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ABSTRACT Early recognition of citrus diseases is important for preventing crop losses and employing
timely disease control measures in farms. Employing machine learning-based approaches, such as deep
learning for accurate detection of multiple citrus diseases is challenging due to the limited availability
of labeled diseased samples. Further, a lightweight architecture with low computational complexity is
required to perform citrus disease classification on resource-constrained devices, such as mobile phones.
This enables practical utility of the architecture to perform effective monitoring of diseases by farmers
using their own mobile devices in the farms. Hence, we propose a lightweight, fast, and accurate deep
metric learning-based architecture for citrus disease detection from sparse data. In particular, we propose
a patch-based classification network that comprises an embedding module, a cluster prototype module,
and a simple neural network classifier, to detect the citrus diseases accurately. Evaluation of our proposed
approach using publicly available citrus fruits and leaves dataset reveals its efficiency in accurately detecting
the various diseases from leaf images. Further, the generalization capability of our approach is demonstrated
using another dataset, namely the tea leaves dataset. Comparison analysis of our approach with existing
state-of-the-art algorithms demonstrate its superiority in terms of detection accuracy (95.04%), the number
of parameters required for tuning (less than 2.3 M), and the time efficiency in detecting the citrus diseases
(less than 10 ms) using the trained model. Moreover, the ability to learn with fewer resources and without
compromising accuracy empowers the practical utility of the proposed scheme on resource-constrained
devices, such as mobile phones.

INDEX TERMS Citrus disease recognition, deep learning, metric learning, siamese network, sparse data.

I. INTRODUCTION
The citrus fruit industry is one of the largest fruit industries in
the world, with cultivation in 137 countries [1]. Continuous
supply of citrus is vital for a healthy lifestyle of human beings
due to its high Vitamin-C content and other useful nutri-
ents. However, citrus crops are not only affected by various
existing diseases but also constantly face the possibility of
a devastating outbreak of newly emerging diseases around
the world [2]. Although these diseases rarely last for long
time periods, they cause a significant decrease in overall cit-
rus production and create non-preventable economic depres-
sions. Moreover, due to its rapidly dispersing nature, timely
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recognition of the emergence of new diseases in citrus is vital
to take effective disease control measures to safeguard crops.
In particular, having the ability to detect the diseases directly
in the farms using mobile devices will help to speed up this
process. Hence, it is essential to develop a lightweight and fast
framework that can accurately predict emerging diseases.

Several approaches for citrus disease recognition have
been analysed in the past [3]–[8]. The traditional machine
learning approaches, such as [4], [7], are time-efficient. How-
ever, a limitation in these approaches is the inability to
achieve higher disease classification accuracies. They also
heavily rely on domain expertise to extract hand-crafted fea-
tures, which often contribute to a decline in the accuracy.
The recent application of deep learning techniques, such as a
deep convolutional neural network (DCNN) [3], [8], for citrus
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disease recognition has shown improved performances. It is,
due to their ability to learn useful features from citrus sam-
ples automatically. However, these deep learning approaches
require a significant amount of data (i.e., thousands of anno-
tated samples) to obtain a generalised trained model. Citrus
disease data collection is an expensive and time-consuming
exercise due to the scale of citrus orchards and the varying
nature of the disease dynamics across temporal and spatial
scales. Due to the ever-changing symptoms of citrus diseases,
it is also difficult to acquire sufficient infected samples that
can be used for training machine learning models for auto-
mated disease detection. As a result, learning with sparse
diseased data has become one of the major challenges for
recent citrus disease recognition tasks. Recent works, such
as [9], [10], and [3], proposed the use of generative adver-
sarial networks to generate artificial diseased leaf samples
as a potential solution for the sparse data problem. How-
ever, these approaches still struggle to achieve high detection
accuracy rates.

Furthermore, the traditional deep learning models are not
memory efficient. Consequently, these limit the applicability
of these models on computers with limited memory and
mobile devices. For example, deep neural networks, such
as Inception-v3 [11], consume significant memory resources
during run time. Some of the studies in the past proposed
lightweight image classification techniques for use on devices
with limited memory, such as mobile phones and tablet
devices [12]–[15]. These lightweight models use effective
computation techniques and less number of parameters for
tuning, hence require low memory and less number of com-
putations to complete a task. These properties enable those
models to be deployed in resource constrained edge devices.
For instance, in [16], a modified version of the MobileNet
architecture has been proposed to perform plant disease clas-
sification. It uses a special technique called depthwise sep-
arable convolution, and only require 0.5 million parameters.
However, it faces a trade-off between classification accuracy
and memory consumption.

In order to address these challenges, inspired by [17], [18]
and [19], we propose a novel deep metric learning-based
framework with a patch generation mechanism to recognize
citrus diseases from leaf images. Intuitively, humans can
differentiate the infected and non-infected local regions of
a leaf image to determine the disease. When a particular
region of the leaf is identified as infected, the person may
neglect the other regions of the leaf. Mimicking this behavior
helps to formulate an efficient detection algorithm that can
focus the attention on the region of the leaf where the most
disease is appearing. Hence, in this work, we exploit this
behavior by dividing the leaf into regions/patches and use
for learning our proposed deep metric learning-based archi-
tecture. Our contributions in this work are summarized as
follows:
1) We propose a novel lightweight, fast, and accurate

deep metric learning-based citrus disease classification
approach that can learn effectively with sparse data.

