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ABSTRACT Sensor pattern noise (SPN) has been extensively studied in the scientific community and has
found its applications in many practical scenarios in the law-enforcement sector. However, the emergence of
photo-sharing social networking sites (SNSs) poses new challenges to SPN-based digital image provenance
analysis. One particular issue is that the SNSs’ built-in image editing tools tend to inflict distortion on SPNs.
One well-known example of such tools is the image filters on Instagram. We observed that some Instagram
image filters manipulate the high-frequency bands of the images and hence damage the SPNs, making
source-oriented clustering (SOC) of the filtered images unsatisfactory. To address this issue, we propose
to first separate the images processed by different filters beforehand into two groups, with Group Malignant
(M) containing the filters that significantly distort SPNs and Group Benign (B) covering the other filters that
have no significant impact on SPNs. We then cluster the images processed by Group B filters and calculate
the centroid of each cluster, with one centroid representing the reference SPN of the corresponding camera.
Finally, we use the centroid of each cluster to attract the images processed by the Group M filters in order
to complete the SOC task. To identify the filter applied to each image so as to facilitate the clustering,
a convolutional neural network based filter-oriented image classifier is proposed. Tested on 19,332 images
processed by 18 different filters, the classifier delivers a very promising accuracy of 98.5%. Moreover,
compared to the F1-measure of 47.74% by directly clustering on 1,800 filtered images, our proposed
clustering framework achieves a much higher F1-measure of 90.33%.

INDEX TERMS Sensor pattern noise, image clustering, social network, digital forensics, provenance
analysis.

I. INTRODUCTION
With the rapid development of mobile networks and the
ever-increasing prevalence of smartphones, photo-sharing
social networking sites (SNSs), such as Instagram, Facebook
and Flickr, have become ubiquitous in our daily life. With
millions of daily active users, these SNSs not only provide
effective platforms for information sharing but also exert
huge influence on commerce and politics. However, due to
the convenient and broad reach of these platforms, they have
been increasingly exploited for various malicious purposes,
e.g. fraudulent advertisement, fictitious news or even terror-
ism. Meanwhile, the sheer volume of user-generated content
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on these platforms provides a rich source of evidence acqui-
sition for forensic investigations. Thus, in recent years there
have been growing interests in developing forensic tools and
techniques to facilitate the investigations on the data collected
from SNSs. One important related topic is the provenance
analysis of images from SNSs. The provenance information
of digital images is essential for forensic investigations. For
example, when a forensic investigator is dealing with a set
of images of unknown sources from multiple social network
accounts, revealing the source devices of the images can
help the investigator to focus on the images from the same
source. In addition, linked and fake social network accounts
can be discovered by finding images from the same source
device across different accounts. This is because different
accounts with photos taken with the camera are likely to
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be closely linked (e.g., between family members or friends)
or fake accounts used in sybil attacks. With these telltale
provenance information, more effective investigations can
then be carried out. Though occasionally, one may use the
metadata of an image to retrieve its provenance information,
these information can still be questionable as the metadata
could be edited easily. Moreover, many SNSs deliberately
delete metadata from the images when they are uploaded.
The unavailability of the provenance information may entail
content-based analyses when rigorous forensic investigations
are required. Many optical and camera artifacts left in images
during in-camera processing or post-processing (e.g. lens
aberration [1], [2], CFA interpolation [3], JPEG compression
[4], [5], machine-extracted features [6], [7] and etc.), have
been used to attribute the source devices.

Among various techniques used for analyzing images’
provenance, the ones based on sensor pattern noise (SPN) [8]
have drawn extensive attention from researchers. As its name
indicates, SPN is a unique noise-like pattern introduced into
the image content by an imaging device’s sensor and can
be used as the fingerprint of the device. SPN has been
proved to be a powerful tool for provenance analysis, such as
source camera identification (SCI) [9]–[13], source-oriented
clustering (SOC) [14]–[22] or forgery detection [23], [24] .
Almost all the above-mentionedmethods were only evaluated
on images straight from cameras without undergoing any
post-processing except mild JPEG compression. However,
there have been increasing doubts cast on the effectiveness
of SPN-based methods on images from SNSs, where users
can apply various built-in photo-editing tools, e.g. ‘Filters’ on
Instagram and ‘Effects’ on Facebook, to the images before
posting them online. SNSs users can easily manipulate the
images by selecting their desired visual styles with just a
few finger taps. Such manipulations may contaminate or
attenuate the SPN embedded in the images, which may
potentially compromise its effectiveness for forensic inves-
tigations. Thus, in this work, we aim to investigate how
these built-in editing tools may affect the quality of SPN.
We are particularly interested in the effects of image filters
on Instagram as it is one of the most popular photo-sharing
platforms. Our recent work in [25] has preliminarily shown
that some Instagram image filters are particularly harmful
to SPN-based clustering. In this work, we conduct further
investigation on images from Instagram to gain a better
understanding of how SPN-based clustering methods are
affected by these filters. As we shall see later in this work,
the investigation shows that though the devices’ SPNs may
survive the impact by the filters, the artifacts introduced
by some filters can lead to significant performance dete-
rioration in SOC. To address this problem, we propose a
three-step clustering framework by segregating the images
based on the filters applied to them. The proposedmethod can
significantly improve the clustering performance on images
filtered by different filters and provide us with a feasible
solution to perform SOC on images from social network
sites.

