The proposed efficient ConvNet-based approach has been
evaluated for both protected and unprotected ECC scalar
multiplication Montgomery Power Ladder (MPL) implemen-
tations. High sampling frequency was used during the data
collection process to fully capture the side channel leakage of
the public-key ECC implementations. Thus, 33000 samples
per trace for analysis were collected, resulting in a massive
dataset with a low instance-feature ratio. To handle the high
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computational complexity of the attack due to this massive
dataset, we proposed a time-efficient model for analyzing
public-key cryptographic (PKC) schemes (ECC), based on
the dimensionality reduction. Moreover, in line with the find-
ings for symmetric ciphers, to solve the imbalance problem
in traces per class, we have analyzed SMOTE’s impact on the
public-key ECC implementations using our proposed attack
architecture. Based on the findings, it is determined that the
data balancing should be included as a mandatory step for a
reliable attack model for public-key cryptosystem. Our pro-
posed method enables the network to train much faster with
better performance than the existing state-of-the-art methods,
as shown by our performed comparative analysis between the
proposed and other traditional existing models.

The rest of the paper is organized as follows. Section II
provides some background information and briefs the tech-
niques and models used in this study. Section III explains the
implementation approach and introduced countermeasures of
the PKC algorithm under analysis. Section IV describes the
proposed methodology and analysis framework. Section V,
explains the experimental setup. Section VI presents the
results and discussions on both (protected and unprotected)
ECC dataset using proposed ConvNet architecture with PCA
and SMOTE. Section VII concludes the paper.

Il. BACKGROUND AND PRELIMINARIES

Assuming P is a point on the Elliptic Curve E(F) defined
over a finite field' F then this point is characterized by its
coefficients x,y ie. P (x,y) where x,y € F. Scalar
multiplication (SM) i.e., e - P, where e is an integer, is the
main operation used in Elliptic Curve Cryptography, and it
has been widely studied for its side channel attack resistance.
SM relies on the repetition of many point addition and point
doubling operations that themselves are implemented using
finite field arithmetic operation like modular addition, sub-
traction, inversion, and multiplication (in GF (p) or GF 25)).
Since modular inversion is a computationally complex oper-
ation, most designers exchange it with several modular mul-
tiplications and addition/subtractions by transforming the
Elliptic Curve and its points from the affine coordinate
domain to the projective coordinate domain [29]. In the pro-
jective coordinates domain, each point is represented by three
coordinatesi.e P: (X : Y : Z)where X,Y,Z € F.

A. SIDE CHANNEL ATTACKS

Traditional algorithms implementing SM (e.g., double-and-
add algorithm) have serious imbalances associated with the
value of each bit of the secret scalar (e); thus strong asso-
ciation of SM computation can be made with the secret
scalar been processed. There is a broad range of SM focused
SCA attacks both simple and advanced or horizontal and
vertical [30], [31] and [32].

'In cryptography, prime finite fields, GF(p), and Binary extension fields,
GF (Zk), are used
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Simple SCAs can be easily mounted in the double-and-add
algorithmic approach followed in SM and are typically hori-
zontal type of attacks i.e., they can be mounted using a single
leakage trace that is processed in time. Such simple SCAs can
be easily countered by using highly regular SM algorithmsi.e.
algorithms in which each round’s operations are unrelated to
the scalar bit that they are processing (e.g Double and always
Add algorithm or Montgomery Power Ladder (MPL) [33]).
However, there are a series of SCAs, known as comparative
SCAs (focused initially on Power attacks (PAs) but also
extended to Electromagnetic emission (EM) attack) that still
manage to overcome the above regularity by manipulating the
base point input of the SM (doubling attack (collision-based
attack) [34] and its variants [35] or the chosen plain text attack
in [36] (also known as 2-Torsion Attack (2-TorA) for ECC).

There are, however, more advanced attacks (advanced
SCAs) on EC SM both of vertical and horizontal nature
(where the attack needs many traces or a single trace, respec-
tively). Differential Attacks (DSCA), originally proposed by
Kocher in [7] for power consumption leakage, is the most
widely known such attack. These attacks appear in many
variations based on the used hypothesis distinguishers, lead-
ing to sophisticated DSCAs like Correlation SCA (requiring
less traces to reveal the secret than DSCA) [37] and collision
correlation attack [38]—-[40]. These attacks are possible even
when a single trace is available (horizontal attacks) [41] or the
Horizontal Collision Correlation attack (HCCA) [31], [32].