An embedding module, which is a deep convolutional
neural network trained with a siamese objective, a clus-
ter prototype module, which incorporates the K-Means
clustering technique, and a simple neural network clas-
sifier are integrated to form a final classification net-
work. We also developed a patch generation technique
to improve the detection performance of our proposed
framework.

2) Experimental results on the citrus fruits and leaves
dataset [20] demonstrate that our proposed approach is
fast, lightweight, and able to achieve higher classifica-
tion accuracies.

3) Comparison evaluation with the state-of-the-art deep
models, such as DenseNet-201 [21], Inception-v3 [11],
VGG-16 [22], MobileNet [12], MobileNetV2 [13],
NASNetMobile [14], and EfficientNetB0 [15] reveal
that our proposed approach is capable of achieving
high detection accuracy. Evaluation with an equivalent
whole leaf-based model, and an ablation study using
a patch-based learning demonstrate the improvements
achieved in terms of detection accuracy due to the intro-
duction of the various components and the patch creation
method for our proposed architecture.

The rest of this article is arranged as follows. A review
of existing citrus disease recognition approaches is given
in Section II. Section III provides details of our proposed
framework. The data pre-processing used in our experiments
is described in Section IV. The experiments and results are
reported with discussions in Section V, followed by conclu-
sions and future work in Section VI.

II. RELATED WORK
Automated citrus disease classification has been performed
in the past using both handcrafted [4]–[7] and deep learning
[3], [8] based feature extraction techniques. In this section,
we review some of the closely related approaches in detail.

The majority of the handcrafted feature extraction tech-
niques used in the literature are computationally less com-
plex and have shown good state-of-the-art performances in
various citrus disease classification tasks. For example, the
hand-picked features from near-infrared spectra of the citrus
canopy [4] have shown competitive accuracies in identifying
the citrus greening disease. Sankaran and Ehsani [5] utilized
fluorescence sensing to detect citrus greening disease, and
obtained more than 94% accuracy in both laboratory and in
the field conditions. Evidence of effectively identifying the
citrus disease from fruits in addition to leaves is presented
in [7]. To determine the canker disease from the citrus leaves,
fruits, and canopy, in [6], different vegetation indices that
are measured from the hyperspectral images are used. Their
proposed method achieved better recognition accuracy for
late-stage canker samples compared to early-stage canker
samples. However, the main drawback of the handcrafted
methods is the complexity in extracting and selecting per-
tinent features for different types of diseases. Thus, citrus
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disease identification is limited to one or a few disease
categories using the majority of handcrafted methods. Fur-
thermore, the above methods utilized special sensing mecha-
nisms, such as near-infrared spectra and fluorescence sensing,
as opposed to regular images. This limits the ability to use
these in practice in a handheld device, such as a mobile
phone, which can take regular photos of leaves to process for
diseases.

In contrast, deep learning-based automatic feature extrac-
tion techniques have performed well in both binary [3]
and multi-class [8] citrus disease classification tasks.
Zhang et al. [3] proposed a deep learning-based citrus dis-
ease classification model with a novel feature magnification
and an optimization objective breakdown technique, which
eliminates the overfitting issue that arises when using a small
database. Pan et al. [8] proposed an alternative mobile-based
citrus disease diagnosis system that avoids overfitting by
employing various augmentation techniques and using a sim-
plified densely connected convolutional network (DenseNet).
Transfer learning is another relevant approach that demon-
strated significant improvements in crops [23], apple [24],
and cassava [25] disease classifications. However, for the
citrus disease classification, greening is the only disease con-
sidered in [23]. Although the aforementioned early attempts
showed some success, they still struggle from lower classifi-
cation accuracies due to insufficient training samples. Hence
in this work, we address the above limitations by proposing a
joint framework using metric learning.

Deep metric learning-based techniques have been increas-
ingly employed for a variety of classification tasks in the
recent literature [17]–[19], [26]. Koch et al. [17] pro-
posed a convolutional siamese network for one-shot learning.
Snell et al. [18] proposed a prototypical network for few-shot
learning, where a single prototype obtained from a support set
is used to verify a query set. Contrarily, Rippel et al. [19] pro-
posed a magnet loss function to train the model considering
both interclass and intraclass variations in the sample space.
A soft k-nearest-cluster metric-based evaluation is used to
perform the image classification task. Inspired by this, in our
work, we employ three well-utilized techniques, namely deep
siamese networks, K-Means clustering, and neural network
classifiers to improve the disease detection performance.
Next, we present our proposed framework in detail.

