
algorithms

Review

Multi-Objective Beam-ACO for Maximising
Reliability and Minimising Communication
Overhead in the Component Deployment Problem

Dhananjay Thiruvady 1,*, Asef Nazari 1 and Aldeida Aleti 2

1 School of Information Technology, Deakin University, Geelong 3126, Australia; asef.nazari@deakin.edu.au
2 Faculty of Information Technology, Monash University, Melbourne 3800, Australia;

aldeida.aleti@monash.edu
* Correspondence: dhananjay.thiruvady@deakin.edu.au

Received: 1 July 2020; Accepted: 29 September 2020; Published: 3 October 2020
����������
�������

Abstract: Automated deployment of software components into hardware resources is a highly
constrained optimisation problem. Hardware memory limits which components can be deployed
into the particular hardware unit. Interacting software components have to be deployed either
into the same hardware unit, or connected units. Safety concerns could restrict the deployment
of two software components into the same unit. All these constraints hinder the search for high
quality solutions that optimise quality attributes, such as reliability and communication overhead.
When the optimisation problem is multi-objective, as it is the case when considering reliability and
communication overhead, existing methods often fail to produce feasible results. Moreover, this
problem can be modelled by bipartite graphs with complicating constraints, but known methods do
not scale well under the additional restrictions. In this paper, we develop a novel multi-objective Beam
search and ant colony optimisation (Beam-ACO) hybrid method, which uses problem specific bounds
derived from communication, co-localisation and memory constraints, to guide the search towards
feasibility. We conduct an experimental evaluation on a range of component deployment problem
instances with varying levels of difficulty. We find that Beam-ACO guided by the co-localisation
constraint is most effective in finding high quality feasible solutions.

Keywords: software deployment problem; Ant Colony System; multi-objective optimisation;
Beam search

1. Introduction

Software component deployment is a relevant optimisation problem in many domains. In the
automotive industry, a growing number of functionalities have to be implemented as software
programs and deployed to the hardware infrastructure of a car. The number of potential assignments
between software components and hardware units is restricted by a number of hard constraints. Some
software requires access to sensors which mandates its positioning on a host residing on the same bus,
others cannot be located on the same hardware for safety reasons.

Component deployment optimisation has to fulfill multiple goals, such as reliability, cost, safety,
and performance, which can be conflicting, hence the problem is modeled as a multi-objective
optimisation problem. Previous approaches to multi-objective models of the automotive component
deployment problem comprise bi- and tri-objective formulations. Multi Objective Genetic Algorithm
(MOGA) [1], Non-dominated Sorting Genetic Algorithm II (NSGA-II) [2], and Population-Ant
Colony Optimisation (P-ACO) [3] were compared on these formulations which resulted in P-ACO
outperforming NSGA-II [4]. P-ACO also outperformed MOGA when few iterations were used but
not when the algorithm was run for longer, which indicates the slow convergence of MOGA and its

Algorithms 2020, 13, 252; doi:10.3390/a13100252 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/13/10/252?type=check_update&version=1
http://dx.doi.org/10.3390/a13100252
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 252 2 of 19

ability to escape suboptimal local optima. While these methods have shown to produce good results
in the multi-objective setting of the software component deployment problem, their ability to handle
constraints is not investigated.

Ant Colony System (ACS) is a method based on the foraging behaviour of ants. Solutions to a
problem are constructed by adding components to a partial solution, incrementally. The solutions
space of ACS can be viewed as a tree and each component added to the partial solution is a new
level of the tree. A similar tree search method is Beam Search which uses a ‘goodness’ estimate
at each level of the search tree when constructing solutions. Blum created a hybrid, Beam Ant
Colony Optimisation (BACO) that is proven to be more effective than either approach individually on
constrained problems [5,6]. For example, experiments on the open shop scheduling problem concluded
that BACO outperforms ACO on the vast majority of benchmark instances [5].

A recent application of ACS has found good solutions to a single-objective formulation of the
reliability aspect of the component deployment problem [7]. Here, we consider a dual-objective version
of the problem where the aim is to maximise reliability and minimise communication overhead. We
investigate the efficacy of Beam Ant Colony System (BACS) on this multi-objective version of the
problem and determine which problem characteristics lead to the most effective BACS implementation.

To this end, we develop three variants of BACS with problem specific bounds which guide the
search to feasible regions. This enables the algorithms to overcome the barriers imposed by hard
constraints, which often prohibit finding feasible solutions. The algorithms are compared against ACS
and BACS with stochastic sampling. The experimental evaluation conducted on software component
deployment problems of various degrees of constrainedness demonstrate the effectiveness of the
proposed BACS with different bound estimates. An important outcome we observe is that problem
specific bounds can be more effective than generic methods for obtaining estimates (e.g., via stochastic
sampling). In summary, this paper makes the following two contributions: (a) introduces a new BACS
method for the multi-objective component deployment problem, and (b) proposes three approaches for
estimating problem specific bounds for the constrained component deployment problem, and identifies
the most effective one.

The paper is organised as follows—Section 2 discusses the component deployment problem.
Section 3 reviews the associated literature. This is followed by details of the methods implemented
for the problem (Section 4). Section 5 discusses the experiments including the problem instances.
The results of the experiments are provided in Section 6 where the algorithms’ performance regarding
feasibility and solution quality are analysed. Section 7 concludes the paper.

2. The Constrained Multi-Objective Component Deployment Problem

Quality attributes are important concerns when deploying software components into hardware
resources, with reliability and communication overhead being two of the most important ones.
Reliability estimates the probability that the software system executes without failure, whereas the
communication overhead is a measure of how much data communication is occurring between the
hardware units.

2.1. Problem Description

A component deployment problem is characterised by a set of software components,
C = {c1, . . . , cn}, a set of hardware hosts, H = {h1, . . . , hm}, and a set of network links,
N = {n1, . . . , ns}. Each software component ci, has properties including memory size mi,
computational requirement wi, and qi the probability that the system starts from this component.
Also, between any pair of components (ci, cj), dij is the amount of data sent from ci to cj, and pij is the
probability that the execution of component ci terminates with a call to cj.

Similarly, each hardware host hi, has its memory capacity, pi, the processing capacity, si, and the
unit failure frequency rate of fi. In addition, every network link connecting a hardware host hi to hj
has the data transmission rate of rij and the failure rate of fij.

Algorithms 2020, 13, 252 3 of 19

Figure 1 represents an instance of the CDP problem. There are seven software components, four
hardware units and three network links. The interaction between the software components are shown
as arrows. Because of the high-level of interaction between components c1 and c2, it is preferable
that they are both located on hardware unit h1 (note, the memory capacity of the unit cannot be
violated). Components c2 and c4 require a high level of communication, but considering the limitations
of memory, safety considerations, or co-localisation aspects, they are embedded on separate hardware
units. These two components communicate through network link n1. The contents of hardware units
h1 and h2 and a link between them may be duplicated in another location to maximise the reliability of
the system.