The rest of this work is organized as follows. An intro-
duction to the background and related work is given in
Section II. Section III shows the preliminary test of the exist-
ing SPN-based source camera identification and clustering
methods on images from Instagram. The proposed three-step
clustering method is shown in Section IV. Section V
presents the experimental results while Section VI draws the
conclusion.

II. BACKGROUND AND RELATED WORKS
SPN is the fixed noise pattern in an image introduced by
the imaging sensor. Despite that different sources may con-
tribute to SPN, the most dominant component is the photo
response non-uniformity (PRNU) noise, which arises due to
the non-uniform pixel sensitivities to the incident photons.
Such non-uniformity is inevitable due to the inhomogene-
ity of silicon wafers during sensor manufacturing process.
Besides, such pixel-to-pixel discrepancy makes SPN unique
to its sensor. Thus, it becomes a feasible choice for source
camera fingerprinting. Typically, the SPN is approximated as
the noise residual n, which can be extracted by subtracting
the original image I from its de-noised version Î:

n = I − Î (1)

For SCI, its goal is to identify the source camera of the image
in question among a number of candidate cameras. To serve
this purpose, the normalized cross-correlation is usually used
to measure the similarity between the noise residual n of the
image and a set of reference SPNs {ri}Ki=1 of K candidate
cameras:

ρi = corr(n, ri) =
(n− n̄) · (ri − r̄i)
‖n− n̄‖‖ri − r̄i‖

, (2)

where the reference SPN ri is constructed by averaging the
noise residuals extracted from another set of images (usually
blue-sky or flat-field images) taken by camera i. The image
under investigation is deemed to be from the camera corre-
sponding to the highest similarity that exceeds a predefined
threshold.

Generally speaking, SCI is a relatively easy task provided
that the high-quality reference SPNs are available. In com-
parison, it is more challenging for SOC, where we aim to
group a set of images of unknown sources into a number
of clusters, such that the images in the same cluster are
taken by the same camera. For this task, we often face the
challenges of an unknown number of source devices and
low-quality of the SPNs extracted from single images. Many
techniques or combinations of them have been proposed
for SPN-based SOC following the early work from [14],
including the methods based on hierarchical clustering [15],
[26], graph-based approaches [16]–[19], constraint optimiza-
tion [20] and Markov random field [21]. However, due to
the unavailability of the reference SPNs, these algorithms
have to rely on the pairwise correlations between individual
noise residuals, which are more susceptible to SPN-irrelevant
interferences, especially for the images from SNSs that may

168310 VOLUME 8, 2020



Y. Quan et al.: Provenance Inference for Instagram Photos Through Device Fingerprinting

FIGURE 1. Example images of the 17 Instagram filters together with the original image (Normal) used in our experiment [25].

have undergone a series of post-processing operations. This
raises doubts about whether SPN-based provenance analysis
methods remain effective on images from social network
sites.

Goljan et al. [27] perform a large-scale test of SPN-based
camera identification on images downloaded from Flicker
and show very promising results with a small false rejec-
tion rate <0.0238 at a false acceptance rate <2.4×10−5

for 6896 cameras with 150 different camera models. How-
ever, comparing to other social networking platforms, Flickr
allows the uploaded images to be stored in their original
resolution with no or very little compression, so it does not
fully reflect the difficulty of the problem we usually face
when performing image provenance analysis on other SNSs.
Satta and Stirparo [28] use SPNs to build the link between a
photo and the user accounts of the person that has shot the
photo. A probe photo is considered to be from the account
containing the image with the highest matching score to the
probe photo. Their method achieves a recognition rate of
∼ 50% by evaluating 2896 images from 30 different accounts
across different SNSs, namely Flickr, Facebook, Google+
and personal blogs. The low recognition rate and the lack
of in-depth investigation into the effect of image operations
make it necessary to conduct further studies on the SPN-based
provenance analysis of images from SNSs.