Whitnall er al. [42] suggest that there are considerably
more potent SCAs than DSCAs, known as profiling attacks.
Such attacks rely on a profiling phase on the device under
attack. In the profiling phase, an attacker identifies the leaking
operation (Point of Interest, Pol) and produces all possible
different states of this operation by feeding the device with
all possible secret key value inputs (e.g., one byte or one bit).
These states are statistically analyzed to create an identifi-
able profile for each secret key value. An attack phase then
follows where the attacker targets a device with an unknown
secret scalar and collects Pol leakage traces for various inputs
using the same trace collection mechanism and parameters as
in the previous phase. Using the profile and some discrim-
inator, the attacker tries to identify the appropriate leakage
trace from the profile that has a high probability of matching
the unknown secret leakages and retrieves the secret. The
most common type of such profiling attacks are template and
online template attacks (TA) [12], [43], [44].

The concept of profiling a device to create a leakage
model based on labeled leakage traces has been explored
further by researchers using ML techniques for creating a
profile. Using ML, the attacker does not need to create a
perfect leakage model but rather lets an ML algorithm be
trained with a non-exhaustive series of leakage traces (that
can be associated/labeled to some, instead of all, secret block
values). As the leakage noise increases (possibly also due
to masking or hiding countermeasures), the ML profiling
approach tents to provide better results as compared to tra-
ditional attacks [14].
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B. MONTGOMERY LADDER ALGORITHM AND
COUNTERMEASURES

Given the above analysis, an EC SM implementation should
include appropriate countermeasures to be protected against a
broad range of attacks. Profiling SCAs, as various researchers
highlighted, [12], [44], [45], can overcome several existing
countermeasures, indicating the need for a more sophisticated
randomization throughout the whole computation flow of the
scalar multiplication algorithm.

One of the most popular such variations of secure scalar
multiplication algorithms is the Montgomery Power Ladder
(MPL) algorithm. As seen in Algorithm 1, it has strong
regularity in each round of operations (step 2 of Algorithm 1)
and minimal interference from the secret scalar bit value.
This MPL regularity is manifested by the constant number
of identical point operations performed in each scalar round
regardless of the corresponding secret scalar bit [33] and
prohibits an attacker from performing simple horizontal and
vertical SCAs. Apart from that, MPL favors parallelism since
step 2a or step 2b operations (point addition (Ry + R1) and
point doubling (2R or 2R;)) can be performed in parallel.
Apart from the performance benefit that such a feature offers,
it can potentially scramble side channel signals to identify
each one of those two operations that can become difficult
for an attacker. However, the MPL algorithm still leaks some
information about the scalar bit since the outcome of point
addition and point doubling in each MPL round is stored
in the different storage area (eg. registers) depending on the
processed scalar bit value. For example point doubling result
is stored in Ryg when ¢; = 0 and in R otherwise. This subtle
irregularity can be identified and exploited using profiling
SCAs (e.g., template SCAs and ML SCAs) to retrieve the
secret scalar e [45].

Algorithm 1 Simple SCA Resistant MPL Algorithm
Input: P : EC base point € EC(F),
e=1(er_1,e—a,...e) € GF(25
Output: ¢ - P
1.Ro=0O,R =P
2.Fori=t—1to0
If (e; = 0) then
(@Ri=Ro+Ri,R0=2"Ro
else
(b)Ry =Ro+R1,R1 =2-Ry
end if
3. Return R

To remedy the MPL SCA problems, SCA countermea-
sures fitting into two different categories can be used, leak-
age hiding or leakage masking [10], [46]. In the hiding
approach, appropriate measures are included in SM compu-
tation flow so that the leakage of point addition/doubling
operation or storage area is made indistinguishable from
random noise. To achieve that algorithmically within the EC
SM we can introduce dummy operations in the computation
flow or modify the algorithm, so traces of one MPL operation
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are very similar from traces of another operation (or their
result storage process). Since MPL favors parallelism that
enables a designer to merge operations in time (more than
one point operation is processed in each time frame), hiding
can be achieved by scrabbling the operation traces at the same
time frame.

Masking aims at disassociating the sensitive information
from the leakage trace. This approach relies on some form
of randomization (additive or multiplicative) on the sensitive
information associated with a leaky MPL point or storage
operation. As originally proposed by Coron in [47] and later
extended and adapted by various other researchers [46] EC
SM masking techniques aim to randomize the EC multipli-
cation secret scalar (e), the input point P (base point blind-
ing), or the input point’s projective coordinates (X, Y, Z). The
most easily applicable are the first and the last (scalar blinding
and projective coordinate blinding) since the point blinding
technique requires the introduction and storage of a random
point in each scalar multiplication [48].

C. DATA IMBALANCE TECHNIQUE-SMOTE

Data imbalance, meaning the number of instances of each
class is not equal, leads to misclassification and can give rise
to an accuracy paradox. In application domains of machine
learning, there are various techniques to handle imbalance
classes for accurate modeling. One of the techniques to
address the class imbalance issue is to modify the input
training data distribution to decrease the imbalance ratio of
the target classes. There is no guarantee to have an equal
amount of leakage bit information in side-channel leakage
data, especially in multi-class classification problems. In this
research, we have studied SMOTE’s effect on improving the
secret data recovery attack efficiency.

