
Received August 17, 2020, accepted August 31, 2020, date of publication September 3, 2020, date of current version September 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021527

Evolving CNN-LSTM Models for Time Series
Prediction Using Enhanced Grey Wolf Optimizer
HAILUN XIE1, LI ZHANG 1, (Senior Member, IEEE), AND CHEE PENG LIM 2
1Computational Intelligence Research Group, Department of Computer and Information Sciences, Faculty of Engineering and Environment, Northumbria
University, Newcastle upon Tyne NE1 8ST, U.K.
2Institute for Intelligent Systems Research and Innovation, Deakin University, Melbourne, VIC 3216, Australia

Corresponding author: Li Zhang (li.zhang@northumbria.ac.uk)

This work was supported by Innovate UK Knowledge Transfer Partnership and Northumbria University under Global Challenges
Research Fund.

ABSTRACT In this research, we propose an enhanced Grey Wolf Optimizer (GWO) for designing the
evolving Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) networks for time series
analysis. To overcome the probability of stagnation at local optima and a slow convergence rate of the
classical GWO algorithm, the newly proposed variant incorporates four distinctive search mechanisms.
They comprise a nonlinear exploration scheme for dynamic search territory adjustment, a chaotic leadership
dispatching strategy among the dominant wolves, a rectified spiral local exploitation action, as well as
probability distribution-based leader enhancement. The evolving CNN-LSTM models are subsequently
devised using the proposed GWO variant, where the network topology and learning hyperparameters are
optimized for time series prediction and classification tasks. Evaluated using a number of benchmark
problems, the proposed GWO-optimized CNN-LSTM models produce statistically significant results over
those from several classical search methods and advanced GWO and Particle Swarm Optimization variants.
Comparing with the baseline methods, the CNN-LSTM networks devised by the proposed GWO variant
offer better representational capacities to not only capture the vital feature interactions, but also encapsulate
the sophisticated dependencies in complex temporal contexts for undertaking time-series tasks.

INDEX TERMS Evolutionary computation, Grey Wolf optimizer, time series prediction, and deep neural
network.

I. INTRODUCTION
A time series is a sequence of data measured chronologically
at a uniform time interval [1]. Time series measurements are
prevalent in various domains, such as weather forecast [2],
financial market prediction [3], physiological assessment [4]
and video analysis [5]. Over the last several decades, many
efforts have been made to develop effective time series fore-
casting models, which can be broadly classified into three
categories: 1) statistical models, e.g. auto-regressive moving
average (ARMA) [6] and auto-regressive integrated mov-
ing average (ARIMA) [7]; 2) machine learning models, e.g.
Support Vector Regression (SVR) [8] and Artificial Neural
Networks (ANN) [9]; 3) deep learning models, e.g. Recurrent
Neural Networks (RNN) [10] and Long Short-Term Memory
(LSTM) [11]. In particular, the LSTM network is regarded
as the state-of-the-art time series forecasting model owing to
its capability of learning long-term temporal dependencies
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through the design of gated units integrating activations of
sigmoid and hyperbolic tangent functions.

Despite the progress achieved by LSTM, multi-variate
time series forecasting remains a challenging task owing to
the complex factors embedded in real-life sequential data,
such as sophisticated dependencies, irregularity, randomness,
cross-correlation among variables, as well as noise [12], [13].
Besides that, hyperparameters in relation to the configuration
of LSTM, e.g. the number of hidden nodes, as well as the
learning properties during the training process, e.g. learning
rate, play vital roles in affecting the performance of the LSTM
networks [14], [15]. In this regard, the identification of the
optimal hyperparameter settings for LSTM networks remains
a challenging task owing to the complexity of the problems
at hand and the requirement of profound domain knowledge.
The traditional manual trial-and-error fine-tuning process is
likely to result in sub-optimal model representational capac-
ities and ill-performed learning parameters, therefore com-
promising the performance of LSTM networks. In order to
resolve the aforementioned challenges in dealing with time
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series data as well as optimal learning configuration identi-
fication of LSTM networks, we incorporate two automatic
processes into the vanilla LSTM structure, i.e. automatic
feature extraction and optimal network configuration identifi-
cation, to enhance the performance of the monotonous LSTM
networks in tackling time series prediction. Essentially,
Convolutional Neural Networks (CNNs) are hybridized with
LSTM to extract the fundamental features from the input
sequence automatically and construct more accurate feature
representations of the investigated time series tasks. More-
over, an evolving process is introduced for the generation of
the optimal configurations of the hybrid deep network by
exploiting the strength of an advanced swarm intelligence
(SI) algorithm, i.e. Grey Wolf Optimizer (GWO) [16].

The GWO algorithm is chosen as the candidate in this
research, instead of other classical search algorithms, such as
Particle Swarm Optimization (PSO) and Genetic Algorithm
(GA), owing to its advantages embedded in the search mech-
anism. The key advantages are three-fold, i.e. the employ-
ment of multiple elite leaders, the adaptive transition from
exploration to exploitation, and the stochastic nature in deter-
mining the trajectory to approach or diverge from the elicit
signals [16], [17]. These advantageous characteristics endow
GWOwith enhanced exploration capability and search diver-
sity, while maintaining its efficient computational cost.
Comparatively, PSO is more likely to be trapped in local
optima, owing to the dictation of the global best solution
and the lack of diversification in its guiding signals over the
entire iterative process [18], [19]. While the GA is capable
of attaining the global optimality, a larger number of func-
tion evaluations are normally required. This is owing to the
possibility of undermining the elicit chromosomes/solutions
in the GA, as a result of the crossover operation during the
evolution process [20]–[22]. Moreover, the effectiveness of
GWO in terms of search efficiency over those of PSO, GA,
and other similar methods [23]–[28] has been validated in
many existing studies across a wide variety of problems, e.g.
feature selection [29], image segmentation [30], parameter
identification [31], path planning [32], and scheduling [33].
Therefore, the GWO algorithm is selected as the driving
engine to search for the optimal deep neural network con-
figurations in this research.

To be specific, an evolving GWO-based CNN-LSTM net-
work is proposed in this research to enhance the feature
representation of the time series problem as well as optimize
the network topology, in order to overcome the intricate chal-
lenges of multi-variate time series prediction. We first pro-
pose a base architecture of the hybrid CNN-LSTM network,
which serves as the backbone of the multi-variate time series
analysis. It incorporates two convolutional layers for feature
extraction, a LSTM recurrent layer for learning temporal
dependencies, as well as a fully connected layer for nonlinear
feature transformation. The employed convolutional layers
extract the underlying granular characteristics and eliminate
irrelevant factors of the input sequence automatically through
various convolutional operations and nonlinear activations.

As such, the temporal variations can be processed effectively
and the long-term dependencies can be captured precisely
by the subsequent LSTM layer owing to the more authentic
feature representation.

In addition, we propose a GWO variant dedicated to
the automatic search for the optimal configurations of the
CNN-LSTM network. This new GWO variant aims to over-
come the limitations of the original GWO model, i.e. stag-
nation at local optima and slow convergence rate [34]–[36],
so that it is able to devise the optimal configurations of the
CNN-LSTM networks efficiently. Specifically, the proposed
GWO variant incorporates four distinctive strategies: 1) a
nonlinear adjustment of search coefficient capable of extend-
ing the search territory during exploration and confining
the search range during exploitation; 2) a chaotic weight
allocation mechanism for three dominant wolf leaders using
the sinusoidal chaotic map; 3) a local exploitation scheme
based on an enhanced spiral search with symmetrical oscilla-
tions; 4) probability distribution-based leader enhancement.
The proposed strategies intensify the search diversity by
expanding the exploration space as well as diversifying the
guiding signals in a periodical manner. In addition, the search
efficiency and convergence rate are improved owing to
the assurance of the dominance of the best leader as well
as the intensified local exploitation around the optimal
signals at the final stage of the search process. As such,
the proposed GWO variant is capable of achieving better
trade-offs between search diversification and intensification,
therefore increasing the likelihood of attaining global opti-
mality. The proposed GWOvariant is subsequently employed
to devise the network representation of the aforementioned
CNN-LSTM model for tackling time series prediction and
classification tasks. FIGURE 1 depicts the structure of the
proposed GWO-based evolving CNN-LSTM time series
forecasting model.

The research contributions of this study are highlighted as
follows.

1. A hybrid CNN-LSTM network is proposed for time
series analysis. A CNN is integrated with a vanilla LSTM
to construct accurate and robust feature representations auto-
matically, by preserving effective deterministic and stochastic
trends embedded in sequence data while removing redundant
and irrelevant factors.

2. Both the configuration of neural network and learning
properties play an important role in model performance.
The search methods employed in existing studies, such
as PSO and GA, for identifying the optimal configura-
tion of deep learning models are generally classical tech-
niques invented decades ago. In this research, we exploit the
strength of a recent SI model, i.e. GWO, for the evolution
of the CNN-LSTM network. A GWO-based evolving pro-
cess is devised for automatic identification of the optimal
CNN-LSTM configurations in relation to the network and
learning hyperparameters, i.e. the learning rate, the dropout
rate, the numbers and sizes of filters in two convolutional
layers, the size of pooling layer, the numbers of hidden nodes
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FIGURE 1. The structure of the proposed GWO-based evolving CNN-LSTM
time series forecasting model where each wolf represents a set of
network topology and learning hyperparameters for evolution.

in both the LSTM recurrent layer and the final dense layer,
respectively.

3. Since the original GWO model is subject to stagnation
at local optima and a slow convergence rate, to overcome
these limitations, four distinctive strategies are proposed to
enhance the search exploitation and exploration capabilities
of the original model, i.e. 1) a nonlinear dynamic adjustment
of search coefficient; 2) a chaotic weight allocation scheme
for dominant wolves; 3) an enhanced spiral local exploitation
scheme; 4) Lévy flight based leader enhancement. The pro-
posed GWO variant is employed for automatic generation of
the optimal CNN-LSTM network configuration.

4. The optimized evolving CNN-LSTM architecture is
evaluated using three time series problems, i.e. energy con-
sumption forecast, PM2.5 pollution prediction, and human
activity recognition (HAR). The proposed evolving time
series forecasting model outperforms those yielded by four
classical SI algorithms and three advanced GWO and PSO
variants on all employed time series tasks, as evidenced by
statistical test results.

The rest of the paper is organized as follows. In Section II,
the state-of-the-art studies on GWO and its variant models
are introduced. Several recently proposed metaheuristic algo-
rithms and the advances in related evolving deep learning
models are discussed. Section III presents the details of the
proposed GWO variant and the evolving CNN-LSTM net-
work. A comprehensive evaluation of the proposed evolv-
ing CNN-LSTM time series forecasting model is provided
in Section IV. Conclusions are drawn and future research
directions are presented in Section V.