More recent work [29], [30] discover that different SNSs
may apply different image manipulations, which leave dis-
tinctive artifacts that can be used to trace the origin SNSs of
the images. Moreover, they show how common it is for the
SNSs to apply ‘hidden’ image manipulations, such as resiz-
ing and re-compression, to fulfill the system requirement,
which may affect the SPN and pose challenges to SPN-based
provenance analysis. Apart from the above-mentioned image
manipulations, many SNSs also provide explicit image
manipulation tools to allow the users to edit image effects

according to their own preferences, with the ‘Filters’ from
Instagram being the most famous example. While these tools
enrich the user experience, they may also manipulate the
images in a way that may make the SPN-based provenance
analysis method ineffective. As a preliminary investigation
in [25], we found some image filters of Instagram may cause
significant performance drop of existing SPN-based SOC
methods. In this work, we will further investigate the effects
of Instagram filters and propose a new method to mitigate the
impact of image filtering.

To carry out this work, we prepared a datasetD with a large
number of images of known sources and applied different
image filters to them. We selected 5, 370 images captured
by 25 cameras, with at least 137 images from each camera,
from the VISION image dataset [31]. The images are aligned
to the same horizontal orientation according to their EXIF
data and cropped to the size of 1080 × 1080 × 3 pixels to
match the default image size on Instagram. For each image,
we applied 17 different Instagram image filters by running
the Instagram application on an iOS simulator. Thus, together
with the original version, we generated 18 different versions
of each image and in total 96, 660 images for the use in our
work. Fig. 1 shows a sample image for each filter together
with the original image (labelled as ‘Normal’ filter as it is
termed on Instagram). In addition, we also processed images
from Dresden Image Dataset [37] and form various subsets
of D to carry out tests on different aspects of device finger-
print based provenance analysis and our proposed framework.
An overview of these datasets are shown in Table 1.

III. EXISTING SPN-BASED PROVENANCE ANALYSIS ON
INSTAGRAM IMAGES
A. SPN-BASED SCI FOR INSTAGRAM IMAGES
In this section, we investigate the effect of different Instagram
image filters on the task of SPN-based SCI. Specifically,
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TABLE 1. An overview of different datasets used for different parts of the work with information including the source of the original images. D , which is
derived from VISION dataset, is the main dataset used in this work, including the training and testing of the proposed CNN-based filter classifier in
Section V-A. DSCI is a subset of D , which is used to test device fingerprint based SCI in Section III-A. DDresden is derived from Dresden Image Database
and used to show the proposed CNN-based filter classifier is not outfitted t the training cameras in Section V-A. D2, D3, D4, D5, D6 are subsets of D
with different sizes, used to test proposed clustering framework in Section V-C.

TABLE 2. Source camera identification result for different Instagram image filters.

FIGURE 2. The correlation distributions for filtered images from an iPhone4s with its reference SPN with the central
points representing the means and the error bars for the standard deviations. The distributions of the correlations
between filtered inter-class images with the smartphone’s original reference SPN are also shown in the figure.

we perform SCI by examining the correlations between the
noise residuals extracted from the filtered images with the
reference SPNs, each of which is estimated from 50 flat-field
images taken by the same camera. Note that these flat-field
images are original images to ensure the high quality of
reference SPNs. Thus, the performance of the source camera
identification task can serve as the baseline for the qual-
ity of the SPN embedded in the Instagram images. BM3D
de-noising algorithm [32] is used to extract the noise residual
for each image. For the reference SPN of each camera, its
correlations with 21, 150 inter-class original images (i.e. the
ones from different source cameras) are computed to estimate
the inter-class correlation distribution. Then we determine
a decision threshold {τi}25i=1 for each camera according to
the corresponding inter-class correlation distribution based
on the Neyman-Pearson criterion (by setting the false pos-
itive rate as 1×10−3). We formed a testing dataset DSCI

with 50 test images {I ijl }
50
l=1 for each camera i processed

by each filter j randomly selected from D . For each test
image I ijl , the largest correlation ρi? among the correlations
{ρi}

25
i=1 between its noise residual n

ij
l and the reference SPNs

{ri}25i=1 of candidate cameras is compared with the pre-defined
threshold τi∗ to examinewhether the image is from the camera
i∗ or from an unknown source. The accuracy of the SCI
for each filter is shown in Table 2. In addition, to explicitly
demonstrate the quality of SPN embedded in the filtered
images, we select one camera (an iPhone4s) and plot the
intra-class correlation distributions between the test images
with the reference SPN for different filters in Fig. 2, where
we use central points and error bars to represent the means
and standard deviations of the distributions, respectively.

Table 2 shows that for each filter, the identification accu-
racy for the images processed by the same filter is comparable
to that for the ‘Normal’ images. This is no surprise when we
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look at the correlation distribution plot in Fig. 2. As different
devices show similar behaviour, we use an iPhone4s as an
example. First, we notice that different Instagram image fil-
ters have almost no impact on the inter-class distribution. Sec-
ondly, when we compare the intra-correlation distributions
from different image filters to the original images (‘Normal’),
we can only notice small reductions in intra-class correlation
values and such reductions are insignificant compared to the
difference between intra- and inter-class distributions. This
explains why SCI remains accurate when image filters are
applied to the images. Most importantly, these results imply
that the SPN is well preserved in the filtered images though
it may be affected differently by filtering operations. In other
words, SPN is still useful for image provenance analysis even
after the Instagram image filters have been applied.