Generally, for imbalance datasets, under-sampling and
over-sampling techniques are used. In under-sampling,
majority class data instances are removed to bring it to
the minority class level. In over-sampling, more samples
are added for the minority class instances. Under-sampling
discards data, which might contain important information
required for accurate classification. On the other hand,
over-sampling increases computation time and can cause
over-fitting. To address these issues, numerous intelligent
under-sampling and over-sampling techniques have been
introduced to preserve sensitive information. Kubat et al.
have presented a method for removing noise and redundant
data from the majority class using one-sided selection [49].
Algorithms based on K-nearest neighbors (K-NN) classifiers
are proposed to remove the majority samples based on their
distance from minority samples [50]. Among all sampling
techniques, the over-sampling technique of SMOTE is the
most popular one. SMOTE generates artificial samples for
the minority class synthetically, using minority samples and
their minority neighbors [26]. Picek er al. presented results
for SMOTE’s performance on the side channel leakages from
symmetric ciphers [28].
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D. PRINCIPAL COMPONENT ANALYSIS

In the principal component analysis, the dimensionality of
data is reduced to increase interpretability. It uses an orthog-
onal linear transformation to re-position the data onto a new
coordinate system, and a new reduced smaller feature dataset
is formed based on the existing feature space [51]. The feature
that explains the maximum amount of variance is positioned
at the new dataset’s first location. PCA helps discard the
features that capture similar information and thus aids in
creating a more parsimonious model.

E. CONVOLUTIONAL NEURAL NETWORKS

CNN is adeep learning algorithm that takes input signals data
and learns the differentiating aspects of the target class by
assigning weights and importance. Generally, CNN consists
of convolutional layers, a flatten layer, a pooling layer, and
fully connected layers [52], [53]. Activation functions are
used in each layer to deal with the non-linearity. The con-
volutional layer performs convolution on the input features,
using filters/kernel to recognize the data’s patterns. This fil-
ter hovers over the complete data trace from left to right,
based on the set stride, and reduces the input features dimen-
sionality by convolution. Generally, dimensionality can be
reduced or stays the same depending upon the padding being
used. For this layer, kernel and stride are the hyperparameters
which can be tuned further to obtain a good performing
model. The pooling layer is an approach to reduce the sample
size by downsampling the features from the feature map
by summarizing features in patched regions. The intuition
of using a pooling layer is to select a dominating feature
from a particular layer in a particular region. If the feature
is not dominating, then the resulting value will be small and
will wear out with further pooling in the next layer. Hence,
it helps in reducing the computational complexity, combats
over-fitting, and encourages translational invariance. It takes
a filter, but instead of applying convolution, it either takes the
maximum value from the feature map region or takes the aver-
age. Based on this, there are two main widely used pooling
methods; max-pooling and average pooling. A combination
of the convolutional layer and pooling layer forms a pair
i-th layer in a neural network architecture. The number of
such layers can be increased to capture the minor low-level
details. Increased convolutional layers enhance the overall
model’s computational complexity, which takes a longer time
in training. The existing proposed architectures for side-
channel analysis are complex, consisting of numerous layers
with a large number of filters [18], [19]. We have selected
one such complex ConvNet architecture for comparison in
this study. The existing architecture has been evaluated for
AES leakages. However, we have tested the same network
for ECC leakage data, and then we have presented results by
evaluating with our proposed architecture.

lIl. HARDWARE DESIGN AND IMPLEMENTATIONS
As atarget of the proposed deep learning side channel attacks,
two EC SM hardware implementations of Binary Edwards
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TABLE 1. Point operations partial results [48].

Point Addition Point Doubling

(X3 :Y3: Z3) = (X1 :Y1: (Xsp : Ysp : Zsp) =
Zl) -+ (X2 Yo Zz) 2(X1 Y Zl)
A=X;- Xo DA =X X1
B=Y1- Y2 DC=Y1-Y1
C=127-2Z> DE =2, -2,
D=d-C DB =DA-DA
E=C-C DD = DC - DC
F =dyd; - E DH = DA -DE
G, =X1+ 2, DI =DC-DE
Gy = Xo+ Zo DL =DE-DE
G =G -Gz DF =d, - DL
Hy =Y+ 24 DJ =DH + DI
Hs =Y5 + Zo DO =dy - DJ
H =H, - H> DM = DB+ DD
I=A+G DG =dyds - DM
J=B+ H DK = DG+ DO
Ki=X14+Y1 DL, =DF + DJ
Ko = Xo+ Yo DLy = DH + DD
K=K;- Ksy DLs = DI+ DB
L=dy K DX3 = DLy + DK
Uy =K+1 DYs = DL3 + DK
Uy =J+C DZs = DL, + DG
Us =U; + Uz