II. RELATED WORK
In this section, we introduce the original and modified
GWO models. Several up-to-date metaheuristic algorithms

are discussed. In addition, the related studies on deep learn-
ing models with hyperparameter fine-tuning and architecture
generation are analysed.

A. GWO
GWO is a SI algorithm proposed recently according to
the social dominant hierarchy and group hunting operations
observed among grey wolves [16]. In a wolf pack, there are
four different levels in terms of the positions in the social
hierarchy, i.e. wolf alpha (α), wolf beta (β), wolf delta (δ), and
wolf omega (ω). Those wolves from the top three hierarchies,
i.e. α, β, and δ, are responsible for decision making during
hunting, whereas wolves at the bottom of the hierarchical
ladder, i.e. ω, are subordinates of those from the higher levels
unconditionally.

In GWO, each wolf represents a randomly initialized solu-
tion. The wolves with the highest three fitness scores are
labeled as α, β, and δ, respectively, and assume the leadership
to guide the movement of the whole wolf pack. The GWO
search scheme is based on the encircling hunting mecha-
nism observed within the grey wolf pack in nature as well
as the supposition that three dominant wolves retain better
knowledge on the location of the prey (i.e., optimality) than
their comrades. Henceforth, each wolf updates its position
in reference to the three top leaders in the wolf pack, i.e. α,
β, and δ, respectively, in a manner according to (1)-(6). The
arithmetic average of the three position adjustments is then
adopted as the target position for each wolf to be dispatched
to, as indicated in (7).

Dt+1α,j =

∣∣∣C1×X tα,j − X
t
i,j

∣∣∣ (1)

Dt+1β,j =

∣∣∣C2×X tβ,j − X
t
i,j

∣∣∣ (2)

Dt+1δ,j =

∣∣∣C3×X tδ,j − X
t
i,j

∣∣∣ (3)

X t+1ad1,j = X tα,j − A1 × D
t+1
α,j (4)

X t+1ad2,j = X tβ,j − A2 × D
t+1
β,j (5)

X t+1ad3,j = X tδ,j − A3 × D
t+1
δ,j (6)

X t+1i,j = (X t+1ad1,j + X
t+1
ad2,j + X

t+1
ad3,j)

/
3 (7)

C = 2× rand (8)

A = (2× rand − 1)× a (9)

a = 2× (1−
t

Max_iter
) (10)

where X ti,j denote the element of the i-th wolf on the j-th
dimension under the t-th iteration. Xα , Xβ , and Xδ represent
the positions of three leading wolves α, β, and δ respectively,
whereas Dα , Dβ , and Dδ represent the distance measures,
and Xad1, Xad2, and Xad3 represent the position adjustments,
in reference to the above three dominant wolves i.e. α, β,
and δ, respectively. Besides that, A and C are two search
coefficients related to position updating where A1, A2, and
A3 are the three instantiations of parameter A, and C1, C2,
and C3 are the three instantiations of parameter C .Max_iter
denotes the maximum iteration number, whereas rand is a
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random number in the range of [0, 1]. In addition, a denotes
the exploration rate linearly decreasing from 2 to 0 as the
iteration increases.

In the original GWOmodel, a is an essential search param-
eter, capable of regulating the transition from exploration to
exploitation during the search iterations. The parameter a
dictates the search boundary and radius of the wolf popu-
lation through regulating the magnitude of the step size A,
as shown in (9). Specifically, as illustrated in FIGURE 2,
the wolves conduct exploration and jump out of the search
range between itself and the prey when |A| > 1. This can only
happen when the exploration rate a > 1, according to (9).
In contrast, the exploitation between the wolf and the prey
can be deployed when |A| < 1. As a result, the trajectory of a
during the iterative process plays a significant role in affect-
ing the exploration and exploitation capabilities of GWO.
In principle, GWOpossesses manymerits in comparison with
previous classical search methods (e.g. PSO and GA), owing
to the employment of multiple-leader guided search as well
as dynamic fine-tuning of the search scopes.

FIGURE 2. Exploitation (|A| <1) vs. Exploration (|A| >1) in GWO [16].

B. GWO VARIANTS
Despite the merits, GWO still suffers from disadvantages
such as local stagnation, a slow convergence rate, as well
as deficiency in fine-tuning around the best swarm leader
[34]–[36]. Many efforts have been made to mitigate the
identified drawbacks and enhance the search efficiency of
GWO. Ozsoydan [37] proposed three GWO variants, i.e.
prioGWO, learnGWO, and prLeGWO, to investigate the
effects of dominant wolves in GWO. In prioGWO, three
dominant wolves re-arrange their positions within themselves
by following the position updating formula in the origi-
nal GWO, prior to guiding the movement of the rest of
the wolf pack. In learnGWO, dedicated learning curves are
developed to gradually increase the dominance of wolf α,
while decreasing that of wolves β and δ over the iterative
process. Besides that, prLeGWO incorporates both strate-
gies employed in prioGWO and learnGWO. These GWO
variants are evaluated on multiple optimization tasks, i.e.
unconstraint test functions, the uncapacitated facility loca-
tion problem (UFLP), as well as the 0-1 knapsack problem.
The results indicate the effectiveness of their GWO variants
in comparison with those from five baseline models, i.e.
PSO, GWO, a continuous PSO with a local search (CPSO),

an adapted Artificial Bee Colony for binary optimization
(ABCbin), and Weighted Superposition Attraction (WSA).
Luo [38] proposed an enhanced GWO (EGWO)model which
dynamically estimates the location of the prey using a weight-
based aggregation of the three dominant wolf leaders. The
weights are generated using normalized random numbers
within [0, 1]. A strict hierarchical order is established by
assigning the weights based on the ranking of fitness scores
of the three dominant wolves, i.e. larger weights for wolves
with higher rankings. Subsequently, the wolves update their
positions under the guidance of this estimated location of
the prey. The EGWO model is evaluated on 30-dimensional
and 100-dimensional CEC2017 test functions, as well as
two engineering applications. It significantly outperforms the
original GWO, a fuzzy hierarchical GWO, and a random
walk GWO. Gupta and Deep [39] proposed a modified GWO
method based on random walks (RW-GWO). Specifically,
the three dominant wolves are further improved by conduct-
ing random jumps, with the steps generated using the Cauchy
distribution. RW-GWO is evaluated on 10-dimensional and
30-dimensional CEC2014 test functions. It demonstrates sig-
nificant superiorities in comparison with those of the base-
line models, e.g. Gravitational Search Algorithm (GSA),
Cuckoo Search (CS), and Laplacian Biogeography-Based
Optimization (LX-BBO).

Wang and Li [34] proposed an improved GWO (IGWO) by
incorporating biological evolution and survival of the fittest
principle into the evolving process of GWO. Specifically,
a Differential Evolution (DE)-based breeding operation is
applied to the three dominant wolf leaders. A crossover oper-
ation is then used with the yielded offspring and each individ-
ual wolf solution as the parent chromosomes. Besides that,
a dynamic number of weak individuals are eliminated from
the population and replaced by randomly generated new solu-
tions, according to the principle of the survival of the fittest.
The IGWO model is evaluated on the twelve benchmark
functions, and it outperforms GWO, DE, PSO, ABC, and
CS, statistically. Emary et al. [40] proposed a GWO variant,
i.e. experienced GWO (EGWO). Reinforcement learning is
employed in EGWO to yield the exploration rate, i.e. param-
eter a in GWO, for each individual wolf based on its past
experience in each iteration. Specifically, a state-actionmodel
is mapped using a neural network with a single hidden layer
tomaximize the reward function. The input is the change state
of the fitness score in every two successive iterations, and the
output is the action set for the adjustment of the exploration
rate, i.e. increasing, decreasing, or maintaining the current
value of a. As such, the parameter a can be specifically
tailored for each individual wolf by the mapped network,
according to its own previous experience and performance,
to bestow the freedom of choosing between exploration and
exploitation on each individual wolf per se, instead of fol-
lowing the same regulation of parameter a collectively. The
effectiveness of EGWO is evaluated on 21 feature selection
tasks and 10 ANN weight adaptation tasks. The results indi-
cate significant advantages of EGWO over the those of the
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original GWO, PSO and GAmodels. Moreover, Tu et al. [41]
proposed a hierarchy strengthened GWO (HSGWO) model.
It incorporates an elite learning operator, an opposition-based
learning strategy, a DE operator, a hybrid total-dimensional
and one-dimensional update strategy, as well as a perturbed
operator. The enhanced elite learning strategy ensures the
dominant wolves only learn from those with higher rankings,
hence mitigating distractions from less advanced solutions,
whereas opposition-based learning enables the dominant
wolves to conduct extensive explorations. The remaining
wolf solutions are able to choose between the original GWO
and DE models to update their positions, in either all dimen-
sions or only one sub-dimension. Moreover, a fraction of the
wolf candidates is replaced with the solutions yielded from
perturbations of randomly selected individuals from the wolf
pack. HSGWO is evaluated on the CEC2014 test functions as
well as 13 feature selection tasks. It outperforms the baseline
models, e.g. Salp Swarm Algorithm (SSA), and differential
mutation and novel social learning PSO (DSPSO).