Figure 1. An example of the component deployment problem. The hardware units.

We can think of the component deployment problem as an assignment problem
D = {d|d : C → H}, where D is the set of all assignments, though some of them would not be feasible.
In this notation, as d is a assignment, d(ci) is the hardware host that software component ci will
be deployed.

2.2. Reliability Objective

To model the possible states of a software execution system and the probability of transiting from
one state to another, a Discrete Time Markov Chain (DTMC) [8] is used. Essentially, the execution
begins at an initial state and terminates either with successful completion or failure. Mathematically,
a DTMC can be represented as an ordered tuple (S, s0, P) where, S is a finite set of states, s0 ∈ S is
the initial state, and P : S× S → [0, 1] is the transition probability matrix, where P(s, s′) denotes the
probability of changing from state s to state s′. In a DTMC, ∑

s′∈S
P(s, s′) = 1 for all states s ∈ S, which

requires that terminal states also have transition probabilities to themselves. In modelling a software
system as DTMC, the execution is considered as a path thorough the states of the DYMC.

DTMC models are characterised by the behavioural specifications of a software embedded
system such that a vertex represents the execution of one software component and edges denote
the transition of execution from one software component to another. Super-initial vertices represent
the beginning of execution, and edges are added from these vertices weighted with corresponding
execution initialisation probabilities (q). The model presumes that the failure of components occur
independently and the reliability of the component ci is specified by the failure frequency rate fi,
associated with a component functioning correctly:

Ri = e
− fd(ci)

·
wci

sd(ci) , (1)

where d(ci) is the hardware host where component ci is allocated, fd(ci)
is its failure rate, wci is

component ci’s computational requirement expressed in MI (or million instructions) and sd(ci)
the

instruction-processing capacity of hardware unit d(ci) expressed in MILPS (million instructions per
second). For a communication element, the reliability is computed by the failure rates of the network

Algorithms 2020, 13, 252 4 of 19

links and the amount time spent for communication, defined in Equation (2) as a function of the
communication link data rates r and data sizes d required for components ci and cj to interact.

Rij = e
− fd(ci),d(cj)

·
dij

rd(ci),d(cj) . (2)

The expected number of visits of a DTMC node, expressed in Equation (3), with qi denoting the
probability that the execution of a system starts from component ci, quantifies the expectation of a
component v : C → R≥0 being used during a single system execution.

vi = qi + ∑
j∈I

vj · pji. (3)

The transition probabilities pij can be expressed in a matrix form Pn×n. In similar fashion,
the initialization probabilities qi can be represented by matrix Qn×1. The expected number of visits for
all components Vn×1 can be written as:

V = Q + PT ·V. (4)

Equation (4) can be expressed as:

V = (I − PT)−1 ×Q, (5)

where I denotes the identity matrix. For a DTMC with absorbing states, the inverse matrix (I − PT)−1

always exists [8], which guaranties the existence of vector V.
The expected number of visits associated with network links vl : C × C → R≥0 is calculated by

vl(ci, cj) = vi · pij, where vl(ci, cj) denotes the expected number of occurrences of the transition (ci, cj).

To calculate this value, each probabilistic transition ci
pij−→ cj in the model is expressed as a tuple of

transitions ci
pij−→ lij

1−→ cj, the first following the original probability and then terminating in one of the
states with probability 1. Considering that the execution of a software system is never initiated in a
network link lij and the only predecessor of link lij is component ci, thus the expected number of visits
of a network bus is equivalent to

vij = vi · pij. (6)

The reliability of a deployment architecture d ∈ D can be computed by taking into account the
expected number of visits and reliabilities of execution and communication elements:

R ≈
n

∏
i=1

Rvi
i · ∏

(i,j)(if used)
R

vij
ij . (7)

2.3. Communication Overhead Objective

When Software systems consist of highly constrained hardware and communication resources,
it is advisable to limit high frequent transmissions between software components. For this
purpose, the communication overhead (CO) objective was proposed, which imposes minimal data
communication for system parameters and components. As a network- and deployment-dependent
measure, the overall communication overhead of the system is utilised to represent this viewpoint.
This measure was initially developed by Medvidovic and Malek [9] and defined as:

o(d) =
n

∑
i=1

n

∑
j=1

f(ci, cj) · y(d(ci), d(cj)) +
n

∑
i=1

n

∑
j=1

f(ci, cj) ·m(ci, cj)

b(d(ci), d(cj)) · r(d(ci), d(cj))
, (8)

Algorithms 2020, 13, 252 5 of 19

where m : C × C → N is the component message size, with m(ci, cj) = 0 if ci = cj, or in the case that no
communication between the two components exists, f : C × C → R is the communication frequency
between ci and cj, b : H×H → N is the network bandwidth, with b(d(ci), d(cj)) = 0 if d(ci) = d(cj)

or there is no network connection between d(ci) and d(cj), and y : D ×D → N is the network delay,
with y(d(ci), d(cj)) = 0 if d(ci) = d(cj) or there is no network connection between d(ci) and d(cj).

2.4. Constraints

The software deployment problem is highly constrained. In this work, we consider three common
constraints that arise when deploying software components into hardware resources. These are
communications, co-localisation and memory.

2.4.1. Communication

The communication between software components limits their allocation to disparate hardware
units, since a network link is needed between two hosts if two software components must communicate.
Hence, if there is a positive transition probability between two software components ci and cj, pij > 0,
these two components must be embeded either on the same hardware host or on different hosts that
are connected with a network link with a positive data rate, rij > 0. The ensuing constraint is:

xik + xjl ≤ 1, if pij > 0 and rkl = 0, (9)

where xij is a decision variable has value 1 if component ci is deployed on hardware host hj; Otherwise
it is 0.

2.4.2. Co-Localisation

These constraints serve two purposes. First, certain components need to be allocated to different
hardware units due to safety and reliability considerations. Second, two software components
may need to be allocated to the same host since they require a high level of communication
between themselves, and bandwidth limitations will not allow them to be allocated to two different
hardware units.

2.4.3. Hardware Memory

Each hardware unit has a memory limit or capacity, which needs to be carefully considered
when allocating software components to them. The cumulative memory requirements of software
components assigned to hardware units thus leads to the following constraint.

n

∑
i=1

mixij ≤ pj, ∀j ∈ 1, . . . , m. (10)

2.5. Multi-Objective Formulation

The communication overhead conflicts with the reliability objective because a system is more
reliable when the software components are deployed to different hosts. The failure of a host in
such a configuration only compromises the functionality of a single component. Co-locating several
components on the same hardware unit minimises the communication overhead. In this study,
we consider a bi-objective problem with reliability (Equation (7)) as the first and communication
(Equation (8)) overhead as the second objective.

2.6. Graph Representation

The allocation of software components to hardware units connected with network links can be
represented as bipartite matching (with complicating constraints) [10]. A bipartite graph consists

Algorithms 2020, 13, 252 6 of 19

of two sets of vertices, where edges exist between vertices of the two different sets. For component
deployment, one set of vertices are the software components and the second set of vertices are
hardware units. A solution to the problem is to select a single edge for every software component
vertex that maps it to a hardware unit vertex. In addition to the usual constraints (e.g., selecting edges
between software components and hardware units) there are relationships within some of the software
components themselves and also the hardware units.