III. PROPOSED MODEL
In this section, the overall architecture of our proposed deep
metric learning-based citrus disease classification framework
is presented. The citrus leaf samples are first pre-processed to
remove the background, create the patches, and augment the
images as discussed in Section IV. These patches are then
used in our framework for disease classification. Below are
the steps involved in this process.

Step 1: During the pre-processing step (see Section IV) each
whole leaf is taken and divided into five patches.
These leaf patches are then further divided into

eligible patches (those that have clear symptoms of
disease) and non-eligible patches (those that do not
have clear symptoms of disease) as explained in
Section IV-C. A collection of similar and dissimi-
lar pair pools are formed from the eligible patches.
Note that a pair of leaf patches are called similar
if they belong to the same disease. Then a pair of
patches P1 and P2 are selected from the similar or
dissimilar pair pools and presented to a trainable
DCNN embedding module GW with shared weights
W . The output of this module, GW (P1) and GW (P2),
represent the corresponding embeddings of the input
patches. An Euclidean neuron DW computes the
distance between these embeddings GW (P1) and
GW (P2). Then, the contrastive loss LC , which is
the difference between the computed distance and
the ground truth, is used with back propagation to
train the deep embedding module GW . This step is
further explained in subsection III-A. The trained
embedding module GW is used in the subsequent
steps 2 and 3.

Step 2: The embeddings are calculated for all the eligible
patches using the pre-trained embedding module
GW . A K-Means clustering algorithm is applied to
cluster the computed embeddings, and the cluster
prototypes obtained, are {C1,C2, . . . ,C20}. These
cluster prototypes are further used in Step 3.
More details of this process are discussed in
subsection III-B.

Step 3: The patch embeddings {GW (X1),GW (X2), . . . ,
GW (X5)} for the five patches {X1,X2, . . . ,X5}
of a leaf are computed with the pre-trained
embedding module GW . Subsequently, using
the Euclidean distance neuron DW , the dis-
tances {DW (X1,C1),DW (X1,C2), . . . ,DW (X5,C20)}
between each pair of patch embeddings and the
cluster prototypes are computed to form a distance
tensor TD. Finally, the distance tensor TD is presented
to the Softmax layer and trained with categorical
cross-entropy loss LCCE . Further details about this
process are discussed in subsection III-C.

The execution of the above steps results in a trained citrus
disease classification network. During the testing process, the
leaf images are presented to the learned classifier network
(shown in Step 3 of Figure 1) to classify them as either
belonging to the normal (non-diseased) class or one of the
disease classes.

Next, we discuss each of the components of our framework
in detail.

A. DEEP SIAMESE NETWORK
A siamese network provides a unique structure to score simi-
larity between inputs [17], [27]. In [27], the siamese concept
was introduced to compare the handwritten signatures using
two parallel neural network components. This concept has
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FIGURE 1. Citrus disease classification framework. P1, P2: patches belong to a similar/dissimilar pair, GW : DCNN embedding module as shown in
Figure 2, W : shared weight, DW : Euclidean distance neuron, LC : contrastive loss, Embeddings: the embeddings of eligible patches, K-Means: K-Means
clustering algorithm, C1 − C20: cluster prototypes, X1 − X5: patches of a leaf, TD: euclidean distances between the embeddings of input patches and
cluster prototypes, Softmax : softmax output layer, LCCE : categorical cross entropy loss.

FIGURE 2. The deep convolutional neural network (embedding module
GW as shown in Figure 1).

been extended in [17] using a DCNN component instead of
the traditional neural network for the siamese network, which
demonstrated good performances in diverse image classifica-
tion tasks. During the siamese network training, embeddings
of similar and dissimilar patches are learnt. These learnt
embeddings are eventually used to calculate the distances
between the two samples of a pair, followed by using them
for calculating the loss against the ground truth, as described

in III-A2. In order to obtain the embedding of these patches,
we formulated a carefully crafted DCNN based deep siamese
network, as shown in Step 1 of Figure 1. The internal compo-
nents of the DCNN framework GW , namely the embedding
module, is shown in Figure 2. We constructed various lay-
ers of the DCNN component using the methods presented
in [18], [28].

For training and validation of the deep siamese network, a
sample selection procedure that generates batches of images
consisting of equal numbers of similar and dissimilar samples
is used. Further, a contrastive loss function (LC ) is used as the
objective function to optimize our model. Next, we explain
these in more detail.

1) SAMPLE SELECTION
First, all the permutations for each citrus leaf samples, PT ,
are created. Second, the sample pairs are separated into a
similar pair pool, PS , and a dissimilar pair pool, PD. A pair
is considered similar if both the samples of a pair belong to
the same class (disease), and dissimilar otherwise. Let C be
the number of classes, and assume that each class contains N
samples. Then, the number of pairs PT , PS , and PD can be
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defined as shown in Eq. 1, 2, and 3, respectively.