Moreover, Gupta and Deep [42] proposed a memory-based
GWO (mGWO) model. It incorporates the personal best
experiences, randomly selected wolf solutions, a crossover
operation, and a greedy selection strategy for position updat-
ing. The personal historical best experience is employed in
two distinctive manners to yield two respective candidate
solutions for the current individual under each iteration.
Specifically, the first candidate is generated by replacing the
position of the wolf in the current iteration with its historical
best experience in the position updating equations of the
original GWO algorithm. The second candidate is yielded
by a local search mechanism involving the historical best
experience, as well as two randomly selected wolf solutions
in the neighbourhood. Subsequently, a crossover operation
is performed on both candidates, and the offspring solutions
are adopted as the new individuals for the next generation.
Besides that, a greedy selection strategy is enforced between
the wolf solutions of two consecutive iterations, and the best
one is retained. The mGWO model is evaluated with the
CEC2014 and CEC2017 benchmark test functions, as well
as six practical engineering design problems. It outper-
forms numerous classical search methods, e.g. PSO, Firefly
Algorithm (FA), and advanced GWO variants including
Oppositional GWO (OGWO) and Improved GWO (IGWO)
on unimodal, multimodal, and composite benchmark func-
tions. Ibrahim et al. [43] proposed an improved GWO variant
(COGWO2D) that incorporates four strategies. They are a
logistic chaotic map, an Opposition-Based Learning (OBL)
mechanism, a DE position updating scheme, and a disruption
operator. The logistic map is used for chaotic population
initialization. The OBL mechanism is applied to generate the
opposite counterparts. The final collection of the initialized
solutions is selected from the above combined sets according
to the fitness eminence. Then, the original GWO and DE
updating mechanisms are combined in parallel for position
updating. In addition, the disruption operator is employed

to increase the search diversity for those wolf solutions dis-
tant from the current swarm leader, while intensifying local
exploitation for the remaining wolf individuals located in
the vicinity of the current global best solution. Evaluated
with the CEC2005 and CEC2014 benchmark functions and
a feature selection task, the COGWO2D model significantly
outperforms other nine competitors, including Whale Opti-
mization Algorithm (WOA), Salp Swarm Algorithm (SSA),
Ant Lion Optimizer (ALO), DE, and CS. Al-Betar et al. [44]
investigated the impacts of different natural selection meth-
ods on the performance of GWO. In addition to the greedy
selection of the top three wolf leaders employed in the orig-
inal GWO model, five additional selection paradigms are
explored, i.e. the tournament selection, proportional selec-
tion, stochastic universal sampling selection, linear rank
selection, and random selection. Evaluated with 23 bench-
mark functions, GWOwith the tournament selection achieves
the best performances, outperforming several classical search
methods, e.g. GA and PSO. GWO with the random selec-
tion obtains the worst optimization results. The research
provides good insight on the common dilemma of employ-
ing elicit signals and introducing random perturbations in
developing metaheuristic algorithms. Wen et al. [45] pro-
posed an inspired GWO (IGWO) model. It employs a log-
arithmic decay function to adjust search parameter a and
a modified position updating mechanism incorporating the
mean position of three wolf leaders, the personal historical
best experience, and the global best solution, for imitation
of the position updating technique in PSO. Evaluated with
four high-dimensional benchmark test functions and three
practical engineering design problems, IGWO outperforms
the original GWO model, four advanced GWO variants, and
four other search methods. Saxena et al. [46] proposed a
β-Chaotic map enabled GWO (β-GWO) model. It modifies
the linearly decreasing search parameter a by adding a β
function-based chaotic sequence. This design enables the
preservation of the exploration virtue throughout the itera-
tive process. Evaluated with the CEC2017 benchmark test
functions and two practical engineering design problems,
β-GWO outperforms four classical search methods, includ-
ing GSA and Flower Pollination Algorithm (FPA), and five
advanced GWO variants, including OGWO and Grouped
GWO (GGWO), with statistical significance.

Based on the in-depth analysis of the original GWO and
its variant models, we identify two major limitations of the
original GWO algorithm, i.e. (i) insufficiency of exploration
owing to the sharp contraction of search territory and (ii) inef-
ficiency in the fine-tuning exploitation procedure around the
global best solution, particularly in the final stage of the
evolution where convergence of the population is required,
owing to the distraction of the other two wolf leaders. Our lit-
erature review indicates that, instead of tackling both above-
mentioned problems collectively, most of the existing studies
focus only on one problem, i.e. either enhancing search
diversity and exploration capability via the employment
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of multiple position updating strategies [42], [43], [45],
or improving local exploitation by reinforcing the domination
of the leader (wolf α) in the leadership hierarchy [37], [38].
Comparatively, we overcome both limitations simultane-

ously in this research. Specifically, four strategies to enhance
the original GWO algorithm are proposed, i.e.,
• a nonlinear adjustment of search coefficient capable of
extending the search territory during exploration and
confining the search range during exploitation;

• a chaotic weight allocation mechanism to reinforce the
leadership (wolf α) while maintaining a periodic diver-
sification of other guiding signals;

• a dedicated spiral local exploitation scheme to enhance
the exploitation capability around the global best solu-
tion, in order to accelerate convergence;

• a Lévy flight-based leader enhancement scheme.
The original GWO model is enhanced from the following
perspectives, i.e. a nonlinear exploration rate, chaotic diversi-
fication of guiding signals, enhanced global position updating
rules, and a new spiral local exploitation mechanism. These
proposed strategies work cooperatively to achieve an efficient
trade-off between exploration and exploitation.

C. METAHEURISTIC ALGORITHMS
Metaheuristics are high-level algorithmic frameworks that
employ generic strategies to efficiently find approxi-
mate solutions for addressing optimization problems [47].
Metaheuristic algorithms principally involve two search
paradigms, i.e. exploration and exploitation. Both search
paradigms are responsible for discovering a diverse assort-
ment of solutions scattering widely across the search space,
and conducting concentrated fine-tuning adjustments around
promising solutions. In the research community, there are two
widely accepted concepts: (1) the trade-off between explo-
ration and exploitation is critical to the search performance
of metaheuristic algorithms, and (2) a universal optimization
method suitable for all problems does not exist according to
‘‘no free lunch’’ (NFL) theorem [48]. In addition to classical
search methods, e.g. GA [49], DE [50], PSO [51], FA [52],
MFO [53], GWO [16], GSA [54], and FPA [55], many inno-
vative search mechanisms have been developed for further
improving the robustness and applicability of metaheuristics
algorithms. A review on several latest metaheuristic algo-
rithms is presented, as follows.

Inspired by the oscillation mode and food search pat-
terns of slime mould in nature, Li et al. [56] proposed a
Slime Mould Algorithm (SMA). It incorporates three types
of movements in cascade as well as in conjugation with
oscillated search parameters for position updating. Specif-
ically, for producing high-quality slime mould solutions,
a local exploitation operation is conducted in all directions
to further refine such individuals. The current low-quality
positions are replaced with the new ones yielded by the
global best and two other randomly selected individuals.
To further increase search diversity, the slime mould popula-
tion is replenished with new individuals randomly generated

according to a predefined probability-based condition.
Evaluated with 33 benchmark test functions and four prac-
tical engineering problems, the SMA model significantly
outperforms a number of classical and advanced search meth-
ods, e.g. MFO and Comprehensive Learning PSO (CLPSO).
Askari et al. [57] proposed a Heap-based Optimizer (HBO)
by simulating various interactions in a corporate rank
hierarchy. A 3-ary heap structure according to the fitness
values is established on the population. A cascade search
mechanism incorporating three search scenarios is devel-
oped, i.e. moving towards the immediate superior solution
in the higher hierarchy (boss), moving towards a fitter
solution within the same hierarchy (colleague), and retain-
ing the current position (self-contribution). Evaluated with
97 benchmark test functions and three practical engineering
problems, the HBO model outperforms seven well-known
search algorithms, including Multi-Verse Optimizer (MVO),
GSA, PSO, and CS. Inspired by the gradient-based Newton’s
method, Ahmadianfar et al. [58] proposed a Gradient-based
Optimizer (GBO). It incorporates a gradient search rule
and a local escaping operator. The gradient search rule
applies a gradient-based mechanism to drive the individuals
to approach the global best solution, while retaining search
diversity through the employment of randomly selected indi-
viduals in the neighbourhood during the position updating
process. Besides that, a local escaping operator for over-
coming the local optima traps is developed by further intro-
ducing newly generated individuals into the population to
participate in the competition. Evaluated with 28 benchmark
test functions and six engineering problems, it significantly
outperforms five classical search methods, i.e., GWO, CS,
Artificial Bee Colony (ABC), WOA and Interactive Search
Algorithm (ISA). Heidari et al. [59] proposed a Harris Hawk
Optimization (HHO) algorithm. It mimics the hunting mech-
anism of Harries hawks. During exploration, two position
updating options are developed, i.e. adjusting position in
reference to the global best solution, or randomly selected
solutions in the neighbourhood corresponding to two perch-
ing choices of hawks, i.e. the family member and the rabbit,
during hunting, respectively. To facilitate exploitation, four
local search mechanisms are designed to approach the global
best solution by adopting different search coefficient vectors,
in simulation of besiege processes of hawks. Evaluated with
29 benchmark test functions and six engineering optimization
problems, HHO outperforms a number of classical search
models, including FPA and MFO, significantly.

D. EVOLVING DEEP NEURAL NETWORKS
The performance of deep neural networks is largely depen-
dent on the configurations of their respective architectures
and hyperparameter settings. However, the search for the
optimal network configuration is extremely challenging
owing to the network complexity and heavy computational
cost of the learning processes. Characterised with superb
global search capabilities, evolutionary computation (EC)
techniques have been leveraged to evolve deep learning
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neural networks for the identification of the optimal learning
configurations as well as the discovery of innovative network
structures.

Sun et al. [60] proposed an automatic CNN architecture
design based on the GA. In this method, a generic CNN
structure consisting of some predefined building blocks is
employed as the foundation for the automatic architecture
generation. Specifically, a building block with two convolu-
tional layers and one skip connection is employed for the ben-
efits of increasing the network depth without risking gradient
vanishing, whereas the fully connected layers are discarded
for the consideration of reducing the likelihood of overfitting
resulted from the dense connection. As a result, the parame-
ters encoded in the GA chromosomes include filter numbers
of convolutional layers in each building block and the pooling
layer type, with the length of chromosomes representing
the network depth. The population undergoes an evolving
process of the crossover operation and a mutation process.
The latter incorporates four options, i.e. adding a skip layer,
adding a pooling layer, removing a layer at the selected posi-
tion, and changing the parameters of the building block ran-
domly. Their proposed method is evaluated on CIFAR10 and
CIFAR100 data sets. The results indicate its great superior-
ities in improving classification performance while signif-
icantly reducing the number of parameters, in comparison
with those from the manually designed CNN models, e.g.
ResNet (depth = 110), as well as the models derived from
the combined schemes of automatic and manual tuning, e.g.
Efficient Architecture Search (EAS) and Differential Archi-
tecture Search (DARTS). Sun et al. [61] proposed an evolving
deep CNN (EvoCNN) model based on the GA for image
classification. A variable-length gene encoding strategy is
formulated to represent each potential network configuration.
Two statistical measures, i.e. the mean and standard deviation
values, are used to represent the weight parameters in the
encoding strategy. During fitness evaluation, Gaussian distri-
bution is employed to decode the weights based on the two
statistical measures. The network architecture recommended
by each chromosome as well as its corresponding decoded
weights is adopted in fitness evaluation. Besides the classifi-
cation performance (i.e. the mean and standard deviation of
the classification error rates), the network parameter size is
also considered in chromosome evaluation. A slack binary
tournament selection strategy is devised for the parent chro-
mosome selection where the mean classification performance
and the parameter size are used as the threshold criteria.
A unit alignment crossover operator is proposed to exchange
gene information of the two parent solutions with different
lengths. Evaluated with nine popular image classification
data sets (e.g. Fashion, Rectangle, MNIST and its variant
data sets), the EvoCNN model outperforms a number of
competitive benchmark deep architectures.