B. SPN-BASED SOC FOR INSTAGRAM IMAGES
While the above SCI results show that the SPN is preserved
in the filtered images, SOC relying on the pairwise similari-
ties between the noise residuals of individual images can be
more challenging. For SCI, as the reference SPN is immune
from the filter-related artifacts, the inter-class correlation
is unlikely to be altered. However, for SOC, the common
artifacts introduced by the same filter may falsely increase
the pairwise correlations between inter-class images, which
might lead to filter-oriented rather than source-oriented
clustering results. Thus, SOC is more vulnerable to these
filter-related artifacts.

To investigate further, we test the images with the fast
clustering (FC) method from [21], which has shown good
precision and recall rates when applied on unedited original
images from public image datasets. As a whole, we perform
the SOC task on a test dataset, namely D4, which consists
of 1800 images with 72 images from each of the 25 cameras
in D . The 72 images of each camera consist of 4 images
randomly selected from those filtered by each of the 18 filters,
which results in 4×25=100 filtered images for each filter.
As shown in Table 4, the precision, recall and F1-measure are
61.11%, 39.17% and 47.74%, respectively, which are much
lower even than the results (precision: 92.1%, recall: 81.2%,
F1-measure: 86.3%) reported for the hard dataset D4 in [21].
To show that the performance is not biased to a specific
algorithm, results are also shown in Table 3 for the hierarchi-
cal clustering (HC) method [15], the normalized cut-based
clustering (NCUT) method [17] and consensus correlation
clustering (CCC) method [18]. The low F1-measure rates for
all the algorithms clearly show that it is a common challenge
for existing SPN-based SOC algorithms to analyze Instagram
images.

Additionally, to investigate how each filter affects the clus-
tering results, we also perform separate clustering on the
images filtered by the same filter. For each filter, we select
40 images from each of the 25 cameras in D . Thus, for
this experiment, the clustering for each filter is evaluated on
1000 images. The results are shown in Table 3. An interesting
observation made from Table 3 is that, among the filters we

TABLE 3. SOC results for different Instagram Image filters. The filters in
Group M are highlighted with gray background.

FIGURE 3. Comparison of the pairwise correlations between images with
no filters applied (‘Normal’) and between images filtered by ‘Hefe’ filter.
(a) Distributions plot for the pairwise intra- (yellow) and inter-class (red)
correlations from 25 different cameras. (b) Visualization of the pairwise
correlations for images from 25 different cameras. The intra-class
correlations are surrounded by red squares. The brighter color indicate
larger correlation values.

have tested, some filters dramatically deteriorate the cluster-
ing performance while the others result in comparable clus-
tering performance to that on original images. We, therefore,
refer to the former set of filters as GroupM because the filters
are malignant for SPN-based SOC and the latter set of filters
as Group B because the filters are ‘benign’. When there is no
ambiguity, we will also use Group M and Group B to refer to
the images filtered by the former and the latter set of filters,
respectively. We find that for Group M filters, the images are
clustered into a single cluster, which is responsible for the low
precision rate of 4.0%, i.e. each of the 25 camera accounts for
40 images in the resultant single cluster. This can be largely
attributed to the common artifacts shared between the images
filtered by the same filter. An example is shown for filter
‘Hefe’ in Fig. 3(a), where we plot the intra- and inter-class
correlation distributions for original images (i.e. ‘Normal’)
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FIGURE 4. Flowchart of the proposed method for SPN-based source oriented clustering on Instagram images.

TABLE 4. Clustering result on 1800 images with mixed filters and native
images using the fast clustering (FC) method [21], the hierarchical
clustering (HC) based method [15], the normalized cut-based
clustering (NCUT) based method [17] and the consensused correlation
clustering (CCC) based method [18].

and the images processed by filter ‘Hefe’. We also show the
two corresponding grayscale plots of the 1000×1000 pair-
wise correlation matrices computed with 1000 ‘Normal’ and
‘Hefe’ images, respectively, in Fig. 3(b).We can see that there
is an apparent increase in mean and variance for both inter-
and intra-class distributions for filter ‘Hefe’. It is noteworthy
that the increase of intra-class correlations is caused by the
filter-related artifacts, thus it is not beneficial for camera-
oriented clustering but rather gives rise to misleading filter-
oriented results. Therefore, a clustering algorithm that can
mitigate the effect of the artifacts introduced by the filters in
Group M is needed for the effective provenance analysis of
Instagram images.