PT =
CN (CN − 1)

2
(1)

PS =
CN (N − 1)

2
(2)

PD = PT − PS =
C(C − 1)N 2

2
(3)

Further, the ratio between similar and dissimilar pairs, rsd ,
based on PS and PD is defined as follows:

rsd =
PS
PD
=

CN (N − 1)
CN 2(C − 1)

=
N − 1

N (C − 1)
≈

1
C − 1

(4)

whereN andN−1 are approximately equal for large datasets.
As can be seen in Eq. 4, PD is approximately C − 1

times higher than PS . This makes the training data highly
imbalanced, which causes the model to bias towards PD.
Hence, in order to eliminate this issue, a random selection
mechanism is used. For every batch in the training sample
of size B, pairs of size B/2 are randomly selected from PS ,
while the rest of the B/2 pairs are selected from PD. Also,
when each pair is drawn from the pool, for each sample of
the pair, a randomly selected augmentation is applied.

2) CONTRASTIVE LOSS FUNCTION
We use the contrastive loss function introduced in [29], which
is a pair based loss function that defines the mapping of simi-
lar samples to nearby points, and dissimilar samples to distant
points in the output manifold, for optimisation. In order to
estimate the contrastive loss, the distance DW between the
two outputs of GW for a pair of input samples P1 and P2
respectively is computed, as shown in Eq 5.

DW (P1,P2) = ||GW (P1)− GW (P2)||2 (5)

The contrastive loss, LC , with margin m is then estimated
as follows:

LC = (1− Y )
1
2
(DW )2 + (Y )

1
2
{max(0,m− DW )}2 (6)

where m > 0. Note that the dissimilar pairs contribute to the
contrastive loss only when DW < m. Y is the label assigned
to an input pair as per the conditions defined below.

Y =

{
0 if P1and P2 belong to the same class
1 if P1and P2 belong to different classes

(7)

The validation accuracy and loss will not reflect the best
values since the training and validation of the deep siamese
network are based on random input pairs. Hence, in order
to select the best model, all the models with the validation
accuracy greater than a threshold (we choose 85% validation
accuracy) are saved. The saved models are then re-evaluated
with the entire validation set, and the model with the high-
est validation accuracy is selected. Finally, the embedding
module, loaded with the weights of the best model, is used
in Step 2 to compute the embeddings as well as in Step 3 for
the final classification task.

B. CLUSTER PROTOTYPES
During step 2 (in Figure 1) of the citrus disease classification
framework, the eligible patches are grouped into distinct
clusters, and the cluster prototypes (the center of each clus-
ter) {C1,C2, . . . ,C20} are obtained and eventually used for
training the classifier network (in Step 3 of Figure 1).
As illustrated in Step 2 of Figure 1, the embeddings are first

computed for eligible patches using the pre-trained embed-
ding module GW . Next, the embeddings are grouped into
clusters using a K-Means clustering algorithm, where the
number of clusters k is set to 5 by considering the intraclass
variations of the diseased citrus leaf samples. Therefore, for
the 4 disease classes, a total of 20 prototypes are obtained.
These created prototypes are used in Step 3, which is our final
classification network.

C. CLASSIFICATION NETWORK
As shown in Figure 1, classification network is the major
component of our proposed approach, which comprises the
following key components, namely, 5 input patches of a leaf
image {X1,X2, . . . ,X5}, the pre-trained embedding module
GW obtained from Step 1 (as shown in Figure 2), cluster
prototypes obtained from Step 2 {C1,C2, . . . ,C20}, a neuron
DW that calculates the Euclidean distance, a Softmax output
layer, and a categorical cross-entropy loss LCCE component.

First, the embeddings {GW (X1),GW (X2), . . . ,GW (X5)}
are computed using the embedding module GW for all the
five patches of a leaf. Second, the distances {DW (X1,C1),
DW (X1,C2), . . . ,DW (X5,C20)} are calculated between each
pair of the embeddings {GW (X1),GW (X2), . . . ,GW (X5)} and
the cluster prototypes {C1,C2, . . . ,C20} to form a distance
tensor TD. Finally, the distance tensor TD is given as an input
to the simple neural network classifier with a Softmax layer.
During the training process, along with the input distance
tensor TD, the categorical cross entropy loss LCCE is used to
train the Softmax layer.

IV. DATA PRE-PROCESSING
In this section, we discuss the data pre-processing performed
on the citrus leaf images before used in the proposed clas-
sification framework. It comprises several steps, namely
background removal, patch creation and labelling and image
augmentation. We first describe the publicly available citrus
fruits and leaves dataset [20] that we use for our evaluation,
followed by the various steps of the pre-processing procedure
using this data.

A. DATASET
In this study, the experiments are performed using a publicly
available citrus fruits and leaves dataset [20]. The dataset
contains a total of 609 annotated leaf images categorised into
healthy and four citrus disease classes, namely black spot,
canker, greening, and melanose. The original dataset was
created by taking the photos of the fruits and leaf samples
collected from Sargodha region in Pakistan. Authors have
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used a Canon EOS 1300D advanced DSLR camera with
5202× 3465 resolution to acquire the images. The collected
images were resized to 256× 256 size with 72 dpi resolution
[20]. The published dataset contains images with 256 shades
for each RGB layer in sizes of 256× 256 pixels.