Deep network generation with ResNet and DenseNet
blocks based on the GA is examined by Sun et al. [62].
Specifically, an automatically evolving CNN (AE-CNN)
model is designed to yield the CNN architectures with

residual and dense connectivity. A one-point crossover oper-
ator is used for offspring solution generation, while three
types of mutation operations (i.e. adding, removing, and
modifying) are employed to further configure the networks.
Evaluated with the CIFAR10 and CIFAR100 data sets,
the AE-CNN model performs favourably as compared with
a number of hand-crafted architectures and automatically
devised networks from some existing methods. Despite the
promising results and the great potential of the evolutionary
deep learning models with respect to knowledge discovery,
they are inadvertently subject to a considerably high com-
putational cost. To overcome this drawback, Sun et al. [63]
proposed an end-to-end performance predictor (E2EPP).
A random forest is used to predict the network performance.
The AE-CNN model [62] is initially employed to produce
a set of CNN architectures. These network configurations
are subsequently encoded into numerical decision variables,
which are used in conjunction with the corresponding net-
work accuracy rates for training the random forest-based
performance predictor. Specifically, a predictor pool is gener-
ated, where each base treemodel is trained using data samples
containing randomly selected subsets of features. To increase
ensemble robustness, a subset of base evaluators is selected
to evaluate any newly created architectures based on their
prediction performances with respect to the current best CNN
architecture. The E2EPP model outperforms two existing
performance predictors and advanced deep networks in terms
of classification performance and computational efficiency.

Moreover, Martín et al. [64] employed a Hybrid
Statistically-driven Coral Reef Optimization (HSCRO)
algorithm to reconstruct the fully connected layers in
VGG-16 for two purposes, i.e. reducing the amount of
parameters and improving model performance. Each coral
individual represents a set of fully connected layers in
VGG-16. Four types of parameters are encoded in each layer,
i.e. activation function, number of neurons, matrix of con-
nection weights, and bias. The HSCRO model incorporates
four evolutionary operators, i.e. asexual reproduction, sexual
reproduction, settlement, and depredation, to emulate the
reproduction process of coral reefs. In addition, a stratified
mutation scheme is designed inwhich 20%of best individuals
undergo parametricmutations onweights and biases, whereas
the remaining 80% of individuals experience structural muta-
tions, i.e. mutations on activation functions, the number of
nodes, and node connections, during the evolving process.
The identified best solution is further fine-tuned using a
stochastic gradient descent (SGD) optimizer. The proposed
evolving CNN model is tested on two image classifica-
tion data sets, i.e. CIFAR10 and CINIC10. It is capable of
reducing 90% of the connection weights while improving
the classification accuracy as compared with those of the
VGG-16 model.

In addition to evolving CNN models, there are stud-
ies on evolving RNN and LSTM models. Rawal and
Miikkulainen [65] proposed a Genetic Programming (GP)
based evolving LSTM architecture generation model. It is
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capable of constructing the layered network structures from a
single recurrent node design. The recurrent node is encoded
as a tree structure with two types activation operations, i.e.
linear activations with two elements (add and multiply),
and nonlinear activations with one element (tanh, sigmoid,
or relu). A homologous crossover operator is designed to
yield offspring solutions by crossing over the same regions of
the two parent chromosomes represented in the tree structures
during reproduction. Besides that, three types of mutation
operations are designed for the evolution of the tree solutions,
i.e. (1) replacing one activation operation with another within
the same category, (2) inserting a new branch at a random
position in a tree, and (3) shrinking a branch by replac-
ing it with a randomly selected operation employed in this
branch. In addition, the individual solutions with previously
explored branch structures undergo repeated mutation pro-
cedures until the new tree structures are generated, in order
to maintain population diversity. Two architecture genera-
tion schemes are experimented, i.e. a homogenous evolving
process using a single recurrent node within a LSTM layer
vs. a heterogenous evolving process using the combination
of nodes with different structures. Their evolving LSTM
model is evaluated in two tests, i.e. a language modelling
test and an automatic music transcription test. It outperforms
several existing advanced models, which include the neural
architecture search method (NAS) and Recurrent Highway
Network (RHN). Kim and Cho [66] developed a PSO-based
evolving CNN-LSTM network for the prediction of energy
consumption. The original PSO algorithm is applied to search
for the optimal hyperparameters of CNN-LSTM, e.g. the
filter numbers and sizes in the convolutional layers, and
the number of hidden nodes in the recurrent layers, for
retrieving energy consumption patterns. The results indicate
that their evolving CNN-LSTM model significantly outper-
forms classical models, e.g. Linear Regression, Decision
Tree, and RandomForest, for energy consumption prediction.
Xue et al. [67] proposed an evolving CNN-LSTM method
to tackle the inventory forecast problem. PSO and two DE
variants, i.e. DE with binominal and exponential crossover
operators respectively, are employed for the identification
of the optimal CNN-LSTM hyperparameters, including the
filter number and size in the convolutional layer, pooling
type, pooling size, and stride size with respect to the pooling
layer, as well as the dropout rate and the numbers of nodes
in the LSTM layer and dense layer, respectively. The results
indicate that the DE model with exponential crossover oper-
ator achieves the best performance in forecasting inventory.
It is more advantageous for identifying proper CNN-LSTM
hyperparameters in comparison with PSO as well as DE with
binominal crossover operator. A systematic review on design-
ing deep neural networks using neuro-evolution is provided
in [68].

III. THE PROPOSED EVOLVING TIME SERIES
PREDICTION MODEL
The proposed evolving time series prediction model consists
of two major components, i.e. the CNN-LSTM network and

the enhanced GWO variant. The CNN-LSTM network is the
core component to make prediction based on data sequences
whereas the proposed GWO variant is employed to search
for the optimal hyperparameters for devising the CNN-LSTM
model. In CNN-LSTM, the time series data are the inputs to
the convolutional layers for it to extract the main features sur-
rounded by the temporal context and reduce irrelevant varia-
tions. The obtained feature maps are then fed into the LSTM
layers to analyze the temporal variations and learn long-term
dependencies. The fully connected layer is applied subse-
quently to conduct nonlinear transformations on the extracted
features and produce the prediction results. As discussed
earlier, the performance of a deep CNN-LSTM model is
significantly influenced by the quality of hyperparameter set-
tings, such as the number of filters in the convolutional layers,
the number of hidden nodes in the LSTM layer, as well as the
learning configurations, e.g. learning rate, which determine
the representational capacity and the training properties of the
employedmodel. Therefore, an enhancedGWOmodel is pro-
posed to automatically identify the optimal configuration of
such hyperparameters for devising the CNN-LSTM network.
The identified optimized CNN-LSTMmodel is subsequently
used to undertake time series prediction and classification
tasks. We explain the proposed GWO and CNN-LSTMmod-
els in detail in the following subsections.

A. THE PROPOSED GWO VARIANT
As mentioned earlier, GWO is a recently developed SI algo-
rithm which has demonstrated robust and advanced search
capabilities by the mechanism of following the guidance of
top three swarm leaders, i.e. wolves α, β, and δ, as well
as a dedicated design of the transition from exploration to
exploitation, i.e. the exploration rate a. Despite these merits,
the original GWO algorithm still suffers from severe obsta-
cles of local optima traps, owing to its search bias, especially
towards the origin of the coordinate system [38], [69], as well
as the limitations of search diversity. Moreover, the static and
equal division of the leadership among the three strongest
wolves over thewhole search course contradicts its strategy of
hierarchical division within the wolf community in principle,
therefore confining the capability of fine-tuning around the
obtained global best solution. In this research, we propose
four distinctive mechanisms to resolve the abovementioned
restrictions and enhance the global exploration and local
exploitation of the original GWO algorithm. Firstly, a nonlin-
ear adjustment of the exploration rate a′ is proposed to replace
a and advance the search transition between exploration and
exploitation. The aim is to delay the shrinkage of the search
territory during exploration while concentrating the detection
on the promising neighbourhood around the wolf leaders
during exploitation. Secondly, a sinusoidal chaotic map is
employed to generate dynamic yet clamped weights. The aim
is to simulate benevolent competitions among the three dom-
inant wolves, α, β, and δ, for leading the wolf pack. As such,
a trade-off between reinforcing the leadership of the best
individual and diversifying the distractions of the second and
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third best solutions can be achieved. Furthermore, a damped
odd function with a shrinking amplitude is proposed. The aim
is to deploy a fine-tuning local search process around the
swarm leader in the final stage for accelerating the conver-
gence process. Lastly, the Lévy flight is employed with the
aim to further enhance the quality of three leadingwolvesα,β
and δ, in each iteration, in order to overcome early stagnation.
The pseudo-code of the proposed GWO variant is provided in
Algorithm 1.

Algorithm 1 The Proposed GWO Model
1 Start
2 Initialize a grey wolf population
3 Evaluate each individual using the objective function f (x)

and identify three dominant wolves with the best fitness
scores, denoted as Xα,Xβ , and Xδ , respectively

4 While (t < Max_iter)
5 {
6 Update the exploration rate a′ by (11)-(12)
7 Generate dominance factors for three wolf leaders,

i.e. w for wolf α and w′ for wolves β and δ,
using (17)-(18)

8 For (each leader) do
9 {
10 Conduct leader enhancement using Lévy

flight as defined in (24)
11 } End For
12 If (t < 0.8×Max_iter)
13 {
14 For (each wolf i in the population) do
15 {
16 Generate step size A′ using (13)
17 Calculate distance measures, Dα , Dβ , and Dδ ,
by (1)-(3)
18 Update the position with respect to

Xα,Xβ , andXδ , by (14)-(16), & (19)
19 } End For
20 Else t ≥ Ý0.8× ÁMax_iter
21 For(each wolf i in the population) do
22 {
23 Conduct local exploitation around the

best leader Xα with dynamic steps by
(20)-(22)

24 } End For
25 } End If
26 For(each wolf i in the population) do
27 {
28 Calculate the fitness score of i
29 Update three dominant leaders Xα,Xβ , andX δ
30 } End For
31 } End While
32 Output the most optimal solution Xα
33 End

1) A NONLINEAR EXPLORATION FACTOR FOR ADJUSTMENT
OF THE SEARCH BOUNDARY
In the original GWO algorithm, the transition from explo-
ration to exploitation is governed by the exploration rate a,
as defined in (10). It decreases linearly from 2 to 0 as the
iteration builds up. This linear changing pattern largely gov-
erns the search performance, owing to the lack of distinction
among different search behaviours during exploration and
exploitation. To be specific, the search parameter a deter-
mines how far each individual wolf can jump with reference
to the leader wolves. This is achieved by manipulating the
magnitude of step size A, where A| 6 |a| is always satisfied
throughout the search process, as in (9). As discussed earlier,
a is the determining factor that controls the boundary of
the search territory. The linearly decreasing pattern of a in
the original GWO algorithm results in an acute shrinkage
of the search territory during exploration as well as lack of
search attention on the promising vicinity of wolf leaders
during exploitation. In fact, a number of existing studies have
explored adaptive control of the diverse search operations
based on a variety of nonlinear functions, e.g. trigonomet-
ric [70], [71], exponential [72], [73], and logarithmic-based
functions [45], [74], which have produced impressive per-
formances. Inspired by the existing studies, we propose a
nonlinear search parameter a′ which integrates trigonometric
functions, i.e. cos and sin, as well as the hyperbolic function,
i.e. tanh, to overcome the limitations of a in the original
GWO algorithm. The aim is to alleviate the sharp contrac-
tion of the search territory in the early search stage of the
original GWO algorithm as well as to achieve a superior
transition from exploration to exploitation. The formulae
of the newly proposed exploration factor a′ are presented
in (11)-(12).

a′ = 2×

(
cos

(
(tanhθ)2 + (θ sinπθ)k

(tanh1)2
×
π

2

))2

(11)

θ =
t

Max_iter
(12)

where t andMax_iter represent the current and the maximum
numbers of iterations, respectively, while θ is the quotient
of t divided by Max_iter . The coefficient k determines the
descending slope of the search parameter a′ over the search
process, therefore capable of regulating the transition from
exploration to exploitation. Based on trial-and-error, k = 5
is adopted in this research. FIGURE 3 presents a plot of
the proposed nonlinear exploration rate a′, against the lin-
early decreasing a adopted in the original GWO algorithm
as defined in (10).