Figure 2 shows a small example problem visualised as a bipartite graph. The software components
are c1, c2 and c3 and hardware units are h1, h2 and h3. An edge between a software component and a
hardware unit indicates that the software component may be assigned to the corresponding hardware
unit (for example, c1 may be assigned to h1 or h2). Furthermore, two software components may
be linked (indicated by the edge between c1 and c2), in which case, they should both be assigned
to the same hardware unit or if not, both hardware units they are assigned to must also be linked.
For example, if c1 is assigned to h1, then c2 can be assigned to h1 or h2 since both these hardware units
are connected to the link n1.

Figure 2. A bipartite graph representation of the component deployment problem.

While the problem considered in this study has obvious similarities to bipartite matching,
extending or adapting existing matching algorithms is not possible in a straightforward manner,
since the problem studied here is multi-objective and consists of several complicating constraints.

3. Literature Review

The optimal deployment of software components to distributed hardware units presents itself as
a decision making problem in the field of software engineering. The reliability of the deployments is a
key criterion for the success of products using those embedded systems. An overarching overview
of reliability models used in the deployment of software component is provided by Dimov and
Punekkat [11]. In some models the reliability considerations are often the most important aspect [12–14],
but some authors connect reliability to usage profiles of those systems [14,15] or deduce it from the test
coverage of the components [16]. In some cases, the reliability of a software system can be attributed
to the component calls or the communication and connections between the components [13,17].
The modelling approaches can also vary, for example, Heydarnoori and Mavaddat [18] model the
problem in a distributed system as a multi-way cut problem, in which system reliability is a function of
the reliability of the communication links between the interacting components. They approximate the
optimal solution in a polynomial-time by deterministic allocation of the components to the hardware
units according their connectivity.

The deployment of software components is considered a temporary task in the majority of
reliability studies in distributed systems. Assayad, Girault and Kalla [19] solve a bi-objective scheduling
problem in which reliability is interpreted as the probability that no software component fails during the
execution of the workflow. In a similar work, Kartik and Murthi [20] present a deterministic algorithm

Algorithms 2020, 13, 252 7 of 19

which assigns tasks to heterogeneous processing units based on the most-constrained-first criterion:
tasks with frequent communication are allocated first. Several mixed integer linear programming
(MILP) models have been proposed to the task allocation problem [21–23], but none of these have
considered reliability of the system.

The study by Hadj-Alouane, Bean and Murti [23] focuses on the task assignment problem in
the automotive domain. Their goal was to minimise the cost of installing microcomputers and
high-speed or low-speed communication links between the hardware units. They compare their
quadratic 0–1 MILP model with a generic algorithm, and find that this algorithm outperforms the
MILP by approximately 4% and also uses considerably less CPU time. Moreover, Harris [24] recently
provided a inclusive overview of the usage of software components and software engineering in
modern vehicles. The author explains the rapid increase in the electronic contents of cars over the
past twenty years, facilitated by a shift from dedicated devices and wires to ECUs and Ethernet cables.
Climate control, ABS breaks, vision control and wet surface systems have become standard equipment
in contemporary cars. In 2002, Leen [25] explained that 23% of the cost of a new car accounted for
electronics, and 80% of all innovation is related to the deployment of software components.

Relatively few researchers have engaged with the component deployment problem in automotive
systems despite the commercial implications of this problem. Papadopoulos and Grante [26] propose
an evolutionary algorithm to select what functionality can be included in a new vehicle model. Their
objectives were related to profit and cost considerations, and the deployment of software components
to hardware modules focused on reliability. Aleti et al. [27] investigate bi-objective optimisation
problem, where the objective criteria were data transmission reliability and communication overhead.
On a similar problem, due to a myriad of constraints-including memory restrictions, location and
co-location considerations—constructive heuristics [3] and evolutionary approaches [1] were also
proposed. Using incremental heuristics on such a heavily constrained problem requires careful
constraint manipulation procedures to overcome issues with feasibility. Moser and Mostaghim [28]
found that using infeasible solutions in their search led to better solutions overall than eliminating
or penalising solutions evolved by NSGA-II [2]. Aleti and Meedeniya [29], also proposed a Bayesian
approach adapted to the formulation presented in Reference [27], and showed that they can find
better solutions than NSGA-II [2]. Additionally, a formulation of the problem by Meedeniya et al. [30]
considers stochastic response times and reliability parameters.

The component deployment problem can also be investigated from a redundancy allocation
perspective [31]. In this work, a tri-objective formulation including response time, reliability and cost
criteria, is presented and the solution approach is via a genetic algorithm. Sheikhalishahi et al. [32]
implement a combination of a genetic algorithm and particle swarm optimisation (PSO) to solve a
multi-objective problem which minimises costs, system volume and weights. Liang and Smith [33]
adapt an Ant System to also deal with the additional consideration of redundancy allocation.
Kumar et al. [34] discuss that redundancy considerations should be focused both at the component
level and the module level. They use a hierarchical genetic algorithm to solve their model, and conclude
that optimising redundancy at multiple levels provides improved reliability.

4. Methodology

In this section, we discuss in detail the multi-objective ACS and the multi-objective Beam Ant
Colony System (BACS) approach we propose in this study. Key to the success of this method, is
to keep a pool of solutions in the pareto front, and to execute an ACS or BACS on each of these
solutions. Moreover, the choice of bounds is important to guide the BACS search, and hence we discuss
different problem specific bounds and also stochastic sampling (a generic estimate proven on a range
of problems).

ACS was successfully applied to component deployment in a single-objective setting [7], where a
component was chosen randomly, and the host to assign it to was selected based on the pseudo-random
proportional rule of ACS. Here, a parameter in the range [0, 1] decides whether to apply the greedy

Algorithms 2020, 13, 252 8 of 19

principle or choose the best host according to the distribution given by the pheromone matrix.
Pheromones are updated only according to the best solution, and if solutions consist of constraint
violations, these do not contribute to reward. The same ACO model is used in the multi-objective
approaches that follow.

4.1. Ant Colony System

Algorithm 1 lists a single-objective implementation of BACS [7] with concepts from a
multi-objective ACS formulation [35].

Algorithm 1 Ant Colony System for Multi-objective Component Deployment

1: INPUT: Component deployment instance
2: G = ∅
3: G = G ∪ {a randomly generated intial solution πr}
4: while termination conditions not satisfied do
5: G′ ← G
6: for b ∈ G′ do
7: I = ACS(b)
8: G = UpdateSols(G, I)
9: end for

10: end while
11: OUTPUT: G

An initial solution (πr), generated by randomly assigning software components to hardware units
(πi = j is equivalent to d(i) = j, where the ith software component is assigned to hardware unit j), is
added to set of non-dominated solutions (G). The main algorithm is then run to a time-limit (line 4).
Within this loop, an ACS is conducted on each solution in the set of non-dominated solutions, G,
and the output solutions of the ACS are considered for inclusion in G (lines 6–8). Thus, the complete
set of non-dominated solutions is maintained in G which is output at the end of the algorithm.