FIGURE 3. Citrus diseased and healthy leaf samples (a) Black spot
(b) Canker (c) Greening (d) Healthy.

Note that, in this study, the samples belonging tomelanose
disease were eliminated since only a few samples of that
disease category were present in the dataset (8 leaf samples)
compared to other classes. Figure 3 shows the sample images
for each of the four selected disease classes. Further, the
defect samples, such as the same leaf images that appear in
more than one disease class, and the (exact) duplicate samples
found within the same disease class were removed from the
original database. The above data cleaning process resulted
in a reduction of around 18.95% (i. e., 596 to 483) of the
samples, as presented in Table 1; see the second and third
columns Initial leaf count and Final leaf count. Further, the
intra-class variations can be observed from the images from
the same class/disease in Figure 3.

TABLE 1. Counts of leaves and patches found in the diseased citrus
leaves.

The citrus fruits and leaves dataset is considered as sparse
data since it contains only a small number of samples for each
disease class, i.e., a maximum of 157 samples per class. This
presents a challenge in learning an accuratemodel using some
of the the state-of-the-art deep networks, such as DenseNet-
201 [21], Inception-v3 [11], and VGG-16 [22], which require
thousands of images for training purposes.

During the pre-processing step, the background of each
leaf image is removed and the patches (regions) are created,
as we explain next.

B. BACKGROUND REMOVAL
DCNN is capable of learning the foreground features in the
presence of background in an image. However, the feature
complexity can be reduced by removing the background
and in turn, helps improve the model accuracy [30]. Hence,
we perform the background removal of leaf images using
a two-step image segmentation approach. In the first step,
a segmentation algorithm,1 which utilises a K-Means clus-
tering technique followed by an active contour refinement,
is used for creating the leaf masks. The extracted masks are
then used to automatically remove the backgrounds of the
leaf images, which resulted in 99% of the images being suc-
cessfully processed. In the second step, for the failed images
(around 1% of them) resulted from the above automated
background segmentation process, a manual segmentation is
performed. The final segmented leaf images are then used to
create the patches.

FIGURE 4. Patch generation process (a) whole leaf of canker disease
(b) top-left, top-right, bottom-left and bottom-right patches and (c) center
patch.

C. PATCH CREATION AND LABELING
In general, citrus disease symptoms usually occupy only a
small area or region of the whole leaf (e.g., see Figure 4).
Hence, rather than using the whole leaf image for process-
ing, it will be advantageous to divide the whole leaf into
small regions (patches) and use for training a classifier. This
provides more focused image patches to learn the intrinsic
features of the symptoms of a disease accurately by the
deep network, enabling higher detection accuracy. Hence,
we create multiple patches from each image and relabeled
them appropriately. To perform this task, each leaf image is
split into five patches, namely top-left, top-right, bottom-left,
bottom-right, and center, as illustrated in Figure 4.

Note that, intuitively, a human can differentiate the infected
and non-infected local regions in a leaf image to help judge
the disease. When a particular region of the leaf is identified
as infected, humans may neglect the other regions of the
leaf. This is a handy behaviour that can be mimicked to
select the patches for training to improve the trained model,
and hence we adopted this approach in our framework to

1https://au.mathworks.com/help/images/image-segmentation-using-the-
image-segmenter-app.html
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create patches. The obtained patches are then categorized
into eligible or non-eligible patches based on the disease
symptoms and size of the leaf area they occupy. For example,
top-left and top-right patches from the leaf shown in Figure 4
are marked as non-eligible patches since they do not exhibit
any noticeable symptoms of the disease. The patches with a
small leaf area, i. e., themajority of the patch containing back-
ground information, are also marked as non-eligible patches.
Only the eligible patches are used in Step 1 and Step 2 of
our framework as shown in Figure 1, while both eligible and
non-eligible patches are used in Step 3. In the context of
healthy images, size of the leaf area within the image is used
as the only criteria to select the eligible patches. In Table 1, the
columns Total patch count and Eligible patch count indicate
the number of created patches and the eligible patches for
each disease category, respectively.

FIGURE 5. Illustration of the samples created through augmentations.
(a) original (b) rotated 90◦ (c) rotated 180◦ (d) rotated 270◦ (e) horizontal
flip (f) horizontal flip and rotated 90◦ (g) vertical flip (h) vertical flip and
rotated 90◦.

D. AUGMENTATION
In the augmentation step, we employed rotation (counter-
clockwise) and flipping (vertical and horizontal) for the
image samples to further increase the size of the training
set. The original image is rotated by 0◦, 90◦, 180◦, and
270◦ angles to generate four additional augmented samples.
Further, the vertical and horizontal flips are applied to the
original image followed by a 90◦ rotation of the flipped sam-
ples to form another four augmented images. Accordingly,
altogether eight unique augmented samples are generated
from each image sample (patch), as shown in Figure 5.