The proposed nonlinear search parameter a′ replaces a in
the original GWO algorithm to generate step size A′ for the
movement of an individual wolf with respect to each wolf
leader, i.e. α, β, and δ, as shown in (13)-(16). Based on the
new step sizeA′, themovementmechanism towards eachwolf
leader in the original GWO model is performed, as defined
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FIGURE 3. The proposed nonlinear a′ vs. linear a in the original GWO.

in (1)-(6).

A′ = (2× rand − 1)× a′ (13)

X t+1ad1,j = X tα,j − A
′

1 × D
t+1
α,j (14)

X t+1ad2,j = X tβ,j − A
′

2 × D
t+1
β,j (15)

X t+1ad3,j = X tδ,j − A
′

3 × D
t+1
δ,j (16)

where A′ is the step size yielded by the proposed search
parameter a′. Three step sizes, i.e. A′1, A

′

2, and A′3, are
generated for the movements towards three dominant wolves,
i.e. α, β, and δ, respectively, for each individual wolf under
position updating. In addition, Xad1, Xad2, and Xad3 denote
the position adjustments with respect to α, β, and δ, respec-
tively, while Dt+1α,j , D

t+1
β,j and Dt+1δ,j are obtained using (1)-(3).

As shown in FIGURE 3, in comparison with the linear
adjustment of a in the original GWO algorithm, the proposed
nonlinear exploration factor a′ decreases with gentle gradi-
ents both at the beginning and the end of the search process.
In other words, the nonlinear gradient variation pattern of
the proposed a

′

is capable of yielding significantly larger
exploration rates in the first half of the search course, as well
as smaller exploration rates in the second half of the search
course. As a result, the search boundary can be maintained at
a level with only minor contraction, and the search territory
can be significantly expanded during exploration. At the same
time, the local detection procedure is focused on the vicinity
of the promising solutions, owing to the confined search
boundary during exploitation. These advantages are strength-
ened when deploying a′ to the movement of an individual
wolf towards each of the three dominant wolves (α, β, and δ),
therefore enhancing both search diversification in explo-
ration and search intensification in exploitation. As such,
an enhanced transition from exploration to exploitation can be
achieved by using the proposed nonlinear exploration rate a′,
in comparison with that of the linearly decreasing parameter a
in the original GWO algorithm.

2) CHAOTIC DOMINANCE OF WOLF LEADERS
In the original GWO algorithm, although motivated by the
social hierarchy observed among grey wolves, the leadership
within the wolf pack is evenly divided and assumed by three
dominant leaders. This arrangement remains static over the
whole iteration course, regardless of the difference of the
fitness scores of the wolf leaders. This lack of prioritizing
operators among the dominant wolf leaders results in a slow
convergence rate, therefore compromising search efficiency
[34], [75]. Motivated by many diverse strategies proposed
to establish dynamic and strict social leadership hierarchies
in GWO, e.g. dedicated learning curves [37] and assign-
ment of random weights according to the fitness scores [38],
we employ a sinusoidal chaotic map to generate the weight
factors for prioritizing the dominance of the best leader
wolf α, as shown in (17). Then, the leadership factors of
wolves β and δ are determined subsequently in accordance
with that of wolf α, as indicated in (18). The position updating
mechanism with the new dominance factors is presented
in (19).

wt+1 = 2.3× w2
t × sin (πwt ) (17)

w′t+1 = 0.5× (1− wt+1) (18)

X t+1i = wt+1 × X
t+1
ad1 + w

′

t+1×X
t+1
ad2 +w

′

t+1×X
t+1
ad3 (19)

where wt and wt+1 represent the weight coefficients of the
position adjustment Xad1 with respect to wolf α in the t-th
and (t + 1)-th iterations, respectively, while w′t+1 represents
the weight coefficient for both position adjustments Xad2 and
Xad3 with respect to wolves β and δ, respectively, in the
(t+1)-th iteration.

The proposed chaotic dominance scheme is capable of
achieving a better trade-off between reinforcing the leader-
ship of the best wolf solution (single-leader guided search)
and diversifying the guiding signals (multi-leader guided
search). As illustrated in FIGURE 4, the employed sinu-
soidal chaotic map produces dynamic values roughly within
the range of [0.5, 0.9], which are adopted to represent the
irregular characteristic of the leadership of the most domi-
nating wolf α. The proposed leadership assignment scheme
simulates a centralized wolf regime in which wolf α is
bestowed with the highest authority. The leadership assumed
by wolf α is greater than the combined power of wolves
β and δ. As a result, the search procedure becomes more
focused on promising territories represented by wolf α, mit-
igating the negative impacts of malignant distractions and
futile movements caused by less promising leader signals.
As such, the convergence speed becomes faster and the search
efficiency improves.

In addition, the chaotic map oriented dynamic dominance
of wolf α increases search diversity by diversifying the guid-
ing signals, in comparison with the static and equal lead-
ership operation employed in the original GWO method.
Specifically, as the weight coefficients fluctuate periodically
between [0.5, 0.9], the dominance level of wolf α varies
accordingly over the whole iterative process. The rivalry from
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FIGURE 4. The sinusoidal chaotic map used for generating the leadership
factors of the most dominating wolf α.

wolves β and δ intensifies and becomes equivalent to that of
wolf α when the weight coefficient produced by the chaotic
map is equivalent to 0.5. As a result, the distraction imposed
by wolves β and δ can effectively dilute the dominance of
wolf α and divert the undergoing search trajectory to an
unexploited new region. As shown in FIGURE 4, such drastic
changes in leadership assumptions occur more frequently in
the middle of the search process, i.e. between 30-60 itera-
tions. This phenomenon can effectively prevent the wolf pack
from being trapped in local optima and reduce the likelihood
of premature stagnation.

Moreover, the employed dynamic rivalry of the domi-
nance among three leadingwolves assimilates themerits from
bothmulti-leader and single-leader guided search procedures.
Specifically, the significant dominance of wolf α, induced
by the relatively larger weight coefficient wt+1 as indicated
in (17), enables the enhancedGWOmodel to emulate the effi-
ciency of single best-leader guided search. On the other hand,
the equivalent rivalry fromwolves β and δ, induced by a com-
paratively smaller weight coefficient w′t+1 as defined in (18),
allows the proposed GWO model to leverage the strength of
global exploration from multi-leader guided search. In con-
trast, the existing studies [37], [38] in reinforcing the leader-
ship of wolf α generally fail to consider the influence of the
confrontation from the perspective of the combined power of
wolves β and δ. Indeed, the lack of variance in leadership
contention in the existing studies also increases the risk of
local stagnation.

Overall, the proposed chaotic leadership assignment
among the elite wolf circle in conjunction with the nonlinear
adjustment of the search boundary enables the enhanced
GWO model to achieve more efficient trade-offs between
exploration and exploitation from two levels, i.e. the inde-
pendent movement with respect to each wolf leader, and the
aggregation pertaining to the three wolf leaders.

3) A DEDICATED LEADER EXPLOITATION SCHEME
The constant adherence to the guidance of three best wolves
through the whole iterative process propels the search

diversity of GWO. On the other hand, it also constrains the
capability of concentrating on local detection around the
identified best solution. We subsequently propose a damped
function with decremental amplitudes to produce a variety of
step sizes for local exploitation and fine-tuning around wolf α
at the final search stage (e.g. t ≥ 80), as well as to guarantee
convergence of the wolf population. The damped function
is illustrated in (20), whereas the position updating equation
based on the generated step size is presented in (22).

λ = f × e3r
2/2
× cos (πr)× sin (πr) (20)

f = 1− 0.05× (t − 80) (21)

X t+1i,j = X tα,j − λ×
∣∣∣X tα,j − X ti,j∣∣∣ (22)

where λ and f denote the yielded step size and amplitude
of the damped function, respectively, while X t+1i,j represents
the element of wolf i at the j-th dimension in the (t + 1)-th
iteration. Besides that, r is a random value in the range of
[−1, 1], and Xα denotes the position of the best wolf
leader α.

As shown in FIGURE 5, the proposed formula is an odd
function with damped oscillations along the x axis. When
x is in the clamp between [−1, 1], the range of the highest
crest and trough is [−1.3, 1.3], whereas that of the second
highest crest and trough is [−0.6, 0.6]. As a result, the wolf
solutions are capable of conducting large jumps from all
directions radiated from wolf α when |r| > 0.5, as well as
performing granular movements when |r| < 0.5. Moreover,
the symmetry of the function with respect to the coordinate
origin induces an even distribution of the generated steps
in both the positive and negative realms. This enables the
simulation of individual wolves to approach wolf α as well
as to distance from it with an equal probability. Furthermore,
a decremental amplitude f is applied to gradually flatten
the fluctuation and shrink the search radius as the iteration
builds up. The intensification of the detection around the best
solution is, therefore, strengthened through this dedicated
local exploitation scheme.

FIGURE 5. The proposed damped function in (20) when f = 1.
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FIGURE 6. The comparison between proposed damped function and the
damped function applied in MFO.

As depicted in FIGURE 6, we further compare the pro-
posed formula in (20) with the damped function employed in
the spiral search mechanism of MFO [53] defined in (23).

y = ebr × cos (2πr) (23)

where b is a constant and is set as 1, while r is a random value
in the range of [−1, 1]. Besides that, y is the yielded step size.