IV. PROPOSED METHOD
In the previous section, we have demonstrated the difficulty
in SPN-based SOC on Instagram images, which arises mainly
because of the artifacts introduced by the filters in Group
M. Inspired by the success of the SPN-based SCI, for which
the reference SPNs are available, we develop a framework
that first performs clustering on the images in Group B and
use the resultant clusters to process the images in Group M.
We, therefore, propose a three-step strategy for the SOC on
Instagram images. In the first step, a classifier is constructed
for filter-oriented image classification to separate the images
processed by Group B filters from the rest. In the second
step, SOC is performed only on the images classified as

processed by the filters in Group B. In the final step, we use
the centroids of the clusters discovered in the second step
as the reference SPNs to identify the source cameras for the
remaining images, similarly to the task of SCI as described in
Section III-A.
The three steps of our proposed framework are illustrated

in Fig. 4. Specifically, we first pass the images to a convolu-
tional neural network (CNN) based classifier to identify the
image filter that has been applied to each image. Based on the
classification result, we can separate the images into two sets,
S†B and S†M for the images filtered by a filter from Group B
and M, respectively. Due to classification errors, there might
be images filtered by a Group M filter left in S†B. To further
purify S†B, we refine the images S†B by comparing the pairwise
correlations and the number shared nearest neighbours (SNN)
[33] for images in S†B. If we found that some images in S†B are
more likely to be from S†M , we will remove them (i.e. S††M )
from S†B to form a purified SB. Then we apply the clustering
algorithm to the images in SB to find the set of clusters C .
Using the centroids of the clusters in C as the reference SPNs
{ci}, we can approach the clustering as a SCI problem by
attracting the images remained in S†M and S††M with {ci} to form
the final clustering result.Wewill present the details about the
CNN-based classifier and the classification refinement step in
the following parts of this section.

A. CNN-BASED INSTAGRAM FILTER CLASSIFIER
The proposedmethodmainlymitigates the negative impact of
the filters in Group M by segregating the images according to
the filter classification result. Thus, the performance of the
classifier is key to the proposed framework and the classifier
needs to be designed carefully. As the Instagram filters may
differ from each other greatly, manual feature engineering
requires a great amount of study for each filter and the fixed
definition of image features might not be helpful when we
need to deal with forthcoming filters that are not covered by
this study. Moreover, the artifacts introduced by the filters
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FIGURE 5. The network architecture of the proposed filter-oriented image classifier. The network takes 1080× 1080× 3 images as input
and outputs a vector of length 18 for the classification. The network consists of 7 convolutional layers (shown in yellow) and 3 fully
connected layers (shown in purple). In addition, every convolutional layer is followed by a max-pooling layer. The kernel size for the
convolutional layers is 3× 3 pixels throughout the network. The number at the bottom is the number of channels for the layer while the
number at the sides are the dimension of the layer.

can be content dependent, which may result in very different
artifacts for the same filter. Therefore, we use a Convolutional
Neural Network (CNN) based classifier to automatically
extract features for the filter-oriented image classification
task. The CNN architecture used in this work takes inspiration
from the well-knownVery Deep Neural Networks (VGG-net)
[34], which has shown great performance on different image
classification tasks. Particularly, Gatys et al. [35] manage to
use VGG-net to extract and transfer the artistic styles of an
image from one artwork to another, which is similar to adding
visual effects to an image by applying Instagram filters. This
shows that the network architecture is capable of extracting
the features from dissimilar styles and inspires us to adopt a
similar network architecture for classifying Instagram filters.

The network architecture used in this work is shown
in Fig. 5. It consists of 7 convolutional layers for feature
extraction and 3 fully connected layers for classification.
Batch normalization [36] is applied to all the hidden layers.
The input size of the network is set to 1080 × 1080 × 3,
which is the default image size of Instagram. As we aim
to classify the images into 18 different classes, the network
produces a vector of 18 elements. Softmax function is applied
to the vector such that each element in the vector repre-
sents the probability of the corresponding image filter being
applied to the input image. The network design shares a
few similar characteristics with the VGG-net. The VGG-net
features small kernel size for the convolutional layers
(e.g., 3 × 3 pixels). This enables the convolutional layers to
focus onmicroscopic features such as texture. Combinedwith
a large number of layers resulting in a large receptive field,
the network can extract the macroscopic feature such as color
tone at the same time. This makes VGG-net an ideal choice
to distinguish the filters. However, the requirement of large
input size makes directly adopting the ordinary VGG-net
very memory-consuming. Hence, our proposed network has
two major differences compared to the ordinary VGG-net.

The first difference is that the number of channels for each
layer in the proposed network is much smaller than that
used in VGG-net. Secondly, in our proposed network, each
convolutional layer is followed by a max-pooling layer with a
stride of 2. The max-pooling layers help the network extract
features more efficiently and the input size of each layer is
reduced significantly as the network gets deeper. With these
two modifications in place, the memory consumption and
the computational cost are significantly reduced, making the
network more practicable.