V. EVALUATION
This section presents the results obtained on the citrus fruits
and leaves dataset [20] for our models. The aim of the
evaluation is to assess the proposed patch-based citrus leaf
classification framework’s ability to learn from sparse sam-
ples effectively as well as classifying the diseased samples
accurately. We use classification accuracy as the evalua-
tion metric, and the results are reported after 5-fold cross-
validation. We further report the learning and validation
curves along with the confusion matrices to elaborate the
outcomes graphically.

A. IMPLEMENTATION AND TRAINING
In all experiments, the models were implemented using Ten-
sorflow2 framework and accelerated on NVIDIA GeForce
GTX 1080 Titan GPU. For training, both variants of our
model, namely Our Model-128 and Our Model-112, having
input images of sizes 128× 128× 3 and 112× 112× 3 were
used along with an Adam [31] stochastic optimizer, respec-
tively. For the siamese network, the batch-size is set to 32, the
number of steps is set to 250, and trained for 200 epochs with
a learning rate of 0.00006.We changed the batch-size to 8 and
trained for 50 epochs with an updated learning rate of 0.001
for the classification network. The training accuracy and loss
changes obtained for both the siamese and the classification
networks are illustrated in Figure 6.

For training the other state-of-the-art models, we trained all
the layers after initializing them with the ImageNet weight
with a set of the same hyperparameters as used in [8].
Stochastic gradient descent (SGD) optimization is used to
train the networks with the momentum set to 0.9. The initial
learning rate was set to 0.001 and multiplied by 0.94 after
every two epochs. The input image size is set to 256×256×3
for all the models, except for the MobileNet, MobileNetV2
and NASNetMobile. For the MobileNet, MobileNetV2 and
NASNetMobile, the input image size is set to 224× 224× 3,
as it is the biggest image size variant available with ImageNet
weight. Finally, the batch size is set to 8 and trained the
MobileNetV2, NASNetMobile and EfficientNetB0 up to 200,
1000, and 100 epochs respectively, and all the other networks
are trained up to 50 epochs until they converge.

On the other hand, when using the tea leaf dataset [32], the
siamese network is trained for 200 epochs after changing the
batch size to 8 and the number of batches to 50. For all the
other cases, the batch size is changed to 4 and all the other
parameters are kept unchanged.

We trained two variants of our proposed model to validate
the effectiveness of our framework against the state-of-the-
art models. Our Model-128 is trained with the input image
size of 128× 128 for a fair comparison with the state-of-the-
art models, such as DenseNet-201, Inception-v3, VGG-16,
and EfficientNetB0, which are trained with an image size of
256×256. On the other hand, Our Model-112 is trained with
112 × 112 size images for a fair comparison with the other
state-of-the-art models, such as MobileNet, MobileNetV2,
and NASNetMobile, which are trained with 224 × 224 size
images. In both cases, since our models are trained with
five patches of each leaf, they have processed 81,920 pixels
(128×128×5) and 62,720 pixels (112×112×5), respectively.
In contrast, the state-of-the-art models processed 65,536 pix-
els (256× 256) and 50,176 pixels (224× 224), respectively.
Even though our models process higher number of pixels
(25% more in both cases), they show comparable time effi-
ciency against the state-of-the-art lightweight models, which
is further discussed in the next section.

2https://www.tensorflow.org/
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FIGURE 6. Accuracy and loss curves for the siamese (left) and classification (right) networks.

B. RESULTS AND DISCUSSION
Overfitting is one of the main challenges faced in training
a deep learning network with sparse data. The siamese net-
work and the classification network of our proposed frame-
work are able to overcome this challenge as demonstrated in
Figure 6. To achieve this, in the siamese network, the dataset
is expanded by creating patches. In addition, since a pair
based approach is utilized for the training of the siamese
network, the constructed pair pools generated significantly
large sample set. On the other hand, for the training of the
classifier network, the sample size used is still small. Hence,
in order to avoid the overfitting problem, a simplified network
with only one layer is used. Further, we shuffled the input
patches {X1,X2, . . . ,X5} each time when a leaf sample is
drawn for training. In this process, each leaf will take one of
the 5! input positions, and therefore resulting in the distance
tensor TD taking one of the 5! forms for the same leaf sample,
in each draw. This process is equivalent to increasing the
number of training samples by 5! (120) times, and hence
helps to improve the generalization capability of the final
classification network.

Figure 7 shows the confusion matrices obtained for the
classification of each disease. As can be seen from the
results, our models performed well for canker, black spot,
and healthy classes, achieving greater than 94% classifica-
tion accuracy. However, it can be observed that the lowest
accuracy is reported for the greening disease since some of
the samples from the greening disease have evidence of black
spot disease. This can be clearly seen from the misclassified
image samples (greening and black spot) shown in Figure 8.
In Figure 8 (a), the leaf shown is genuinely affected by the
black spot disease, which is given as a reference. In contrast,
Figure 8 (b)-(d) are the misclassified leaf samples, where the
symptoms of black spot disease can be observed to a certain
degree. Not surprisingly, the major portion of the failed sam-
ples from the black spot class were also classified as greening.
This behavior is because the black spot symptoms tend to

blend with the greening disease symptoms when the severity
of the black spot disease is not intense, as can be observed in
Figure 8. Further, It can be observed that both of our models
achieved similar accuracies for all the classes even though the
input image size is changed. The change in the input image
size has only reduced the image width and height by 12.5%.
This reveals that the change in this level of image size has not
impacted heavily the features extracted by the convolution
layers of the siamese network for measuring the similarity
score, and hence the classification accuracy. However, the
reduction in the image input size helps reduce the number of
parameters of the network, and hence the complexity of the
framework.