Firstly, the damped function in MFO does not possess any
symmetrical properties. Secondly, it does not involve any
dynamic granular changes in its search scale. As a result,
the variance of the oscillated scales and the imbalance of the
probabilities between generating identical (positive values)
and reverse (negative values) search directions can lead to
obstinate search bias and incomplete coverage of the search
territory, which could degrade search efficiency and local
intensification. In contrast, the proposed strategy is able to
effectively accelerate convergence as well as intensify local
exploitation around the identified best leader, owing to the
increased diversity in terms of scales and symmetric direc-
tions of the search steps.

Moreover, the switch condition, i.e. t ≥ 0.8 × Max_iter ,
in Algorithm 1, is adopted based on trial-and-error to fully
unleash the potential of exploration in the proposed GWO
model while ensuring sufficient time window for executing
the proposed local exploitation scheme. Such a control mech-
anism also enables the proposed algorithm to take advantages
of both local and global search mechanisms to address the
limitations of the original GWO method, and achieve an
efficient trade-off between diversification and intensification.
Specifically, if this threshold is too small, the search is likely
to stagnate at local optima owing to the premature transfor-
mation from the multi-leader guided global exploration into
the single-leader based local detection. If the threshold is too
large, the algorithm is likely to suffer from insufficient local
exploitation around the global best solution, as in the case
of the original GWO model, owing to the distraction of the
other twowolf leaders (β and δ) as well as the narrowwindow

left for executing the rectified spiral fine-tuning operation.
Therefore, based on trial-and-error, we set 0.8 as the thresh-
old, which offers an efficient trade-off between global explo-
ration and local exploitation to increase the likelihood of
attaining global optimality.

4) WOLF LEADERS ENHANCEMENT USING LÉVY FLIGHT
The quality of the dominant leaders is crucial to the perfor-
mance of GWO, owing to the adoption of multiple leaders
in the search process. We, therefore, implement a Lévy flight
random walk as defined in (24) to further improve the quality
of the three leading wolves successively.

X ′L,j =

{
XL,j + ξ × Xσ,j if rand > 0.5
XL,j otherwise

(24)

where XL and X ′L represent the positions of each wolf leader
before and after performing a random walk according to
the Lévy distribution, respectively. Xσ represents a distinc-
tive second wolf leader selected among α, β and δ as a
distraction signal, while ξ denotes the step size generated
from the Lévy distribution [76].

The Lévy jumps are only implemented on the dimen-
sions where the determinants are higher than 0.5. Only the
mutated offspring solutions with improved fitness scores are
retained. For each leader undergoing mutation, a second dis-
tinctive dominant leader is randomly selected and employed
to introduce the distinguishing factors. This distraction from
a different leading wolf can effectively prevent the vanishing
of the jump momentum resulted from stagnation at local
optima located next to the coordinate origin, i.e. XL,j = 0.
In short, this leader enhancement operation based on Lévy
flight enables the wolf pack to jump out of local optima traps
and increases the likelihood of attaining global optimality.

Overall, the proposed GWO variant employs four
strategies to enhance search diversity while accelerating
convergence, i.e. a nonlinear adjustment of search bound-
ary, a chaotic dominance rivalry among leading wolves,
a dynamic leader exploitation operation using an enhanced
spiral search procedure, as well as a Lévy flight mutation
operation based on the dominant wolves. These proposed
strategies enhance the original GWO algorithm from three
perspectives, i.e. adjusting the search parameters, modifying
the position updating rules and search processes, and enhanc-
ing the promising leader signals. These strategies work coop-
eratively to mitigate premature convergence, improve the
transition from exploration to exploitation, and overcome the
limitations of the original GWO model.

B. THE PROPOSED CNN-LSTM ARCHITECTURE
CNN-LSTM has attracted many research attentions owing
to its great advantages in combining the strength of auto-
matic feature extraction in CNN and the capability of
capturing long-term temporal dependencies in LSTM. The
convolutional layer in CNN-LSTM disentangles the cross-
correlations while preserving deterministic and stochastic
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trends embedded among the input time series. Therefore,
it produces more accurate feature representations, which
enables the LSTM layers to learn temporal dependencies
more precisely. The CNN-LSTM networks have been applied
to tackle a variety of time series prediction and classification
problems successfully, e.g. stock market forecasting [77],
named entity recognition [78], textual sentiment analysis
[79], [80], machine translation [81], facial expression recog-
nition [82], and image description generation [83].

In this research, we propose a skeleton architecture of
CNN-LSTM, upon which the tailored configuration of the
hyperparameters is set according to the recommendation of
the proposed GWO variant with respect to the investigated
time series tasks. The topology of the proposed CNN-LSTM
architecture is outlined in FIGURE 7. It consists of three
core types of layers, i.e. the convolutional layer, the LSTM
recurrent layer, and the dense layer.

FIGURE 7. The topology of the proposed CNN-LSTM architecture.

The input data sequence is firstly used as the input to
two consecutive convolutional layers for feature extraction.
Through the convolutional operations of filters with differ-
ent properties, nonlinear activation of neurons, and abstract
representation of max pooling, the low-level features and
distinctions among variables under the context of temporal
effects are, therefore, acquired. The obtained feature map is
then passed to the LSTM layer, where the complex depen-
dencies are thoroughly learned by the examination of three
effective gates in LSTM, i.e. the forget, input, and output
gates. Specifically, the irrelevant or redundant information
from previous cell states is removed by the forget gate. The
effective new information from the input sequence is stored
by the input gate. Moreover, the signals from the cell state are
filtered and then propagated to the next state by the output
gate. Furthermore, the processed temporal information is
used as the input to the dense layers to undergo nonlinear
transformation. Finally, the obtained information is projected
to the output space, and the prediction results are produced.
Overall, the proposed CNN-LSTM skeleton architecture is
adopted as the foundation for evaluating the time series
problems in various test scenarios.

C. THE PROPOSED GWO-BASED EVOLVING CNN-LSTM
NETWORK
The identification of the optimal configurations of
hyperparameters and architectures is crucial to the perfor-
mance and efficiency of deep neural networks in practice.
Such configuring and searching processes are particularly

cumbersome for CNN-LSTM owing to the increased number
of hyperparameters induced by the hybridisation of CNN
and LSTM. The complexity is increased by the profound
interactive effects among the hyperparameters of both CNN
and LSTM, in comparison with those from monotonous deep
learning models. In this study, we employ the proposed GWO
model for automatic optimal configuration identification
of the CNN-LSTM architecture, to undertake time series
prediction tasks.

To be specific, the proposed GWO variant is employed
to automatically search for the optimal hyperparameters and
topologies of the CNN-LSTM model, by optimizing a series
of learning and network parameters, i.e. the learning rate,
the dropout rate, the numbers and sizes of filters in two
convolutional layers, the size of the pooling layer, as well
as the numbers of hidden nodes in the LSTM recurrent layer
and the final dense layer. The search range of each optimized
parameter is presented in TABLE 1. The explored hyperpa-
rameters include the key factors critical to the representa-
tional capacity of CNN-LSTM, which include the number
of hidden nodes in the LSTM layer and those responsible
for the learning efficiency and training property, e.g. the
learning and dropout rates. As such, the confounding effects
and impacts of various hyperparameters can be thoroughly
explored through the evolving process of the proposed GWO
variant. The CNN-LSTMmodel with the identified optimized
configuration is then applied to tackle time series prediction
and classification tasks.

TABLE 1. The search range of the hyperparameters.

The optimal hyperparameter search of CNN-LSTM is
performed as follows. Firstly, the population of the pro-
posed GWO variant is randomly initialized. Each individual
(wolf) represents a possible configuration of the optimized
CNN-LSTM model. Based on the training data set, the rec-
ommended CNN-LSTM model with the specific structure
and parameter settings represented by each wolf is trained.
Based on the validation set, the fitness scores, i.e. the error
rate for the classification problems or the root mean square
error (RMSE) for the regression problems, are computed. The
solutions with the top three fitness scores are identified as the
dominant wolves, and are employed to guide the entire wolf
population to search for the global optimality by following
the proposed GWO algorithm. The optimal configuration
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obtained by the best wolf leader is adopted to yield the
finalised CNN-LSTM model. It is re-trained using the com-
bined training and validation sets and then evaluated using
the unseen test data set. The pseudo-code of the proposed
evolving CNN-LSTM model is provided in Algorithm 2.
In our empirical studies, we employ several benchmark time
series problems to examine the effectiveness of the proposed
GWO-based CNN-LSTM model. The detailed results and
analysis are presented in Section IV.

Algorithm 2 The Proposed Evolving CNN-LSTM Network
1 Start
2 Initialize a grey wolf population with each individual
representing a specific network configuration of
CNN-LSTM

3 Prepare training, validation and test sets
4 For (each wolf i in the population) do
5 {
6 Decode i into the corresponding CNN-LSTM network
7 Train the network using the training set
8 Evaluate the network on the validation set and calculate
the fitness score
9 } End For
10 Identify three dominant wolves (denoted as Xα,Xβ , and
Xδ)

with the best fitness scores
11 While (t < Max_iter)
12 {
13 Evolve the wolf population according to the search

mechanism of the proposed GWO method, i.e. line
6-30 in Algorithm 1

14 } End While
15 Output the most optimal solution Xα
16 Decode Xα into the corresponding CNN-LSTM network
17 Train the identified optimized network on the combined

training and validation sets
18 Evaluate the optimized CNN-LSTM network on the test

set and output the test result
19 End

IV. EVALUATION AND DISCUSSION
In this section, the proposed evolving CNN-LSTM model is
evaluated on two time series prediction problems, i.e. build-
ing energy consumption forecast and PM2.5 concentration
prediction, and one time series classification problem, i.e.
human activity recognition. The performance of the pro-
posed GWO variant in identifying the optimal CNN-LSTM
configurations is compared against those of four classical
search methods, i.e. GWO [16], PSO [51], GSA [54], and
FPA [55], as well as three advanced GWO and PSO vari-
ants, prLeGWO [37], FuzzyGWO [84], and CSO [85]. The
parameter settings of the baseline models are provided in
TABLE 2. The following settings are employed for each
experiment to ensure a fair comparison, i.e. the maximum
number of function evaluations = population size (30) × the

TABLE 2. Parameter settings of search methods.

maximum number of iterations (100). A CNN-LSTM model
with the default parameter settings, i.e. filter number in the
1st Conv layer = 32, filter size in the 1st Conv layer = 2,
filter number in the 2nd Conv layer= 32, filter size in the 2nd

Conv layer = 2, pooling size = 2, number of node in LSTM
layer = 300, number of node in dense layer = 100, learning
rate = 0.001, and dropout rate = 0.2, is also employed as
one of the baseline models for performance comparison.
We conduct our experiments using a Tesla K80 GPU with
12 GB RAM.Moreover, we conduct ten independent runs for
each experiment to mitigate the impact of random factors on
the evaluation. The experimental details of the employed time
series prediction problems are presented, as follows.