Uy =L -Us

Us = F + Uy

U=C-Us

Vi=A-B

Vo=G-H

V3 =dy-E

Va=Vi+ Vs

Vs =V +Vy

Ve =L-Vs5

V;=D-F

Ve =Vz+ Vs

V=23+Vs

M, =A+D

N1 =G+ D

Oy =M; -N;

My =B+ D

No =H+ D

Os = M5 - No

P, =D-0;

Py =D -0

Xs=V+ P

Ys=V+ P

Zs =U

curves (BEC) on GF (2]‘ ) has been chosen, based on the work
of Fournaris et al. in [48]. Both implementations have the
BEC intrinsic protection against SSCAs,” use the MPL algo-
rithm described as Algorithm 1 and exploit the parallelism in
step 2a or 2b of the algorithm in order to achieve efficiency
and side channel attack resistance. In [48], point addition and
point doubling operation are decomposed in their basic finite
field operations, as shown in Table 1, and those operations
are examined for their data dependability. Those operations
that are data-independent (they do not rely on the result
of some other finite field operation) are grouped in stages
to be computed in parallel using some constrained number
of parallel processing elements. In the architecture design
of [48], three modular multiplier processing elements and
three modular adder processing elements are used, operating
in parallel, thus producing 11 parallel stages of grouped finite
field operations (shown in Table 2).

As can be observed in Table 2, the parallel finite field
operations provided in each stage are not associated with only

2They offer completeness and uniformity
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TABLE 2. Paralleling BEC point addition and doubling GF (2X) operations.

’ Inputs

|

(X1 :Y1: 2Zy) (X2 : Y : Zs)

’ Stage ‘ M1 ‘ M2 ‘ M3 Ad1 ‘ Ad2 ‘ Ad3
1 A B DA Gl G2 K1
2 G DC DB H1 H2 K2
3 H DD DE I
4 C DH DI J DM
5 V2 V1 K DJ DL2 DL3
6 DO E DG U2 V4 Ul
7 D V3 L DK U3
8 DL F U4 Ml \& N1
9 \% V6 o1 M2 N2 Us
10 DF 02 6] V8 DX3 DY3
11 P2 P1 DL1 v
12 rDY3 173 DX3 DZ3 Y3 X3
13 rY3 rX3 rDZ3

Outputs (X3 :Ys: Z3) (X3p : Ysp : Z3p)
Rand Outputs (rXs:rYs:rZs) (rXsp :7rYsp : rZsp)

- :idle r: random number

one point operation (point addition or point doubling) from
Table 1 of an MPL round. This scrabbling mechanism can
potentially prohibit identifying the performed point opera-
tion and/or storage since both point addition and doubling
are performed in parallel using the same structural blocks
(processing elements). The storage pattern (meaning, which
intermediate results are stored in which register) is very
similar in every round except some multiplexer units at the
end of the computation, as described in [48]. This approach
was designed to provide resistance against advanced SCAs
and template attacks. However, by performing a Welch’s
t-test,? in [48], the authors discover that there is still non-
trivial leakage of the secret scalar key during the SM com-
putation. So, while the computation processing in each MPL
round (all stages) and its storage pattern is fairly regular
regardless of the secret scalar bit, there are still indications
that some attack could potentially succeed in recovering the
secret scalar key. In this paper, given the above remark, we use
the proposed DL/ML attack methodology on an implemen-
tation ( denoted as unprotected implementation) that is pro-
duced through the above-described process.

To solve the above-described leakage issue, in [48],
a mechanism based on random operations is introduced
in the parallel stages to mask the values stored in the

3The constant versus random scalar methodology was used following the
Test Vector Leakage Assessment technique
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implementations’ registers. Using a random number gener-
ator integrated in the hardware implementation, a random
value r is generated in each MPL round. This r is used in
two extra stages of parallel operations that are introduced
in Table 2 in order to multiplicatively mask the values of all
performed finite field operations involved in an MPL round.
The additional operations, colored in blue in Table 2, are fol-
lowing the random coordinates countermeasure approach, but
instead of performing randomization once per SM, the coun-
termeasure is expanded by re-randomizing the coordinates
at every MPL round. This effectively masks/eliminates any
processing leakage association between the scalar bits and
the processed MPL round parallel operations. The Welch’s
t-test on such an implementation, denoted as protected imple-
mentation, applied in measurements of [48] indicates that
indeed there is only trivial leakage of the secret key in
all MPL rounds. However, although advanced SCAs may
fail to retrive the secret scalar in the protected implemen-
tation (due to trivial leakage), profiling attacks (e.g., ML
SCAs) may be successful since the storage leakage pat-
tern (not assessed using TVLA) is mostly the same com-
pared to the unprotected implementation of [48]. In this
paper, we evaluate the proposed DL/ML attack methodology
on this protected implementation to identify its efficiency,
accuracy and to explore the limits of the TVLA test as a
trusted SCA assessment approach in the presence of DL/ML
attacks.
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IV. PROPOSED ATTACK METHODOLOGY AND
EVALUATION FRAMEWORK
To launch a deep learning-based side-channel attack, assume
the adversary is in possession of the open copy of the
device and has computational and resource capacity to
obtain and process the side channel leakage information.
However, we assume that the adversary wants to recover
the secret information in requisite attack time T4, from the
obtained leakage traces Ly. The proposed deep learning-
based attack methodology is systematically divided into five
steps. In step 1, the leakage data L7 is formatted and labeled to
identify the target class for each trace. In step 2, the prepared
dataset is processed to balance the target class instances
synthetically. In step 3, the dimensionality is reduced using
PCA, and in the last step, classification is performed using
the proposed CNN model. Each step is further elaborated in
Sec. IV-A - IV-D. However, Sec. IV-E describes the strategy
followed in this study to evaluate the proposed approach.
One of the critical concerns in neural networks is over-
fitting while dealing with the side-channel noisy leakages.
In over-fitting, the model learns from the data so well, or we
can say it learns from the noisy patterns as well, that it creates
a model with high variance. The resulting model will fail
to generalize on the unseen data. To handle the problem of
over-fitting, we have taken specific measures at various stages
of the analysis. Each measure is explained in the respective
section.