To further analyze the classification pattern of our pro-
posed architecture, we generated a t-SNE [33] representation
of the embeddings (obtained in Step 2) and the distances
between the cluster prototypes (obtained in Step 2), which are
shown in Figure 9. As can be seen in Figure 9 (a), the healthy
and canker classes are clearly separated from the other classes
with less misplaced embeddings. However, the embeddings
of the black spot and greening classes are highly overlapped,
and show a considerable amount of misplaced embeddings.
We can relate this with our confusion matrix outcome shown
in Figure 7. The greening and black spot diseases show a high
level of misclassification between each other, with 6.95%,
6.25% (from greening to black spot) and 4.03%, 3.22% (from
black spot to greening) misclassification for both of our mod-
els, respectively. The distances between the class prototypes
are presented in Figure 9 (b), which shows the closeness of
the embeddings in each disease class. From the figure, it can
be inferred that the distances between the cluster prototypes
for healthy are smaller (close to each other) compared to the
other classes. Further, we can observe significant intraclass
variations within each class of the diseased leaf samples,
and this can also be observed in Figure 3. Similarly, we can
observe around 5 intraclass variations for black spot and
canker diseases. This provides support for the selection of
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FIGURE 7. Confusion matrices for both of our models and the other state-of-the-art models obtained using citrus fruits and leaves dataset [20].

FIGURE 8. Examples of misclassified samples. (a) reference image for
black spot disease, (b)-(d) misclassified samples that have symptoms of
back spot disease in addition to the greening disease.

our k value (number of cluster prototypes) of the K-Means
clustering algorithm to be 5, uniformly across all the classes.
However, we believe that selecting the number of cluster
prototypes empirically as well as using different k values for
each class (disease) may help to improve the accuracy further,
and we leave this analysis for future work.

We have also compared our models with existing state-
of-the-art deep networks in terms of classification accuracy
and time efficiency. The total testing time and per sample

testing time for both our models and the state-of-the-art
deep models for various batch sizes are shown in Figure 10.
From the figure, it can be observed that the heavier models,
namely DenseNet-201 [21], VGG16 [22], and Inception-v3
[11] take more time, and the MobileNet [12], MobileNetV2
[13], NASNetMobile [14], and EfficientNetB0 [15], which
are the lightweight models aimed for use with the resource
constrained devices, take lesser time to predict the diseases.
Further, by comparing the time taken by both variants of
our models, it can be inferred that the proposed models
show comparable time efficiency with the state-of-the-art
lightweight models. Overall, the time behavior of the pro-
posed models are similar to MobileNet [12], MobileNetV2
[12], NASNetMobile [14] and EfficientNetB0 [15]. Further,
they show similar per sample time for different test batch
sizes. This behaviour is advantageous, especially when it
comes to predicting a larger number of disease samples.

We further compare the results between both variations of
our models against the seven state-of-the-art deep networks in
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FIGURE 9. (a) Illustration of the embeddings (obtained in Step 2) using t-SNE diagram. (b) Distances between cluster prototypes (obtained in Step
2) in each class (disease). C1 − C5 - Black Spot, C6 − C10 - Canker, C11 − C15 - Greening, C16 − C20 - Healthy.

FIGURE 10. Comparison of testing time between our models and the other deep networks. (a) Total time taken to predict different
batch sizes (b) Per sample time taken to predict different batch sizes.

Table 2. Both of our models achieve 95.04% accuracy. Com-
pared to VGG16 [22], NASNetMobile [14], EfficientNetB0
[15] and MobileNet [12], our models show better classifica-
tion accuracies by a clear margin. Compared toMobileNetV2
[13], Inception-v3 [11], and DenseNet-201 [21], our mod-
els show a slightly better overall classification accuracies.
In particular, as can be seen from Figure 7, our models are
superior to other deep networks for canker disease classifica-
tion. We can also observe from the precision, recall, and F1
scores, reported in the Table 2, that both our and the state-
of-the-art models are not impacted by the data imbalance,
which is caused by the significantly lower number of healthy
samples present in the citrus disease dataset. This may be due
to the fact that the healthy samples are easier to learn as they

are very similar and do not have complex features to learn
and generalize. Note that in terms of resource requirements,
next to MobileNetV2 (≈ 2.26 million), our models require
a fewer parameters (≈2.99 and ≈2.27 million) as opposed
to the other networks (≈ 3.23 million for MobileNet, ≈4.05
million for EfficientNetB0, ≈4.27 million for NASNetMo-
bile, ≈18.32 million for DenseNet-201, ≈14.71 million for
VGG16, and ≈21.81 million for Inception-v3). This prop-
erty of our models demonstrates their ability to classify the
diseases in a resource-constrained environment, such as on a
mobile phone.