A. ENERGY CONSUMPTION FORECAST
1) DATA SET
First of all, the individual household electricity consumption
data set1 from the UCI machine learning repository [86] is
employed to evaluate the effectiveness of the proposed evolv-
ing CNN-LSTMmodel. The data set contains 2,075,259mea-
surements with nine attributes collected in an interval of
one minute, from a house located in Sceaux between
December 2006 and November 2010.

1The URL of the household electricity consumption data set is: https://
archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+
consumption.

161532 VOLUME 8, 2020



H. Xie et al.: Evolving CNN-LSTM Models for Time Series Prediction Using Enhanced GWO

2) EXPERIMENTAL SETTINGS
According to the difference of the time interval, energy
forecasting models are generally classified into three cate-
gories, i.e. short-term, medium-term, and long-term energy
forecast [87]. In this research, we develop a multi-input and
multi-output short-term energy forecasting model. Specifi-
cally, we predict the amount of electricity consumption for
the next week using the historical data from the previous two
weeks, in order to capture weekly periodicity and irregularity
of the energy consumption. The proposed weekly energy
forecasting model can be used to inform future energy expen-
ditures of the household, and to facilitate the demand man-
agement. The original observations with an interval of one
minute are transformed into daily energy consumption data
for the weekly prediction of energy consumption. We employ
the data samples from the first two years for training, while
those from the subsequent one year for validation and from
the final year for test.

We optimize eight of the total hyperparameters listed
in Table 1 except for the pooling size, for the prediction of
energy consumption. The pooling size is set to 2, owing to
the comparatively small input vector of the sequential data of
this energy consumption scenario, i.e. 14 × 9, where 14 and
9 represent time steps and the feature size, respectively. The
optimal CNN-LSTM configuration is identified based on the
training and validation sets. The batch size is set to 128,
whereas a total of 20 epochs are used in the training stage
to balance between performance and computational cost.
In addition, the Adam optimizer is applied in the training
process while the RMSE is adopted as the fitness score
to evaluate the performance of CNN-LSTM. The devised
CNN-LSTM model is retrained on the combined set of train-
ing and validation samples for 100 epochs. Finally, the fully
trained CNN-LSTM model is employed to forecast energy
consumption on the unseen test set.

3) RESULTS AND DISCUSSION
Two performance indicators are employed to evaluate the
effectiveness of the proposed evolving CNN-LSTM model,
i.e. RMSE and the mean absolute error (MAE). The respec-
tive results over ten independent runs are presented in
TABLE 3 and TABLE 4.

TABLE 3. The RMSE results over 10 independent runs.

TABLE 4. The MAE results over 10 independent runs.

The optimized CNN-LSTM networks identified by the
proposed GWO variant achieve the lowest RMSE and MAE
results and demonstrate significant advantages in compar-
ison with those yielded by four classical search methods
and advanced prLeGWO, FuzzyGWO, and CSO models,
as well as the CNN-LSTM network with the default setting.
As shown in TABLE 3, the RMSE results produced by the
proposed GWO-based evolving CNN-LSTMmodel are more
reliable, lying within the range of [360, 390], whereas most
of the RMSE results produced by the baselines methods are
larger than 390, demonstrating greater variances. As shown in
TABLE 4, the significant superiorities of the proposed GWO
model can also be observed from the MAE results. This indi-
cates that the optimized CNN-LSTM configurations identi-
fied by the proposed GWO variant are capable of identifying
spatial variations among time series variables and extracting
irregular patterns in temporal information embedded in the
energy usage data, effectively.

We further analyze the advantages of the proposed GWO
method by examining the distinctive characteristics of its
identified CNN-LSTM configurations, as opposed to those
yielded by the baselinemodels. Themean hyperparameters of
the optimized configurations of CNN-LSTM yielded by the
GWO variant over 10 runs are presented in TABLE 5. In gen-
eral, the CNN-LSTM structures identified by the proposed
GWO model exhibit two main distinctive characteristics, i.e.
a higher number of filters in the first convolutional layer and
a moderate setting of the numbers of nodes in the recurrent
and dense layers, in comparison with those identified by

TABLE 5. The mean configurations of the identified cnn-lstm networks
over 10 runs.
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the baseline models. Specifically, the optimized CNN-LSTM
structures are capable of extracting energy usage features
more effectively owing to the higher number of filters in
the first convolutional layer, i.e. 217.2. These filters in the
convolutional layer are able to reduce noise and remove irrel-
evant variations among time series variables while preserving
the essential temporal variance. Besides that, the long-term
dependencies can be acquired efficiently without overfitting,
owing to the optimized and more balanced settings of the hid-
den nodes in the LSTM and dense layers, i.e. 284.1 and 35.4,
respectively. As such, the devised CNN-LSTM networks
are capable of achieving more efficient trade-offs between
the model representational capacity and the avoidance of
overfitting.

In contrast, the network configurations yielded by the
baseline methods and default CNN-LSTM model generally
achieve inferior learning capacities in incorporating temporal
information with respect to the energy usage patterns, owing
to the lack of the convolutional operations and sub-optimal
recurrent network representations. This indicates the defi-
ciency of the baseline search methods in exploring sophis-
ticated interactions among hyperparameters in CNN-LSTM.
In other words, the baseline models are more prone to local
optima traps, therefore yielding inferior CNN-LSTM con-
figurations in addressing complicated trends, e.g. fluctuation
and volatility, in energy forecasting tasks. In short, in com-
parison with the baseline methods, the proposed diverse
search strategies, e.g. the nonlinear exploration rate adjust-
ment, the chaotic leadership rivalries, as well as Lévy random
jumps, account for the superior performance of the proposed
evolving CNN-LSTM network.

B. PM2.5 CONCENTRATION PREDICTION
1) DATA SET
To further assess model efficiency, we employ the UCI
Beijing air quality data set22 [88] for PM2.5 concentration
prediction using the devised evolving CNN-LSTM networks.
This data set includes hourly measurements of four types of
air pollutants, i.e. SO2, NO2, CO, and O3, as well as five
meteorological parameters, i.e. temperature, pressure, dew
point temperature, amount of precipitation, and wind speed,
over a four-year period from 1 March 2013 to 28 February
2017. A reliable prediction of PM2.5 concentrations requires
an accurate interpretation of the changing patterns of air
pollutants under various temporal contexts, which poses a
great challenge to the devised CNN-LSTM networks.

2) EXPERIMENTAL SETTINGS
Similar to the method used the energy forecasting task,
a multi-input and multi-output time series model is estab-
lished to predict the PM2.5 concentrations in the air in Beijing
for a week in advance, based on the historical data from the
previous two weeks. The hourly recordings are transformed

2The URL of the Beijing air quality data set is: https://archive.ics.
uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data.

into daily measurements to better understand weekly period-
icity of input variables as well as to make weekly prediction
of PM2.5 concentrations. The vector of the input sequence is
14 × 9, where 14 and 9 represent time steps and the feature
size, respectively. The same experimental setting as that in the
previous energy consumption problem is used, since both are
time-series forecasting tasks. Besides that, the data samples
from the first and second years are used for training, while
those from the third and last years are used for validation and
test, respectively.

3) RESULTS AND DISCUSSION
As shown in TABLE 6 and TABLE 7, the optimized
CNN-LSTM networks identified by the proposed GWO
algorithm yield more robust and reliable predictions for
weekly PM2.5 concentrations in comparison with those of
the seven baseline methods and the default CNN-LSTM net-
work. The devised CNN-LSTM networks achieve the small-
est average results of RMSE and MAE, i.e. 62.2 and 40.8,
over ten independent runs, whereas the baseline methods,
in general, produce less favorable results with high variances
and inconsistencies across ten different runs. In particular,
the RMSE scores are reduced by 6.2%, 13.1%, 9.1%, and
15.1%, by the devised CNN-LSTM networks, in compar-
ison with those from GWO, prLeGWO, FuzzyGWO, and
the default CNN-LSTM model, respectively. The signifi-
cant performance improvements of the devised CNN-LSTM
networks can be further observed from the MAE results.
The superiority in performance indicates the effectiveness of

TABLE 6. The RMSE results over 10 independent runs.

TABLE 7. The MAE results over 10 independent runs.

161534 VOLUME 8, 2020



H. Xie et al.: Evolving CNN-LSTM Models for Time Series Prediction Using Enhanced GWO

the proposed evolving model in extracting effective features
and recognizing complex temporal variations embedded in
time-series air pollution data as well as in dynamic meteo-
rological conditions.

Moreover, the mean hyperparameters of the identified
optimal structures for PM2.5 concentration predictions over
ten independent runs are presented in TABLE 8. The main
characteristics of the effective CNN-LSTM configurations
in the PM2.5 prediction are similar to those demonstrated
in energy forecasting. The optimized CNN-LSTM structures
produced by the proposed GWO variant possess a relatively
larger number of filters in the first convolutional layer, i.e.
132.8, while maintaining smaller numbers of nodes in both
the LSTM and dense layers, i.e. 126.2 and 51.4, respectively.
Such compositions enable an efficient extraction of the most
important features among meteorological variables and air
pollutants in the convolutional layers, while endowing the
optimized CNN-LSTM networks with sufficient representa-
tional capacities to effectively capture various dependencies
in the LSTM and dense layers, in order to avoid overfitting.

TABLE 8. The mean configurations of the identified cnn-lstm networks
over 10 runs.

To be specific, the employed air pollution data set not only
contains important factors in relation to the generation and
dispersion of PM2.5 concentrations, e.g. SO2, NO2, andwind
speed, but also disturbing factors with various confounding
effects, e.g. CO and O3. Therefore, the prediction of PM2.5 is
a challenging and complex task. As such, a proper feature
extraction capability is required to identify the discrimina-
tive features that represent the complex formation mecha-
nism of PM2.5, as well as sophisticated aerodynamic effects
on its dilution. The RMSE and MAE results indicate that
our optimized CNN-LSTM networks are able to resolve the
challenging factors more effectively and demonstrate greater
resilience in handling temporal variances and interactions
among variables. In other words, the identified filter struc-
tures in the convolutional layers are capable of generating
informative featuremaps, which can both uncover the indirect
impacts of various pollutants permeated in the air, as well
as the direct impacts of weather conditions, on the concen-
tration of PM2.5. Meanwhile, the identified optimized con-
figurations of the LSTM and dense layers are able to better
comprehend and capture the long-term dependencies among
the input data sequences. As such, the devised CNN-LSTM
structures identified by the proposed GWO variant are proven

to be superior in undertaking complex PM2.5 concentration
prediction tasks.