The procedure of updating solutions in line 8 works as follows. All solutions in the set I are equal
in terms of constraint violations and all of these are non-dominated. These solutions are compared
with those in G and the best (least violating) non-dominated solutions after considering both sets
are returned.

More formally, a solution πnd is considered an improvement on the existing solutions if it violates
fewer constraints than those solutions: v(πnd) < v(πb), ∀πb ∈ G. In this case, all solutions in G are
removed and πnd inserted. However, if the violated constraints are equal (v(πnd) = v(πb), ∀πb ∈ G),
then πnd is considered non-dominated in the set G if there is no other solution in the set which is an
improvement on π when considering both objectives: πnd : R(πnd) > R(πnd) ∨ co(πnd) < co(πnd),
∀πb ∈ G.

Algorithm 2 shows the ACS procedure conducted on a single solution b. This is now effectively
the ACS procedure in the single objective setting, as detailed in Reference [7]. The pheromone trails are
initialised and b is added to the set of best non-dominated solutions I. The main ACS loop executes
between lines 3–11 and the terminating criteria include an iteration limit and a time limit. Within this
loop, a number of solutions are constructed and added to the set S (lines 5–7). Each solution is
incrementally constructed by assigning software components to hardware units using the pheromone
trails.

In particular, the solution construction works as follows. A random number r is chosen in the
range [0, 1], and compared to pre-defined parameter q. If q ≤ r, hardware unit k is chosen with
probability:

P(πi = k) =
τik

∑j∈H τij
, (11)

Algorithms 2020, 13, 252 9 of 19

where τik is the desirability of selecting hardware unit k for component i. If q > r, hardware unit k is
selected such that it has the highest pheromone value:

k = argmax
j∈H

{τij} (12)

Moreover, each time a hardware unit is chosen for a software component, the ACS local
pheromone update applies:

τij = max{τij · (1.0− ρ), τmin}, (13)

where ρ is the learning rate and τmin is a small constant that ensures that a hardware unit may always
have a chance to be selected for a software component.

In Line 9, the set of non-dominated solutions, I is updated with the best non-dominated solutions
considering S and I. The choice of these solutions is carried out exactly as described earlier when
discussing Algorithm 1.

Algorithm 2 ACS(b)

1: T = InitialisePheromones()
2: I = I ∪ b

3: while termination conditions not satisfied do
4: S = ∅
5: for k = 1 to nants do
6: πk = ConstructSolution()
7: S = S ∪ {πk}
8: end for
9: I = UPDATESOLS(I, S)

10: T = PHEROMONEUPDATE(I)
11: end while
12: OUTPUT: I

The pheromone trails are updated in line 10. The component assignments of every solution in
I have their values updated in the pheromone matrix T in the procedure PHEROMONEUPDATE(I)
as τij = τij · ρ + δ, where δ = δ̂ × f (πbs), δ̂ is a predefined constant δ ∈ [0.01, 0.1]. The violations
associated with these solutions are not considered in the pheromone updates. The parameter ρ is set to
0.1 as determined from initial testing and using Reference [7] as a guide.

Furthermore, every time a hardware unit j is selected for component i, a local pheromone update
which is typically used with ACS, is applied as τij = τij · ρ.

4.2. Beam Ant Colony System (BACS)

We now provide details of the multi-objective BACS approach proposed for this study. A key
component of the method is to use bounds or estimates to assist in the search. For this purpose, we
make use of three different problem specific bounds and also stochastic sampling. This leads to four
different variants of multi-objective BACS.

The algorithm presented in the previous section is extended to BACS [5] to solve our highly
constrained software component deployment problem. The reasons for this are twofold. Firstly, BACS
is known to be better at finding feasible solutions compared to ACS on several problems [36–40]. Given
feasibility has already been showed to be problematic for the component deployment problem [7,41],
focusing on solving this issue is of high priority.

Secondly, BACS can also be tuned to provide improved solution quality compared to ACS [36–40].
Thus, BACS provides a natural extension to ACS described earlier. Algorithm 1 remains the same.
However, line 6 of Algorithm 2, uses a Beam search with pheromones instead. This procedure is
presented in Algorithm 3.

Algorithms 2020, 13, 252 10 of 19

Algorithm 3 BACS

1: INPUT: (θ, µ, T)
2: B0 = {π1 = (), . . . , πθ = ()}
3: i← 0
4: while i < n and |Bi| > 0 do
5: for t ∈ Bi do
6: k← 0, D = DOMAIN(πt

i)
7: while k < µ ∧ D 6= ∅ do
8: π̂ = πt
9: j = SELECTHU(D, τ)

10: Bi+1 = Bi+1 ∪ πk

11: k← k + 1, D = D \ j
12: end while
13: end for
14: Bi+1 = REDUCE((Bi+1, θ))
15: i← i + 1
16: end while
17: OUTPUT: arg max{ f (π) | π ∈ Bn−1}

The Beam (B), initially consists of θ empty solutions. Between lines 4–16, each of these solutions
is built incrementally. For each solution in the Beam, µ solutions for the next software component are
generated (lines 7–12). Each of these solutions is unique, each with different assignment of hardware
units. Note, the pheromone trails are used in j = SELECTHU(D,τ) to bias the selection of the hardware
units for each component.

Once all solutions for the ith components have been determined, the Beam potentially consists
of θ × µ solutions. These have to be restricted to θ solutions and this is achieved in line 14: Bi+1 =

REDUCE(Bi+1, θ). For each solution, an estimate is computed (discussed next) which gives each
solution a rank. From these, the top θ ranked solutions are selected.

Bound Estimates

In Beam search, when extending a solution with a component, estimates of the ‘goodness’ of the
component are critical to finding good areas of a search space. A bound is a value which an optimal
solution cannot improve upon. Consider a minimisation problem with optimal solution x∗ and lower
bound lb. Then, x∗ ≥ lb.

For the problem being considered, a good estimate is one that leads the search towards (1) feasible
regions and (2) high quality regions. Problem specific bounds can be used to obtain such estimates.
In Algorithm 3, line 14 uses an estimate to reduce the set of solutions to θ solutions. In this study we
explore four different bounds focused on finding feasibility.

1. Stochastic sampling: this estimate has been successfully used earlier and often outperforms
problem specific bounds [36–40]. The idea implemented here is straightforward. Given a partial
solution (π1 . . . πi−1 components are assigned), a number of samples are generated by assigning
hardware units to the remaining components using the pheromone bias. The best of these
samples (considering violations, reliability and communication overhead) is used as the estimate
for this solution.