A. STEP 1-DATASET PREPARATION

For analysis in this research work, both protected and
unprotected implementations of the EC MPL algorithm are
analyzed, as explained in II-B. For both implementations,
to launch bit level machine learning based side channel attack,
at first data traces T, of length ST, are collected for each
bit operation, and then each trace is labeled as target class
‘0’ or ‘1’, based on the processed bit during leakage col-
lection. The formed datasets are then processed through a
machine learning classifier to train the model. The trained
model is finally tested on unseen data to predict the key bit
used for the encryption. The resulting labeled signals are
shown in Fig. 1. The trace where collected, following the
approach in [54], using a PicoScope 5000D Series Oscil-
loscope with a sampling rate of 1GS/s that was connected
through a pre-amplifier to a resistor onboard a SAKURA-X
FPGA board. The description of both the datasets is given
below:

o Leakage Dataset Unprotected LDyp - This dataset con-
sists of side-channel leakage traces for MPL implemen-
tation on FPGA and is not protected by any countermea-
sure. This dataset consists of 77 = 5, 000 data traces
(instances), and each instance consists of S7 = 33750
samples.

o Leakage Dataset Protected LDp - This dataset consists
of side-channel leakage traces for MPL implementation
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FIGURE 1. Obtained raw data signals after labeling (bit 0) for
(a) unprotected and (b) protected implementations.

on FPGA, which are protected by the countermeasures
described in Sec. III. This dataset consists of 7 = 5, 000
data traces (instances) and each instance consist of
St = 39250 samples.

To handle over-fitting, we have divided our datasets further
into three subparts; training data, validation data, and testing
data, in the ratio of 60:20:20 %, respectively. Training and
validation data is used during training the model. However,
test data is held back and is never shown to the model during
training, which ensures that the test data’s analysis produces
reliable results during the testing phase.

B. STEP 2-HANDLING CLASS IMBALANCE

After obtaining the data and forming the datasets, the next
step is to balance the target class instances. An imbalance
dataset can lead to an accuracy paradox by misclassifying
data due to the empowering majority class. For analysis of
the side-channel leakage data, we propose to use the class bal-
ancing technique as a mandatory step to balance the classes
before applying a machine learning classifier, for a better
reliable trained model. Our presented case of bit-level attack
is a binary classification problem where two class key bits
‘0’ and ‘1’ need to be classified. To analyze the impact of
the class imbalance technique, we have generated the datasets
with less number of 1’s and more number of 0’s. To be precise,
there are 1500 and 2600, samples for 1°s and 0’s, respectively.
After generating the dataset, SMOTE is applied. As explained
in II-C, SMOTE is a synthetic oversampling technique; we
have increased our samples for the under presented class,
which is ‘1’. After applying SMOTE, both classes have
an equal number of instances. The new generated samples
have the same characteristics as those of the training dataset
samples.
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C. STEP 3-DIMENSIONALITY REDUCTION AND

DATA VISUALIZATION

After handling class imbalance, we have reduced the num-
ber of features using the dimensionality reduction technique,
Principal Component Analysis (PCA). PCA has been used for
traditional analysis with regards to side-channel leakage data.
PCA can capture and highlight the dataset’s maximum vari-
ance in just a few principal components, hence, transforming
the useful information by eliminating the redundant features.