B. IMAGE FILTER CLASSIFICATION REFINEMENT BASED
ON SNN-CORRELATION DIFFERENCE
Though a CNN-based classifier is proposed to distinguish
Group M and B image filters and its effectiveness can be
seen in the following section, its imperfect accuracy does
not guarantee a complete separation between images with
filtered by Group M and B filters. Thus, some images with
Group M filters applied could remain in S†2 , which can
affect the performance of the proposed clusteringmethod. For
example, a cluster contains a significant proportion of images
processed by a GroupMfilter, the centroid the cluster is more
likely to mistakenly attract images processed by the same
filter later. Thus, to alleviate this problem, a classification
refinement step is proposed below.

The main challenge we face by the inclusion of Group M
filter applied images in S†B is that they may falsely increase
the correlations between inter-class images and ultimately
bring the risk of grouping the inter-class images into the
same cluster. However, for these falsely increased inter-class
correlations, the image pairs corresponding to them may
share very different neighbours with each other. Figure 6
shows three clusters of images from three different cam-
eras (represented by three orange circles) and four images
(node a, b, c and d) filtered by the same Group M filter. The
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FIGURE 6. A demonstration of how the proposed filter classification
refinement method may discover the images filtered by Group M filters
remained in S†

B. Each node in the figure represents a candidate image to
be clustered and the three circles represents the three ground truth
clusters these images belonged to. Nodes a, b, c , d are four images with
the same Group M filter applied. Dashed lines are used to indicate the
correlations between them may be falsely increased due to the filter.

dashed lines between a, b, c and d indicate the correlations
between them might be falsely increased due to the same
applied filter. Statistically, the intra-class correlations should
be higher than the inter-class correlations which makes the
intra-class image pairs to be closer neighbours to each other.
As a result, even though a and b may have a large correla-
tion between them, these two images share very few close
neighbours with only c and d as the shared neighbours.
It gives us a clue that the disagreement between the pairwise
correlations and SNN [33] can be used to discover the images
with Group M filters applied left in S†B. Thus, we aim to
find the image pairs with large correlation between their
noise residuals but sharing few neighbours by the measure
of correlation distances. More specifically, we remove the
ith and jth image from S†B if ρij > τ1 and sij < τ2,
where ρ and s are the pairwise correlation matrix and the
SNN matrix, respectively. τ1 and τ2 are the two threshold
determined from the estimated intra-class correlations and
intra-class SNN for each image. To estimate the intra-class
correlation and SNN values, we follow the method from [21]
using k-means clustering with k set to 2 to differentiate the
pairwise correlations and SNNs. Empirically, we set τ1 to the
top 5% of the intra-class correlations and set τ2 to the smallest
value of the intra-class SNNs.

In the demonstration, we assume that the Group M filter
applied images left in S†B are from multiple cameras and there
are only a few of them in S†B. Apparently, it is not always
the case as described by these two assumptions and they may
not hold. However, when these two assumptions do not hold,
though the proposed method may become less effective, its
mechanism of finding the obvious disagreement between the
pairwise correlations and SNNs prevents it from repeatedly

removing Group B filter applied images and deteriorate the
performance of the clustering step. Thus, it is beneficial to
apply the proposed refinement to S†B to purify S†B after the
classification step.

V. EXPERIMENT
A. CNN-BASED INSTAGRAM FILTER-ORIENTED IMAGE
CLASSIFIER
We first perform a comprehensive evaluation for the pro-
posed CNN-based Instagram filter-oriented image classifier
before using it in our proposed three-step SOC framework.
As mentioned in Section II, we generate a dataset by filter-
ing 5, 370 images of 25 different source devices from the
VISION image dataset using 18 different Instagram filters,
which results in a dataset D consisting of 96, 660 images.
These images are divided into training, validation and test
sets with a ratio of 60%:20%:20% by randomly selecting an
equal number of images filtered by each filter. The proposed
network is trained on a desktop with an Intel Core i7-9700K
CPU and a Nvidia Geforce RTX 2080 Ti GPU. The special
design of the network significantly reduces the consumption
of GPU memory, which allows us to train the neural network
with a batch size of up to 64. For the rest of this work, we will
report the results generated with the classifiers trained with a
batch size of 64. We train the classifier for 50 epochs using
cross-entropy loss and a learning rate of 2×10−3.