2. Communication estimate: given a partial solution (π1 . . . πi−1 components are assigned),
the remaining software components are assigned hardware units ensuring the communication
constraint is always satisfied. This is a greedy selection, and hence only a single solution is
generated. Note, the co-localisation and memory constraints may not be satisfied.

Algorithms 2020, 13, 252 11 of 19

3. Co-localisation estimate: as with the communication estimate, the software components are
assigned hardware units satisfying the co-localisation constraint. As a result of this greedy
selection process, the communication and memory constraints may not be satisfied.

4. Memory estimate: as with the previous two estimates, remaining software components are
assigned ensuring no violation of the memory constraint. Again, since it is a greedy procedure,
the communication and co-localisation constraints may not be satisfied.

5. Experiments

In this section, we explain the set-up for the experiments, algorithms and problems.
All experiments were conducted on MONARCH, a cluster at Monash University. We applied 5
different algorithms to solve different instances of multi-objective component deployment problem.

5.1. Algorithms

We compare the performance of Ant Colony Systems (ACS) against four different variants of BACS
algorithm. The main difference between these variants is in the methodology they use to minimise the
amount of constraint violation throughout the construction process of feasible solutions. BACS(Mem)
is a variant of BACS implementation that prioritises memory and hence ensure that memory related
constraints are always satisfied when building solutions. Similarly, BACS(Col) and BACS(Com) are
variants of BACS that try to minimise violations regarding constraints related co-localisation and
computational overhead, respectively. Finally, BACS(SS) is the variant of BACS that assigns software
components to hardware units using stochastic sampling.

5.2. Problem Instances

The instances used for numerical experiments were created randomly with varying complexity
and constrainedness. For each instance, all the parameters including the number of hardware
units, software components, network links, and their specifications are generated randomly. We
conducted numerical experiments on problems with 15, 33 and 60 hardware units and 23, 34, 47 and
51 software components.

Additionally, the proportion of software components that require the services of each other is
expressed as a percentage which can be 10%, 25%, 50%, 75%, and 100%. As an example, the instance
H33C47I10 has 33 hardware units, 47 software components, 10% of which interact with each other
and require to be deployed either in the same hardware unit or in hardware units that have a network
between them. It is important to note that there is no guarantee for a feasible solution for any of
the problems.

In our optimisation process, there are two objectives, namely, reliability and communication
overhead. However, before optimising these objective, we first minimise the amount of violations over
the existing constraints in order to achieve feasibility. As a next step, we maximise reliability and the
communication overhead, simultaneously.

To obtain the numerical results, we executed each algorithm 30 times with a 600 s time limit.
The results at the end of the time limit are reported and analysed.

6. Results

We present the results by first investigating feasibility and second, solution quality. The emphasis
is first on feasibility since if feasible solutions are not found the high values of reliability and
communication overhead do not mean much, as the solution can not be implemented in a real scenario.

6.1. Feasibility

To determine the efficacy of each algorithm on feasibility, we consider two figures
(Figures 3 and 4). The first figure demonstrate hardness of individual problems and how well the

Algorithms 2020, 13, 252 12 of 19

algorithms perform. The second figure demonstrates feasibility as a proportion of feasible solution
found across all instances for each algorithm.

Figure 3. The performance of the algorithms on all instances in terms of feasibility. A dot indicates that
an algorithm has identified a feasible solution for an instance.

ACS BACS(SS) BACS(Mem) BACS(Col) BACS(Com)

V
io

la
tio

ns

0
2

4
6

8
10

12

Figure 4. Feasibility violation of algorithms on different constraints.

Figure 3 demonstrates the effectiveness of the optimisation schemes in finding feasible solutions
for problem instances of different levels of difficulty. A ‘dot’ at the junction of an algorithm
and a problem instance indicates that the algorithm successfully finds a feasible non-dominated
Pareto solution.

The size of the problem impacts, to some extent, the ability of the algorithms to find feasible
solutions. For example, H33C67I25 and H60C120I25 are similar in terms of constraints, but H60C120I25
is larger. As Figure 3 shows, for the larger problem only BACS(Mem) was able to find a feasible solution,
whereas the smaller problem was solved to feasibility by three out of five algorithms, all of which use
bounds to prune the search space. The figure indicates the relative hardness of each problem.

Out of the five optimisation schemes, BACS(Col) has the highest rate of success by solving 94%
of problems to feasibility, followed by BASC(Mem) which has a success rate of 89%. This method
considers co-location as the hardest constraint to satisfy, and aims at minimising co-location related
constraint violations. Once the co-location constraint is satisfied, the other constraints do not pose any
difficulty in finding feasible solutions. It is only in the largest problem H60C120I25 that BACS(Col) is

Algorithms 2020, 13, 252 13 of 19

not able to find feasible solution. Nevertheless, these results indicate that using co-location related
bounds to guide the search algorithm results in finding feasibility.

Prioritising the communication constraint, on the other hand, is not beneficial. In this case,
the optimisation algorithm may attempt to allocate all interacting components into the same hardware
unit, which violates the memory and co-localisation constraints. This is clearly not an effective strategy
and should not be used to optimise highly constrained component deployment problems.

Figure 4 summarises the results that focus on constraint satisfaction by showing the number of
violations across all problem instances for each optimisation scheme. We see that three out of the four
variants of BACS (enforcing memory, colocalisation or via stochastic sampling) are more effective in
finding feasibility compared to ACS. Similar to the results shown in Figure 3, the BACS version that
prioritises the communication-related constraints performs worse than ACS.

There are a few reasons why ACS is outperformed by the three BACS versions. First, the bound
estimates have proven useful in guiding the algorithm towards feasibility. Communication bounds,
however, are not as effective in achieving feasibility, due to the interaction of this constraint
with the other two constraints. As we noted above, prioritising communication constraint leads
to high violations in terms of the other two constraints, preventing the algorithm from finding
feasible solutions.

Secondly, the different solution construction mechanism of both Beam search and ACS which
are combined into the BACS method are significantly different and complement each other. At each
solution construction step, Beam search enforces the choice of a new solution component. Especially,
when the method is searching close to feasibility, this can result in moving to feasible regions. ACS,
on the other hand, can repeatedly construct the same solution and can be useful especially when the
algorithm is close to convergence.

6.2. Solution Quality

The hypervolume indicator [42] is used to measure the performance of multi-objective
optimisation methods. The metric provides the volume, or area in 2-dimensional space, of the objective
subspace that is dominated by the Pareto front.

Consider a multi-objective optimisation problem with two criteria similar to the problem we
are solving in this paper. Mathematically, consider that we want to minimise f : Rn → R2 and
f(x) = (f1(x), f2(x)). The (local) optimal solutions, Pareto optima, are the minimal elements regarding
a weak dominance relation. In this setting, the Pareto front is the image of the Pareto solution set under
the mapping f. Our aim is to evaluate the set of Pareto optima using hypervolumes which measures
the quality of a solution set. The hypervolume indicator, IH , for a solution set A ⊂ Rn and a reference
set R ∈ R2 is defined as IH(A) := λ(H(A, R)) where H(A, R) = {(z1, z2) ∈ R2|∃x ∈ A, ∃(r1, r2) ∈ R :
∀1 ≤ i ≤ 2, fi(x) ≤ zi ≤ ri}, is the set of points in R2 that are enclosed by the Pareto front and the
reference set and λ is the Lebesgue measure to calculate the volume [43]. The maximum hypervolume
value is achieved if for each z, the solution set A contains at least a point x so that f(x) = z. In other
words, the Pareto front is contained in the image of A under f [44].