In order to show the generalization ability of our models,
we compared the recognition accuracy of our models against
existing benchmark deep learning models on another dataset,
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TABLE 2. 5-fold cross-validation accuracy, precision, recall, and F1 Score comparison using citrus fruits and leaves (Citrus) [20] dataset, and 5-fold
cross-validation accuracy comparison using tea leaves (Tea) [32] dataset.

TABLE 3. Counts of leaves and patches of diseased tea leaves.

namely the tea leaves data set [32]. It contains 40 images for
each disease, such as leaf blight, red scab, and red leaf spot as
shown in Table 3. The results are promising as illustrated in
Table 2. Our Model-128 clearly outperformed VGG16 [22],
and shown comparable performance against other state-of-
the-art networks, which are trained with image size of 256×
256. Further, Our Model-112 has shown comparable perfor-
mances with other models that are trained with 224 × 224
size images, albeit with lower or comparable computational
overhead.

1) WHOLE LEAF-BASED MODEL
We also built a variant of our proposed model to use the
whole leaf as an input instead of the patches, and performed
the experiments to compare against our proposed patch-based
models. In order to build the whole leaf-based model, in Step
1, both similar and dissimilar pairs of whole leaves are
used to train the siamese network. Similarly, in Step 2, the
embeddings are computed for all the whole leaves in the
training set and clustered them to obtain 20 cluster prototypes.
Finally, in Step 3, the whole leaf images are fed, instead of
the patches (5 patches per leaf), to the final classification
network. Further, instead of using the DCNN, as shown in
Figure 2, we used the one proposed in [17], as it demonstrated
good performances during the siamese training for the whole
leaf. Further, we performed 5-fold cross-validation evalua-
tion using the citrus leaves dataset [20].

FIGURE 11. Fused CNN network used for ablation study, GW : DCNN
embedding module (trainable) as shown in Figure 2, TC : concatenated
embedding tensor, Softmax : softmax output layer, LCCE : Categorical cross
entropy loss.

In the evaluation, the whole leaf-based model achieved
90.28% accuracy, which is 4.76% lower than our proposed
patch-based models. A possible reason for the lower accuracy
is due to the reduction in the number of sample pairs (whole
leaves) used for training the siamese network, compared to
the patch-based training method, leading to an under gen-
eralized learnt siamese network model. In addition, since
the whole leaf was used for the training, the healthy por-
tion (region) of a diseased leaf may have introduced noise
during the similarity computation process of the siamese net-
work. However, for the patch-based scheme, only the patches
that have shown clear disease symptoms (eligible patches) are
used for training.

2) ABLATION STUDY
We performed an ablation study to compare our deep met-
ric learning-based method against an equivalent traditional
CNN based architecture. In order to perform that, a fused
CNN network is built using the same embedding module
GW , as shown in Figure 11. All the 5 patches of each leaf
are presented to the DCNN embedding module, and then
the resulting embeddings are concatenated and presented to
the final Softmax output layer. Five-fold cross-validation is
performed using the citrus leaves dataset [20] with an input
image size of 128× 128, which achieved a 92.13% accuracy.
This accuracy is 2.91% lower than that of our proposed
models. Hence, the results demonstrate that our proposed
patch-based framework significantly improves the accuracy
in detecting the diseases in citrus leaves.
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VI. CONCLUSION AND FUTURE WORK
This article presents a deep metric learning-based framework
to recognize citrus diseases effectively from leaf images.
The proposed architecture comprises an embedding module,
a cluster prototype module, and a simple neural network
classifier to perform the disease recognition. An approach to
generate patches from the leaf images is also included in the
framework to further enhance the performance. Comparision
evaluation with the whole leaf-based model and an abla-
tion study demonstrated the improved performances achieved
when our metric learning based architecture is combined with
the patch generation mechanism. Comparison of our method
with other deep network baselines in terms of time efficiency
showed comparable or superior performances with other
baselines. Further, our framework has shown better classifi-
cation accuracy than all the other baselines. Our experiment
with the tea leaf dataset has shown promising results and
demonstrated the generalization capability of our proposed
models for use in detecting other leaf-based diseases.

A potential future work includes deploying our light-
weighted models in embedded devices. Our models, namely
Our Model-112 and Our Model-128 require around 2.27 and
2.99 million parameters, and 7.6MB and 11.7MB of storage
space to store the trained parameters, respectively. Both of
these properties of our models enable them to realise on
the resource constrained devices, such as mobile phones and
tablets. Further, network parameter quantization [34], [35],
and pruning [34] are some of the techniques that can be used
to further compress the deep models. We will explore how
these techniques can be incorporated with our framework to
further compress the models, and formulate an application to
deploy on rather limited resource constrained devices, such
as low end smart phones.
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