Instead of altering the semantic content of an image,
most Instagram filters change the image’s visual style and
introduce different levels of textures, which mainly affects
the high-frequency components of the image, where SPNs
reside. This motivates us to investigate the contributions of
the image content itself and the high-frequency components
(noise residual) to the classification result. Thus, we pre-
process the 96, 660 images and generate twomore versions of
input to the network, namely the denoised image and the noise
residual of the image, i.e. Î and n in Equation 1. Again, we use
BM3D denoising algorithm [32] to generate the denoised
version of the images and extract the noise residuals from
three color channels of each image. In such a way, n will
have the same dimension as I and Î , which allows them to be
fed to the network without changing the network structure.
Finally, we train three networks with these three different
inputs, namely I-net for the original images, Î-net for the
denoised images and n-net for the noise residuals.
The precision P and recall R rates for 18 filters are

reported in Table 5. Interestingly, we notice that n-net, which
takes the noise residuals as the input, outperforms the other
two networks for almost all image filters. Though for some
filters, I-net and Î-net have higher precision or recall rates
than n-net, the performance gap is very small (within about
1% for P and 1% ∼ 5% for R). Furthermore, both I-net
and Î-net have problems identifying ‘Normal’ images, which
are the unedited original images. In comparison, the n-net
has a precision rate of 96.61% and 98.04% for the ‘Normal’
class. The high performance of n-net can help the forensic
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TABLE 5. The precision (P) and recall (R) rates for different filters from
the proposed CNN-based filter-oriented image classifier trained with
different inputs (I-net, Î-net and n-net). The best precision and recall
rates for each filter are marked by gray background.

investigators to better identify unedited images. Overall,
the n-net achieves a precision of 93.52% for all filters while
I-net and Î-net reach 79.92% and 87.29%, respectively. The
high precision of n-net shows the effectiveness of the pro-
posed CNN-based classifier. We also show the confusion
matrix for the classification of Group M and Group B fil-
ters as a whole in Table 6. Again, n-net shows superior
performance with only 1.5% of the images in Group M
misidentified. Due to the better performance of n-net, we will
use it as the filter-oriented image classifier for the following
experiments of this work.

TABLE 6. Confusion matrix for the classification of Group M and B
applied images produced by the proposed CNN-based filter-oriented
image classifiers.

Despite the proposed network’s high accuracy on filter
classification, we have concerns about the generalization of
the network to new cameras and filters. First, inmany realistic
forensic scenarios, the training and test images are quite
unlikely to be from the same cameras. If a trained network is
overfitted to the cameras in the training set, it will not perform
well on the images from another set of cameras. To show
that our trained network is not overfitted to the cameras in
the training set, we test the trained n-net on images captured
by 11 different cameras of the Dresden Image Database [37].
We form a testing dataset DDresden with 18 different versions
for each image from the cameras by applying the 18 dif-
ferent filters, resulting in a total of 29, 700 images. The
classification results on DDresden are shown in Table 7, where
n-net shows similar performance as on the images from the
VISION dataset, confirming that the trained model is not
overfitted to cameras in the training set.

TABLE 7. Filter classification result on images from Dresden Image
Database [37] predicted by n-net trained with images from VISION
dataset [31].

Secondly, new filtering features of Instagram are being
developed continually. Thus, despite the 18 filters could be
representative for studying the impact of filters on provenance
analysis, wewould like the classifier to be adaptive and robust
to the filters that are not included in the training set. Thus in
this experiment, we aim to show that the proposed network
trained on a certain number of filters can be easily adapted
for other filters by applying transfer learning. We test the
n-net by training it with images processed by 10 filters first
and then apply transfer learning to the trained network to
make it available for images processed by other filters as well.
To facilitate transfer learning, we change the length of the
last layer of the network to match the number of filters the
network needs to predict for and keep the rest of the structure
unchanged. The weights for the first five convolutional layers
are fixed for the transfer learning process and each network
is trained for another 10 epochs only. The performance of
the network is shown in Table 8. It shows that despite the
a disproportional change of number of filters from 10 to 18,
the F1-measure remains at a reasonably high level, indicating
that the network is able to extract generalized features for the
filters by training on only a small number of filters.

TABLE 8. Filter classification results on images from different number of
filters by the proposed CNN-based classifier with transfer learning
applied. The base model of the classifier is trained with images from
10 different filters.

B. CLASSIFICATION REFINEMENT
In this section, we are going to test the performance of the
proposed classification refinement method. We test the pro-
posed method by performing clustering on image datasets of
different sizes. First, we construct 5 image datasets with 900,
1350, 1800, 2250 and 2700 images, respectively. For each
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image dataset, we have equal number of images randomly
chosen from 25 source devices and from 18 different filters.
Thus, with each filter, each camera accounts for 2, 3, 4, 5 and
6 images for the above mentioned four datasets. We name the
five datasets as D2, D3, D4, D5 and D6 for convenience.
As we have seen from Section V-A, the proposed

CNN-based filter classifier may leave about 1.5% of Group
M filter applied images in S†B. Thus, to ensure the misclas-
sified images that have been processed by Group M filters
would not contaminate the cluster centroids extracted after
the clustering step and worsen the performance of the ensuing
centroid attraction, the performance of the proposed filter
classification refinement step can be critical. Figure 7 illus-
trates the performance of the proposed filter classifier and the
classification refinement method over the test datasets. First,
we notice as we have seen from Section V-A, the classifier’s
performance is satisfactory even for the biggest dataset, D6,
with 2700 images in total and 1050 Group M filter applied
images. Only 18 Group M filter applied images are misiden-
tified and included in S†B.