Figure 5 provides an overview of the performance of all algorithms in terms of hypervolume
values achieved over the 30 runs shown as boxplots for each problem instance. The components of
Figure 5 are laid out in a way that from left to right and from top to bottom the size of problems
is increasing. A larger hypervolume value indicates a better solution. Note that in order to
compare reliability and communication overhead on the same scale, the communication overhead
was normalised.

Algorithms 2020, 13, 252 14 of 19

●●●●●●

●

●

●●●

ACS SS Mem Col Com

0
1

2
3

4
5

6
7

H15C23I10

●
●

●
●●●
●
●

●●●

ACS SS Mem Col Com

0
1

2
3

4
5

6
7

H15C23I25
●●

ACS SS Mem Col Com

0
1

2
3

4
5

6
7

H15C23I50

●

●●●●●

●● ●

●●

●

ACS SS Mem Col Com

0
2

4
6

8

H15C34I10

●●●●

ACS SS Mem Col Com

0
2

4
6

8

H15C34I25

●●●

ACS SS Mem Col Com

0
2

4
6

8

H15C34I50

●●●●

●●●● ●●●

●

ACS SS Mem Col Com

0.
0

0.
5

1.
0

1.
5 H33C47I10

●●●●●● ●

●

●

●●●

●

●●

●
●
●●

●

●

●

ACS SS Mem Col Com

0.
0

0.
5

1.
0

1.
5 H33C47I25

●●●

●●●●●●

ACS SS Mem Col Com

0.
0

0.
5

1.
0

1.
5 H33C47I50

●●●

●

●●

●

●

●●●

●

●●

●

●

●

●●

●●●●

●

ACS SS Mem Col Com

0.
0

0.
5

1.
0

1.
5

2.
0

H33C51I10

●●● ●●●

●●

●●

●

ACS SS Mem Col Com

0.
0

0.
5

1.
0

1.
5

2.
0

H33C51I25

ACS SS Mem Col Com

0.
0

0.
5

1.
0

1.
5

2.
0

H33C51I50

●●●●

●

●●●●●

ACS SS Mem Col Com

0
1

2
3

4
5

H33C67I10

●●●●●●●

ACS SS Mem Col Com

0
1

2
3

4
5

H33C67I25
● ●●●●●●

ACS SS Mem Col Com

0
1

2
3

4
5

H60C120I10

Figure 5. The 30 hypervolume values of each optimisation scheme on the instances where solutions are
found by all algorithms. SS = BACS (SS), Mem = BACS (Mem), Col = BASC (Col), and Com = BACS
(Com).

It can be seen that for the smaller problems, ACS is more effective than BACS. Moving from
top-left to the bottom-right of Figure 5, the complexity (and size) of the instances increases and
finding good quality and feasible solutions is harder. We see that as the problems become more
complicated, the BACS variants obtain larger hypervolumes. In particular, toward the bottom of
the Figure, BACS(Mem) shows its superiority in obtaining better quality solutions for the difficult
problem instances.

Algorithms 2020, 13, 252 15 of 19

6.3. Summary of Results

Table 1 summarises the feasibility as success rate and solution quality as the mean objective value
over the 30 runs and 18 problem instances.

Table 1. A summary of the performance of the algorithms across all instances. The results highlighted
in boldface are statistically significant.

ACS BACS (SS) BACS (Mem) BACS (Col) BACS (Com)

Success Rate 0.5 0.72 0.89 0.94 0.61
Mean Reliability 0.44 0.44 0.44 0.56 0.5
Mean Com. Overhead 0.62 0.62 0.71 0.92 0.86

The first row (Success Rate) shows the average success rate, or feasibility, across all instances
for all algorithms. This is calculated as the number of times a solution was found by the algorithm
relative to the total number of runs. Similarly, the second and third rows (Mean Reliability, Mean Com.
Overhead) show the average reliability and communication overhead, respectively, across all instances
(where feasibility was found) for each algorithm. We see here that BACS (Col) is the best performing
algorithm considering all measures, hence we conclude that using co-location bounds to guide the
optimisation method towards feasible regions is the most effective method in finding not only feasible
but also high-quality solutions.

Due to the stochastic behavior of the algorithms, we conducted 30 runs per algorithm, which
showed variability between runs in the results. Hence, the discrepancies are analysed for statistical
significance considering the reliability and communication overhead criteria and the levels of violations
seen. We performed an unpaired t-test on the means for all pairs of algorithms regarding reliability,
communication overhead and the total number of violations.

Let µdi f = µalg1 − µalg2 denote the difference between average reliability obtained from alg1 and
alg2. The following competing hypotheses are tested against each other.{

H0 : µdi f = 0

HA : µdi f 6= 0

The p-value of each test is obtained from the mean, the standard deviation, and the number of
successful cases seen in each algorithm. The following matrix represents the p-values for each test
given the 0.05 significance level.

BACS(Col) BACS(Com) BACS(Mem) BACS(SS)

0.0003 0.0026 5.18× 10−6 3.61× 10−5 ACS
0.8157 1.38× 10−1 8.39× 10−1 BACS(Col)

1.15× 10−1 6.5× 10−1 BACS(Com)
1.22× 10−1 BACS(Mem)

BACS(SS)

The first row of the matrix, clearly, shows that all versions of BACS are statistically different from ACS.
The same argument is valid in comparing the performance of different algorithms considering

the number of violations. In particular, the following matrix is the result of a pair-wise test of different
algorithms regarding violations.

Algorithms 2020, 13, 252 16 of 19

BACS(Col) BACS(Com) BACS(Mem) BACS(SS)

0.004 7.1× 10−5 0.005 0.006 ACS
7.73× 10−3 0.602 0.451 BACS(Col)

0.002 0.001 BACS(Com)
0.812 BACS(Mem)

BACS(SS)

The matrices of p-values, in particular the first rows, provide strong evidence of significant
differences between the algorithms, hence we conclude that the superior performance of BACS
is statistically significant.

7. Conclusions

This study investigates Beam Ant Colony System (BACS) for solving the highly constrained
multi-objective (reliability and communication overhead) component deployment problem. Four
variants of BACS are investigated where each variant is different with respect to the estimates used
to guide the search towards feasible regions. We find that three of the four BACS variants are more
effective than ACS with respect to feasibility. These are the variants that are based on stochastic
sampling, respecting memory constraints and enforcing co-localisation constraints.