In our presented case, as the number of instances (traces)
is less than the number of features (no of samples per trace),
so use of pre-processing or feature engineering, to reduce the
number of samples/features, can aid in reducing the compu-
tational complexity and also will help in training a better-
trained model. The extra features certainly contain redundant
information and noise. Usually, deep learning is expected to
pick up the data anomalies, but that might not always be true,
especially if the ratio of instances to features is very low.
In some instances, this can give rise to over-fitting, where
the model learns from the noise instead of learning from
the relationship between the secret information and leakage
traces. Due to the noisy nature of the leakage information, for
machine learning-based side-channel analysis, it is of crucial
importance to select the most contributing features. Training
the model with reduced feature dataset has various benefits,
including reducing training complexity and accurate trained
model.

PCA can achieve this goal because it tries to find a linear
subspace that best fits our data. The aim is to minimize the
sum of square of orthogonal distances or maximize our data’s
spread within low dimensional subspace. Let X be our mean
subtracted data. To find subspace w such that our data have
maximum spread in this subspace, we use,

7o
w = arg max Hw XH (1)
Iwli=1 2
w = argmax w! XXTw 2)
Iwli=1

If we take the Lagrangian of w and then its derivative,
we got

xXXTw = 4w 3)

This ends it up with an eigenvalue problem. If we solve
Eq.3 our solution w will give first principal component
(largest eigenvalue). To get other eigenvalue, we need to
subtract the largest value (already found) from X and find out
the next largest value and so on.

Fig. 2 shows the proportion of variance due to PCA com-
ponents for both protected and unprotected leakages. It can
be seen that the variance of 79% and 87% is covered with
100 PCA components. The maximum variance will be cov-
ered if PCA principal components are selected beyond 100.
To analyze the effect of the principal components’ various
sizes, we have performed analysis using the number of com-
ponents from the group PCAcg where PCAcg = 200, 400,
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FIGURE 2. Proportion of variance for PCA components for (a) protected
and (b) unprotected.

600, 800, 1000 and 1200 principal components. Analysis
results are given in the results section.

D. STEP 4-MODELING USING DEEP

LEARNING CLASSIFIER

The instances of the target class ‘0’ and ‘1’ are balanced using
the synthetic data balancing approach, SMOTE, and then the
dimensionality of the data traces is reduced by applying
PCA, based on the conclusions deduced from the observa-
tions in IV-C. In the last step, machine learning analysis is
performed using the proposed Convolutional Neural Network
(ConvNet/CNN) architecture. The proposed architecture is
simple compared to the complex existing architectures and
produces the same accuracy level in less time.

1) CNN PROPOSED ARCHITECTURE
The proposed simple CNN architecture is shown in Fig. 3.
There are three combinational layers in our proposed
design, as shown in the summary table 3. Each combinational
layer consists of a pair of convolutional layers and a pooling
layer. However, in the last two combinational layers, an extra
convolutional layer is added to extract more information
before the pooling layer. There are five convolutional layers
in the proposed architecture, consisting of 4,8,8,16, and 16 fil-
ters with specific kernel size and stride, which enables the
model to distinguish the secret key bit. Kernel size and stride
are varied between 4 and 8. In our proposed architecture,
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FIGURE 3. Proposed hybrid convolutional network-based system for the secret key recovery from the acquired side channel leakages. The
figure shows the overall proposed system which consists of convolutional network layers, dimensionality reduction module and a class

imbalance module.

TABLE 3. Proposed CNN model summary.

Layer (type) Output Shape Number of Parameters
Convld_1 199x4 20
convld_2 66x8 136
convld_3 21x8 264
convld_4 6x16 528
convld_b 1x16 1040
dense_1 2 34

we have used max-pooling, in which the maximum number
is selected from a particular region. It has two primary hyper-
parameters, filter and stride. Once these hyperparameters are
fixed, they do not change during the learning process. For our
case, the value is set to 1-2.

Activation functions are used in convolutional layers to
deal with the non-linearity of the data. We have tested various
activation functions for our analysis, as listed in the table 4,
and selected Scaled Exponential Linear Unit (SeLLU) as it pro-
duced the best results. Because of its ability to self-normalise,
SELU has shown improved performance in various classifi-
cation tasks using feed-forward neural networks [55]. One of
the advantages of SeLU is that its internal normalisation is
faster than external normalisation, which means that the net-
work converges faster. As the gradient problem of vanishing
and exploding is impossible in SeL.U, it can be a reason for
its improved performance on our netwrok.

The previous max-pooling layer’s output is flattened to
form a column vector and is then connected to the fully
connected layer. Fully Connected Layer is the final layer that
takes the output of the previous flatten layer as input and then
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outputs N dimension vector where N is the number of the
output target classes (N = 2 in this case), and then back-
propagation is applied to each iteration of training during
the epoch. After training over a few epochs, the model is
able to learn from the provided features and classifies them
using the softmax classification technique. We have trained
our model for a longer time for 200 epochs, which provides
enough batch training cycles to analyze the model perfor-
mance. In our results, it is seen that the model performance
becomes stable before 50 epochs.