FIGURE 7. The performance of the proposed CNN-based filter classifier
and the classification refinement method tested on image datasets of
different sizes.

To apply the proposed classification refinement method,
the pairwise correlation matrices and the SNN matrices for
the datasets were computed. To compute the pairwise cor-
relations, we use the green channel of the full-sized noise
residuals from each image. For the computation of the SNN
matrices, we compare the 20 nearest neighbours of each
image between the image pairs. Following the method pro-
posed in Section IV-B, the number of Group M filter applied
images removed from S†B is plotted in yellow as shown
in Fig. 7. The total number images in S††M , which is the set
of the images removed from SB† by the refinement method,
is plotted in red for each tested dataset. From Fig. 7, though
as it has been discussed in IV-B, we can see clues indicating
that the performance of the proposed refinement method is
less effective when the number of Group M filter applied
images are too small (e.g. D2) and Group M filter applied

images become less sparse in S†B (e.g. D6), overall, it shows
the proposed refinement method is effective in reducing the
number of Group M filter applied images in S†B. As a result,
the subsequent clustering and centroids attraction steps from
the proposed three-stage clustering framework can be less
affected by the Group M filters.

Another aspect worth mentioning is that though the
proposed classification refinement step may also remove
some Group B filter applied images from S†B, it is not a
serious problem. First, the number of images being removed
is small comparing to the total number of Group B filter
applied images to be clustered (e.g. 8 images falsely removed
from 1650 Group B filter applied images inD6). More impor-
tantly, by applying the proposed refinement step, the cen-
troids extracted from the clusters can be less contaminated
by the Group M filters, which makes them more represen-
tative for the source device each cluster accounts for. With
each centroids better representing the source devices in the
test dataset, the wrongly removed Group B filter applied
images can have greater chance being attracted to the right
cluster during the centroids attraction step. Overall, by test-
ing over different datasets, the effectiveness of the proposed
classification refinement step is proved.

C. SOURCE-ORIENTED CLUSTERING OF INSTAGRAM
IMAGES
After testing the effectiveness of the proposed CNN-based
image filter classifier and the classification refinement
method, we test the overall performance of the proposed
three-stage clustering framework with the five datasets men-
tioned above. We use the SOC method in [21] to perform the
clustering step as described in Section IV. The centroids for
each cluster are calculated by averaging the noise residuals
of the images in the cluster. Table 9 shows the precision,
recall and F1 measure for the proposed framework on the five
test sets, the same ones as in Section V-B. Though the per-
formance varies slightly across different datasets, the frame-
work is able to obtain F1 measures over 80% for all of
the five test sets. The consistently high F1-measures show
the effectiveness of the proposed framework. Comparing the
performance of the proposed framework over D4 in Table 9
with the results from Section III-B, which was obtained on
the same set of images, by applying the same clustering
method proposed by [21] without using the three-step clus-
tering framework, an overall improvement in both precision

TABLE 9. The performance of the proposed three-step clustering
framework on 5 Instagram image dataset of different sizes. The figures in
the table are presented in percentage.
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and recall rate can be observed. Thus, despite the Group M
filters may contaminate the SPNs embedded in the images,
the proposed three-step clustering framework provides a
practical solution to perform SPN-based SOC on Instagram
images.

VI. CONCLUSION
With built-in image editing tools like ‘filters’ on Instagram
becoming a common practice on SNSs, these tools ultimately
pose new challenges to sensor pattern noise (SPN) based
forensic investigations. In this work, using Instagram filter
as an example, we took a close look at the impact of these
image editing tools on SPN-based source camera identifi-
cation (SCI) and source-oriented clustering (SOC). We dis-
covered that though SPN-based SCI remains effective for
filtered images on Instagram when quality reference SPNs
are available, the artifacts introduced by certain Instagram
filters can severely affect the performance of SPN-based
SOC as there is no reference SPN. To address this problem,
we proposed a three-step clustering framework. As a main
component of the framework, a CNN-based filter-oriented
image classifier is proposed and it achieves an overall 93.52%
precision in identifying the filters applied to images. We have
also shown that the proposed CNN architecture generalizes
well on new cameras and image filters. With the success of
the filter-oriented image classifier, the proposed three-step
clustering framework achieves an F1-measure of 90.33% in
SOC, which is a significant improvement compared to the
F1-measure 47.74% obtained by directly applying existing
clustering methods on Instagram images. Thus, the frame-
work provides a practical solution for the provenance analysis
of user-edited images on SNSs. For future work, we will
develop methods to deal with cross-platform in-app editing
tools to cluster images from multiple SNSs.
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