The variant of BACS that enforces the communication constraints struggles with feasibility.
Regarding solution quality, we find that ACS is effective on small problems when feasibility is found.
With increasing problem size, the BACS variants are more effective, and in particular, BACS(Mem)
(respecting memory constraints) is the best performing algorithm in large problem. On the other
hand, BACS(Col) which prioritises co-localisation constraint is the overall best performing method,
both in terms of feasibility and solutions quality hence we recommend it for the highly constrained
multi-objective component deployment problem.

In the future, we plan to solve more difficult instances with a larger number of software
components and hardware units. In order to do this effectively, we will consider parallel
implementations of our methods via multi-core shared memory and message passing interface
(e.g., using approaches such as that of References [45–47]. Furthermore, approaches tailored for
multi-objective problems which deal with hard constraints effectively, can be of great potential [48–50].

Author Contributions: D.T. developed the algorithms and ensuing implementations and led the writing of the
manuscript. A.N. carried out the data analysis, prepared the visualisation, and wrote the experiment and results
section. A.A. provided the motivation for the problem, developed a problem generator, ideas for the algorithms,
and wrote parts of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fonseca, C.M.; Fleming, P.J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion
and Generalization. In Proceedings of the 5th International Conference on Genetic Algorithms, Champaign,
IL, USA, 17–22 July 1993; Volume 93, pp. 416–423.

2. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II.
IEEE Trans. Evol. Comput. 2000, 6, 182–197.

3. Guntsch, M.; Middendorf, M. Solving Multi-criteria Optimization Problems with Population-Based ACO.
In Proceedings of the Evolutionary Multi-Criterion Optimization, Second International Conference, EMO
2003, Faro, Portugal, 8–11 April 2003; Springer: Berlin, Germany, 2003; pp. 464–478.

4. Moser, I.; Montgomery, J. Population-ACO for the Automotive Deployment Problem. In Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation, GECCO’11, Dublin, Ireland, 12–16 July
2011; ACM: New York, NY, USA, 2011; pp. 777–784.

Algorithms 2020, 13, 252 17 of 19

5. Blum, C. Beam-ACO: Hybridizing Ant Colony Optimization with Beam Search: An Application to Open
Shop Scheduling. Comput. Oper. Res. 2005, 32, 1565–1591.

6. Blum, C. Beam-ACO for Simple Assembly Line Balancing. INFORMS J. Comput. 2008, 20, 618–627.
7. Thiruvady, D.; Moser, I.; Aleti, A.; Nazari, A. Constraint Programming and Ant Colony System for the

Component Deployment Problem. Procedia Comput. Sci. 2014, 29, 1937–1947.
8. Trivedi, K. Probability and Statistics with Reliability, Queuing and Computer Science Applications; Wiley: New

Delhi, India, 2009; pp. 337–392.
9. Medvidovic, N.; Malek, S. Software deployment architecture and quality-of-service in pervasive

environments. In Proceedings of the Workshop on the Engineering of Software Services for Pervasive
Environements, ESSPE, Dubrovnik, Croatia, 4 September 2007; ACM: New York, NY, USA, 2007; pp. 47–51.

10. Manlove, D. Algorithmics of Matching Under Preferences; World Scientific: Singapore, 2013.
11. Dimov, A.; Punnekkat, S. On the Estimation of Software Reliability of Component-Based Dependable

Distributed Systems. In Quality of Software Architectures and Software Quality; Reussner, R., Mayer, J.,
Stafford, J., Overhage, S., Becker, S., Schroeder, P., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2005; Volume 3712, pp. 171–187.

12. Cheung, R.C. A User-Oriented Software Reliability Model. IEEE Trans. Softw. Eng. 1980, 6, 118–125.
13. Krishnamurthy, S.; Mathur, A. On The Estimation of Reliability of A Software System Using Reliabilities of

Its Components. Softw. Reliab. Eng. Int. Symp. 1997, 146–155, doi:10.1109/ISSRE.1997.630860.
14. Reussner, R.; Schmidt, H.W.; Poernomo, I. Reliability prediction for component-based software architectures.

J. Syst. Softw. 2003, 66, 241–252.
15. Hamlet, D.; Mason, D.; Woit, D. Theory of Software Reliability Based on Components. In Proceedings of

the 23rd International Conference on Software Engineering, ICSE ’01, Toronto, ON, Canada, 19 May 2001;
pp. 361–370.

16. Gokhale, S.; Philip, T.; Marinos, P.; Trivedi, K. Unification of finite failure non-homogeneous Poisson
process models through test coverage. In Proceedings of the Seventh International Symposium on Software
Reliability Engineering, White Plains, NY, USA, 30 October–2 November 1996; pp. 299–307.

17. Singh, H.; Cortellessa, V.; Cukic, B.; Gunel, E.; Bharadwaj, V. A Bayesian Approach to Reliability Prediction
and Assessment of Component Based Systems. In Proceedings of the 12th International Symposium on
Software Reliability Engineering, Hong Kong, China, 27–30 November 2001; pp. 12–21.

18. Heydarnoori, A.; Mavaddat, F. Reliable Deployment of Component-based Applications into Distributed
Environments. In Proceedings of the Third International Conference on Information Technology: New
Generations (ITNG’06), Las Vegas, NV, USA, 10–12 April 2006.

19. Assayad, I.; Girault, A.; Kalla, H. A Bi-Criteria Scheduling Heuristic for Distributed Embedded Systems
under Reliability and Real-Time Constraints. In Proceedings of the Dependable Systems and Networks
(DSN’04), IEEE Computer Society, Florence, Italy, 28 June–1 July 2004; pp. 347–356.

20. Kartik, S.; Murthy, C. Task allocation algorithms for maximizing reliability of distributed computing systems.
IEEE Trans. Comput. 1997, 46, 719–724.

21. Bowen, N.; Nikolaou, C.; Ghafoor, A. On the assignment problem of arbitrary process systems to
heterogeneous distributed computer systems. IEEE Trans. Comput. 1992, 41, 257–273.

22. Ernst, A.; Jiang, H.; Krishnamoorthy, M. Exact Solutions to Task Allocation Problems. Manag. Sci. 2006,
52, 1634–1646.

23. Hadj-Alouane, A.B.; Bean, J.; Murty, K. A hybrid genetic/optimisation algorithm for a task allocation
problem. J. Sched. 1999, 2, 189–201.

24. Harris, I. Embedded Software for Automotive Applications. In Software Engineering for Embedded Systems;
Oshana, R., Kraeling, M., Eds.; Newnes: Newton, MA, USA, 2013; pp. 767–816.

25. Leen, G. Expanding Automotive Electronic Systems. IEEE Comput. 2002, 35, 88–93.
26. Papadopoulos, Y.; Grante, C. Evolving car designs using model-based automated safety analysis and

optimisation techniques. J. Syst. Softw. 2005, 76, 77–89.
27. Aleti, A.; Grunske, L.; Meedeniya, I.; Moser, I. Let the ants deploy your software—An ACO based deployment

optimisation strategy. In Proceedings of the International Conference on Automated Software Engineering
(ASE’09), IEEE Computer Society, Auckland, New Zealand, 16–20 November 2009; pp. 505–509.