2) NORMALIZATION AND OVER-FITTING

Having huge differences between the maximum and mini-
mum value in the data might degrade the learning process.
Normalization is performed to speed up the learning process,
and the model converges quickly, which results in an accurate
trained model. As mentioned before, over-fitting is one of the
issues in noisy side-channel leakages. The model can learn
data patterns along with the noise. Such a model performs
well on the training data but fails to generalize on the test
(unseen) data. Specific techniques can be used to avoid over-
fitting, including dropout and regularization. We have tried
both and found better results with L2 regularization. It man-
ages the weights and keeps them small in order to avoid over-
fitting. In addition to learning from the noise, the duplicate
instances within the training dataset can also result in an over-
fitted biased model. To avoid this, duplicate rows are removed
from the training dataset.

3) HYPERPARAMETER TUNING

There are certain hyperparameters related to each layer,
which can be tuned to improve the CNN performance. Table 4
shows the lists of parameters that are tuned to select the best
performing model. Grid search functionality, available in the
Scikit library, is used. In grid search, exhaustive search is
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TABLE 4. Parameter tuning CNN.

Parameter Value Range

Learning Rate [0.001,0.01,0.1, 0.5]

Epochs [200]
Strides 4-6
Kernel Size 5-8
Pool Size 1-2
Pool Stride 1-2

Activation function [relu,selu,elu,tanh,softplus]

Optimizer [Adam,Nadam,RMSprop,Adamax,sgd]
Initialization Mode [uniform,normal]

Batch Size [32, 100]

performed, using all possible parameter combinations, and
the best performing parameters are selected based on the
model accuracy.

E. EVALUATION STRATEGY

In order to systematically analyze the affect of the proposed
neural network based side channel attack on the leakage data,
analysis is further divided into four sets, as given below.

« Analysis on unprotected implementation dataset LDyp
using existing model (A1)

« Analysis on unprotected implementation dataset LDyp
using proposed model using varying PCA Components
sizes (A2)

o Analysis on protected implementation dataset LDp
using existing model (A3)

o Analysis on protected implementation dataset LDp
using proposed model using varying PCA Components
sizes (A4)

For analysis set A1 and A3, the collected raw traces/
instances from FPGA implementations are processed through
machine learning classifier CNN for both unprotected and
protected implementations, respectively, as proposed in the
existing literature. We have chosen the simplest existing CNN
model for SCA. For analysis set A2, and A4, analysis is
performed using our proposed model (explained in IV-D) for
both unprotected and protected implementations. For these
sets, data has been over-sampled using SMOTE, and then
PCA is applied to change the dimensions of the data. For
analysis in this study, we have tested the various number of
principal components from PCAcg group.

The accuracy and model training time is reported along
with Receiver Operating Characteristic (ROC) curves. The
outcome of the analysis will help in devising a time and
resource-efficient mechanism for attacking FPGA implemen-
tations on PKC.
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V. EXPERIMENTAL SETUP

For implementations of the proposed deep learning model,
python platform is used along with Keras and scikit-
learn libraries [56], [57]. The computation requirement of
hyper parameter tuning for deep learning processing is
high, so NCI (National Computational Infrastructure) Aus-
tralia high-performance super-computing server has been
used [58]. However, for comparative analysis stand alone sys-
tem equipment with GPU GEFORCE GTX 1080 Ti, memory
32GB and CPU Intel Core i7 (@3.4GHz) processor is used.

VI. RESULTS AND DISCUSSIONS

Based on the proposed framework, results and analysis is
presented in this section for both LDyp and LDp datasets.
Results are presented for all four analysis sets.

A. RESULTS ON UNPROTECTED IMPLEMENTATIONS

(A1 AND A2)

The results for unprotected implementations, using both
existing and proposed models, are presented here. For anal-
ysis on full length raw traces using existing models (A1),
accuracy of 100% is achieved for all analysis sets. It takes
3.6 hours on a GeForce GPU system, as shown in table 5.
The results are obtained after fine-tuning the model with the
hyper-parameters as mentioned in IV-D3. For some of the
optimizers, in the initial few epochs, training and validation
accuracy curves are flat because the high number of features
slows down the training process. Best accuracy is achieved
with Adamax, Selu, and 0.001, as an optimizer, activation,
and learning rate, respectively.

TABLE 5. Timing for unprotected LDyp using existing and proposed
models.

Analysis Set | Time (sec) | Accuracy
Existing Model Al 13248.42 100
Proposed Model A2 425.46 100

For analysis set A2, and A4, firstly SMOTE is applied
to balance the data instance, then the dimensionality of the
raw data is reduced by pre-processing with PCA. Out of
St = 33750 samples or features, only 800 features are
selected based on the presented visual representation in IV-C.
It has been observed that the same resulting high accuracy
is achieved in just 425.46 seconds, with Adamax, Relu, and
0.001, as an optimizer, activation function, and learning rate,
respectively.