Algorithms 2020, 13, 252 18 of 19

28. Moser, I.; Mostaghim, S. The automotive deployment problem: A practical application for constrained
multiobjective evolutionary optimisation. In Proceedings of the IEEE Congress on Evolutionary
Computation, Barcelona, Spain, 18–23 July 2010; pp. 1–8.

29. Aleti, A.; Meedeniya, I. Component Deployment Optimisation with Bayesian Learning. In Proceedings of
the International ACM Sigsoft Symposium on Component Based Software Engineering, Boulder, CO, USA,
20–24 June 2011; ACM: New York, NY, USA, 2011; pp. 11–20.

30. Meedeniya, I.; Aleti, A.; Avazpour, I.; Amin, A. Robust ArcheOpterix: Architecture optimization of
embedded systems under uncertainty. In Proceedings of the 2012 Second International Workshop on
Software Engineering for Embedded Systems (SEES), Zurich, Switzerland, 9 June 2012; pp. 23–29.

31. Aleti, A. Designing automotive embedded systems with adaptive genetic algorithms. Autom. Softw. Eng.
2015, 22, 199–240.

32. Sheikhalishahi, M.; Ebrahimipour, V.; Shiri, H.; Zaman, H.; Jeihoonian, M. A hybrid GA-PSO approach for
reliability optimization in redundancy allocation problem. Int. J. Adv. Manuf. Technol. 2013, 68, 317–338.

33. Liang, Y.C.; Smith, A. An ant system approach to redundancy allocation. In Proceedings of the 1999 Congress
on Evolutionary Computation-CEC99, Washington, DC, USA, 6–9 July 1999; Volume 2, pp. 1478–1484.

34. Kumar, R.; Izui, K.; Yoshimura, M.; Nishiwaki, S. Optimal Multilevel Redundancy Allocation in Series and
Series-parallel Systems. Comput. Ind. Eng. 2009, 57, 169–180.

35. López-Ibáñez, M.; Stützle, T. The Automatic Design of Multi-Objective Ant Colony Optimization Algorithms.
IEEE Trans. Evol. Comput. 2012, 16, 861–875.

36. López-Ibáñez, M.; Blum, C. Beam-ACO Based on Stochastic Sampling: A Case Study on the TSP with Time
Windows; Technical Report LSI-08-28; Department LSI, Univeristat Politècnica de Catalunya: Barcelona,
Spain, 2008.

37. López-Ibáñez, M.; Blum, C.; Thiruvady, D.; Ernst, A.T.; Meyer, B. Beam-ACO Based on Stochastic Sampling
for Makespan Optimization Concerning the TSP with Time Windows. Lect. Notes Comput. Sci. 2009,
5482, 97–108.

38. Thiruvady, D.; Blum, C.; Meyer, B.; Ernst, A.T. Hybridizing Beam-ACO with Constraint Programming for
Single Machine Job Scheduling. Lect. Notes Comput. Sci. 2009, 5818, 30–44.

39. Thiruvady, D.; Singh, G.; Ernst, A.T.; Meyer, B. Constraint-based ACO for a Shared Resource Constrained
Scheduling Problem. Int. J. Prod. Econ. 2012, 141, 230–242.

40. Thiruvady, D.R.; Meyer, B.; Ernst, A. Car Sequencing with Constraint-based ACO. In Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation, GECCO’11, Dublin, Ireland, 12–16 July
2011; ACM: New York, NY, USA, 2011; pp. 163–170.

41. Nazari, A.; Thiruvady, D.; Aleti, A.; Moser, I. A mixed integer linear programming model for reliability
optimisation in the component deployment problem. J. Oper. Res. Soc. 2016, 67, 1050–1060.

42. Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms — A comparative case study.
In Parallel Problem Solving from Nature—PPSN V, Proceedings of the 5th International Conference, Amsterdam,
The Netherlands, 27–30 September 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 292–301.

43. Auger, A.; Bader, J.; Brockhoff, D.; Zitzler, E. Theory of the Hypervolume Indicator: Optimal µ-distributions
and the Choice of the Reference Point. In Proceedings of the Tenth ACM SIGEVO Workshop on Foundations
of Genetic Algorithms, FOGA ’09, Orlando, FL, USA, 9–11 January 2009; ACM: New York, NY, USA, 2009;
pp. 87–102.

44. Fleischer, M., The Measure of Pareto Optima Applications to Multi-objective Metaheuristics. In Evolutionary
Multi-Criterion Optimization, Proceedings of the Second International Conference, EMO 2003, Faro, Portugal, 8–11
April 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 519–533.

45. Brent, O.; Thiruvady, D.; Gómez-Iglesias, A.; Garcia-Flores, R. A Parallel Lagrangian-ACO Heuristic for
Project Scheduling. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, China,
6–11 July 2014; pp. 2985–2991.

46. Cohen, D.; Gómez-Iglesias, A.; Thiruvady, D.; Ernst, A.T. Resource Constrained Job Scheduling with Parallel
Constraint-Based ACO. In Proceedings of the ACALCI 2017—Artificial Life and Computational Intelligence,
Geelong, Australia, 31 January–2 February 2017; Wagner, M., Li, X., Hendtlass, T., Eds.; Lecture Notes in
Computer Science; Springer International Publishing: New York, NY, USA, 2017; Volume 10142, pp. 266–278.

47. Thiruvady, D.; Ernst, A.T.; Singh, G. Parallel Ant Colony Optimization for Resource Constrained Job
Scheduling. Ann. Oper. Res. 2016, 242, 355–372.

Algorithms 2020, 13, 252 19 of 19

48. Li, X.; Li, M.; Yin, M. Multiobjective ranking binary artificial bee colony for gene selection problems using
microarray datasets. IEEE/CAA J. Autom. Sin. 2016, doi:10.1109/JAS.2016.7510034.

49. Wang, Y.; Liu, H.; Zheng, W.; Xia, Y.; Li, Y.; Chen, P.; Guo, K.; Xie, H. Multi-Objective Workflow Scheduling
With Deep-Q-Network-Based Multi-Agent Reinforcement Learning. IEEE Access 2019, 7, 39974–39982.

50. Guo, X.; Zhou, M.; Liu, S.; Qi, L. Lexicographic Multiobjective Scatter Search for the Optimization of
Sequence-Dependent Selective Disassembly Subject to Multiresource Constraints. IEEE Trans. Cybern. 2020,
50, 3307–3317.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Constrained Multi-Objective Component Deployment Problem
	Problem Description
	Reliability Objective
	Communication Overhead Objective
	Constraints
	Communication
	Co-Localisation
	Hardware Memory

	Multi-Objective Formulation
	Graph Representation

	Literature Review
	Methodology
	Ant Colony System
	Beam Ant Colony System (BACS)

	Experiments
	Algorithms
	Problem Instances

	Results
	Feasibility
	Solution Quality
	Summary of Results

	Conclusions
	References