B. RESULTS ON PROTECTED IMPLEMENTATIONS

(A3 AND A4)

For analysis on A2, the raw data trace leakages from the pro-
tected implementations are analyzed using the existing com-
plex model. It has been observed that using existing model,
62.1 % accuracy is obtained in 3.46 hours. For analysis on the
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TABLE 6. Timing for protected LDp using existing and proposed models.

Analysis Set | Time (sec) | Accuracy

Existing Model A4 12473.28 62.1

Proposed Model Ab 321.61 67.91

set A4, the raw data trace leakages from the protected imple-
mentations are resampled using SMOTE, transformed using
PCA, and then processed with the proposed CNN network.
With PCA processing, features are reduced from S7 = 39250
to 800 only. The accuracy of 67.91% is achieved in only
321.61 seconds, as shown in table 6. To further tune the model
performance, hyper-parameters are optimized. Both the best
performance results are obtained using Adamax and Selu
as optimizer and activation function, respectively. For most
of the optimizers, including Adagrad and Adadelta, delayed
learning is observed for analysis with existing models, which
happens due to the large number of features per-instance,
whereas the total number of instances is small.

Training and validation, accuracy and loss, for training
with the existing model on protected design is shown in Fig. 4.
It can be seen that the training loss is decreasing, but the
validation loss starts increasing after 50 epochs, which shows
that the model performs poorly and might cause over-fitting.
The over-fitting phenomenon can be confirmed from the
accuracy plot as around epoch 50; the validation accuracy
slightly goes higher than the training accuracy.

Training and validation accuracy and loss, for training with
200 epochs with the proposed model with SMOTE is shown
in Fig. 5. It can be seen that the training loss is decreasing
throughout the learning process. However, the validation loss
decreases in the initial 25 epochs only, and after that no
variation is seen, which means that the model is not learning
any further and might cause over-fitting. So the best possible
results achieved, with the protected design implementations
under consideration, are 67.91%. It is also observed that the
overall training and validation loss is smaller in the proposed
model than the existing model training on the ECC Datasets.

To compare the impact of integrating SMOTE and PCA
with our presented attack model, we have also performed
experiments without having SMOTE or PCA in the pipeline.
The results are depicted in Fig. 6. It has been seen that the
validation accuracy is fluctuating drastically, and the loss in
certain cases goes beyond the training loss which shows a
poor model performance. We have also seen that applying
only PCA before the classifier does not return impressive
results as well. This shows that the combination of all, PCA
and over-sampling techniques for imbalance data and our
proposed CNN model, provides better performance results
than the existing complex models.

To further analyze the improvement produced by the pro-
posed approach, Receiver operating characteristic (ROC)
curves, obtained on test data evaluation, are plotted as shown
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FIGURE 4. Training and validation. (a) Accuracy and (b) loss for the
existing model on LDp.
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FIGURE 5. Training and validation. (a) Accuracy and (b) loss for proposed
model on LDp using SMOTE.

in Fig. 7. ROC curves are the graphical plots, illustrating the
classifier’s diagnostic ability by displaying the True Positive
Rate (TPR) and False Positive Rate (FPR). It can be clearly
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seen that the ratio of TPR to FPR, and the area under curve
obtained using analysis performed on the proposed model is
better as compared to the ratio of TPR to FPR, and the area
under curve of the analysis of the existing model analysis.
It has also been observed that the best performance has been
achieved with 800 PCA components among all the test groups
of PCA components, as explained in IV-C.

Based on the above results, it can be seen that the time
efficiency of the attack has significantly improved using the
proposed model. It is also observed that for both protected
and unprotected implementations, the accuracy either stays
the same or improves, in less training time as compared to
the existing complex neural networks.
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VIi. CONCLUSION

This research work has proposed a hybrid deep learning-
based side channel model based on CNN, PCA, and SMOTE,
having an optimal number of convolutional layers. Our pro-
posed model is computationally less complex than the exist-
ing deep learning-based models and performs better or the
same in time-efficient manner. As a test case study, we have
selected a variety of the ECC Montgomery Power Lad-
der Scalar Multiplication algorithm as minimal side-channel
analysis exists on ECC from a machine learning perspective.
We have used four analysis sets for our evaluation methodol-
ogy, two for each protected and unprotected ECC implemen-
tations. Our experimental results have observed that accuracy
improves by 6% using our proposed approach for protected
implementations (which is 67%) and stays the same for
the unprotected implementation that is 100%. We have also
observed the effect of using SMOTE on the proposed model.
It is also observed that the overall training and validation loss
is less for the proposed model than the existing model training
on the ECC datasets. Overall, it can be concluded that the pro-
posed ConvNet enables the network to train much faster with
better performance by consuming fewer hardware resources
as compared to the existing state-of-the-art methods.
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