C. HUMAN ACTIVITY RECOGNITION
1) DATA SET
In addition to time-series prediction, we use a time series clas-
sification task for evaluation of the CNN-LSTM networks,
i.e. the UCI human activity recognition (HAR) data set3 [89].
The data set was collected from 30 volunteers performing six
types of daily living activities, i.e. standing, sitting, laying
down, walking, walking downstairs and upstairs, while carry-
ing a waist-mounted smartphone embedded with inertial sen-
sors. Three types of signals, including total acceleration, body
acceleration, and body gyroscope, were recorded with a sam-
pling rate of 50Hz. These sensor signals were pre-processed
using noise filters and sampled with a sliding window of
2.56 sec, i.e. 128 readings, with a 50% overlap. The input
vector is therefore 128 × 9, in which 128 and 9 denote the
number of readings and the number of features, respectively.
The total sample sizes in the training and test data sets are
7,352 and 2,947, respectively.

2) EXPERIMENTAL SETTINGS
In this HAR task, the nine hyperparameters in relation to
network capacities and learning properties listed in TABLE 1
are optimized. The training process is divided into two main
stages. Firstly, the optimal configuration of CNN-LSTM is
identified by the proposed GWO variant using a smaller
proportion of the training data, in order to reduce the com-
putational load. Specifically, the first 3000 samples in the
training data set are used for training, and the subsequent
1500 samples for validation, in order to the search for the opti-
mal network configuration. In the training process, the Adam
optimizer is adopted, while the categorical cross-entropy is
applied as the loss function. The batch size and epoch number
are set to 256 and 20, respectively. Besides that, the error rate
is employed as the fitness score to be minimized during the
evolving process. Subsequently, the CNN-LSTMmodel with
the identified optimal structure is retrained for 100 epochs
using the whole training data set of 7,352 samples. The
obtained CNN-LSTM model is then used to perform classi-
fication of human activities based on the unseen test data set
with 2,947 samples.

3) RESULTS AND DISCUSSION
A total of four performance indicators are employed to evalu-
ate the effectiveness of the optimized CNN-LSTM networks
in classifying the human activities, i.e. accuracy, F-score,
precision, and recall. The overall results over ten independent
runs are presented in TABLE 9 to TABLE 12.

With respect to accuracy, the CNN-LSTM configurations
yielded by the proposed GWO variant achieve the highest
mean accuracy rate of 92.3%, outperforming those identified

3The URL of the human activity recognition data set is: https://archive.
ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones.
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TABLE 9. The results of classification accuracy over 10 independent runs.

TABLE 10. The results of F-score over 10 independent runs.

TABLE 11. The results of precision over 10 independent runs.

TABLE 12. The results of Recall over 10 independent runs.

by all baseline models. In particular, the proposed GWO
variant demonstrates significant advantages than the origi-
nal GWO and advanced GWO variants, i.e. prLeGWO and

FuzzyGWO, and the default CNN-LSTM network, with per-
formance difference of 3.8%, 6.1%, 3.4%, and 4.6%, respec-
tively. In addition, similar superiorities of the proposed GWO
model can be observed consistently across the remaining
indicators, i.e. F-score, precision, and recall scores, as shown
in TABLE 10 to TABLE 12.

The decomposed accuracy results with respect to each of
the six human activities are provided in TABLE 13. The opti-
mized CNN-LSTM networks yielded by the proposed GWO
variant produce the highest accuracy results on four activity
classes, i.e. walking, walking upstairs, walking downstairs,
and standing, significantly outperforming the baseline meth-
ods and default network with evident performance gaps. This
indicates that the CNN-LSTM configurations yielded by the
proposed GWO variant can successfully discover distinctive
variations and discriminative patterns with respect to different
human activities, therefore achieving better performances.
In other words, the decomposed results further reinforce the
effectiveness and superiority of the proposed GWO variant in
identifying the most effective deep networks for undertaking
this HAR task, in comparison with the baseline models.

TABLE 13. The mean accuracy rate of each class over 10 independent
runs.

Moreover, the mean hyperparameters of the optimized
CNN-LSTM networks over ten independent runs are pre-
sented in TABLE 14. In particular, the devised CNN-LSTM
networks possess the highest numbers of filters in both
convolutional layers, i.e. 230.8 and 193.6, respectively, while
maintaining fewer numbers of nodes in the recurrent and
dense layers, i.e. 60.2 and 41.2, respectively, in compar-
ison with those of the baseline models and the default
network settings. Such configurations enable CNN-LSTM

TABLE 14. The mean configurations of the identified cnn-lstm networks
over 10 runs.
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to thoroughly examine the fundamental characteristics with
respect to each category of human activity and differenti-
ate subtle differences between them. As a result, the most
discriminative features related to human activities can be
extracted by the convolutional layers, while achieving effi-
cient trade-offs between learning long-term dependencies
embedded among the consecutive body movements and
avoiding overfitting on noise in the recurrent and dense
layers. As such, the CNN-LSTM networks identified by
the proposed GWO variant are able to distinguish different
human activities effectively.

D. REMARKS
Overall, the proposed GWO variant is capable of identifying
the most effective CNN-LSTM configurations with appro-
priate representational capacities and superior capabilities
of feature extraction, for resolving all three employed time
series tasks. In contrast, the baseline search methods yield
less effective sub-optimal CNN-LSTM networks with over-
sized or undersized hyperparameters, which result in perfor-
mance degradation. Specifically, the oversized settings in the
recurrent and dense layers and the lack of regularization are
likely to cause overfitting owing to the excessive represen-
tational capacities and memorizing of sample noise, as indi-
cated by the results of GWO and CSO on energy consumption
forecasting, FPA and CSO on PM2.5 concentration predic-
tion, as well as FPA and FuzzyGWO on HAR. Moreover,
the undersized network configurations produce oversimpli-
fied CNN-LSTM structures with restricted interpretation
capabilities, therefore unable to fully capture sophisticated
dependencies embedded in variables under complex temporal
contexts, neither to perform effective feature extraction and
transformation, as exemplified by the results of FuzzyGWO
on PM2.5 prediction, and prLeGWO on HAR. Furthermore,
our optimized networks also outperform the CNN-LSTM
model with the default hyperparameter settings significantly
in all three experiments, owing to the limitations of the
pre-determined inefficient model and training configurations
in such default networks, i.e. the lack of learnable filters for
feature extraction and memorizing of sample noise resulted
from the redundant recurrent memory cells. To sum up,
the proposed GWO variant demonstrates significant advan-
tages over the baseline models in automatic identification of
the optimal CNN-LSTM configurations for undertaking all
three time series tasks, owing to the enhanced search diversity
and search efficiency.

In terms of computational time, the proposed model takes
7-12 hours for hyperparameter fine-tuning for each run in
our experimental studies. The mean computational cost of
one fitness evaluation with respect to each search method
is presented in TABLE 15. This is the average cost of
training and evaluation of an optimized model in one fitness
evaluation using the training and validation sets, respectively.
TABLE 15 provides an indication on the computational times
from different search methods. On average, the proposed
GWO variant requires a lower computational cost for each

TABLE 15. The mean computational cost of each fitness evaluation for
each search method (in seconds).

fitness evaluation as compared with those from the majority
of the baseline methods in all three time series predic-
tion tasks. The computational efficiency of our devised
CNN-LSTM models can be attributed to the characteristics
of the identified network configurations, i.e. smaller numbers
of nodes in both the LSTM and fully connected dense layers.
As a result, the attenuated connections of the fully connected
layer as well as the lighter settings in the LSTM layer
can reduce the network complexity, therefore lowering the
computational costs.

E. WILCOXON STATISTICAL TEST
The Wilcoxon statistical rank sum test is conducted to fur-
ther indicate the statistical distinctiveness of the enhanced
GWO model against the baseline methods in searching for
the optimal CNN-LSTM configurations. The accuracy results
of HAR and RMSE results of energy consumption forecast
and PM2.5 concentration prediction are employed for the
statistical analysis. As shown in TABLE 16, the rank sum
test results are lower than 0.05, which indicate that the pro-
posed GWO variant significantly outperforms all the baseline
search methods from the statistical perspective, including
four classical methods, i.e. GWO, PSO, GSA, and FPA, and
three advanced variant models, i.e. CSO, prLeGWO, and
FuzzyGWO, in identifying the optimal CNN-LSTM config-
urations for undertaking time series prediction and classifi-
cation problems. Our devised optimized networks also show
statistically significant superiority over those with default
settings. This superiority of the proposed GWO variant can
be attributed to the improved trade-offs between search
diversification and intensification facilitated by the coopera-
tion among the proposed comprehensive and complementary
search strategies. A detailed analysis is provided, as follows.

TABLE 16. Wilcoxon rank sum test results over 10 independent runs.

The key challenge in searching for effective CNN-LSTM
configurations lies in the complex interactions among
different components within the network, as well as high
computational costs. In this regard, the proposed GWO
variant incorporates several distinctive and complementary
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strategies, capable of boosting search diversity and improving
the convergence speed to resolve the challenges occurred
during the exploration of the optimal CNN-LSTM config-
urations. Specifically, an advanced trade-off between search
diversification and intensification is achieved by the proposed
nonlinear adjustment of the territory boundary. Under this
scheme, the search range during the exploration is maintained
at the initial level without any acute decrease, enabling the
wolf population to conduct extensive explorations around
the peripheral areas of the search territory, instead of being
drawn to the vicinity of the leading wolves at the beginning
of the search process. Meanwhile, this transition scheme
also enables the wolf population to focus on the closer
bounds around the leading wolves and conduct thorough
detection surrounding the promising regions during exploita-
tion. In addition, the proposed sinusoidal chaotic leadership
rivalry enables the GWO variant to leverage the merits
from both multiple-leader guided search and single-leader
guided search, through reinforcing the leadership of the best
wolf solution while periodically downplaying the influence
of the global best solution in position updating. As such,
a periodic balance between search diversity and concentration
is achieved. Thirdly, the fine-tuning capability around the
global best position is improved by conducting refined local
detections with various steps and directions at the final stage
of the search process, using a dedicated damped function with
a dynamic adjustment of the amplitude. Lastly, the qualities
of three leading wolves are further enhanced using the Lévy
flight probability distributions to reduce the likelihood of
stagnation at local optima.

Overall, the effectiveness of the proposed GWO variant
can be ascribed to the enhanced search diversity and search
efficiency. The diversity is improved from three perspectives,
i.e. the upholding of the search territory boundary through
the dedicated nonlinear control of the exploration factor,
the diversification of leading signals by the chaotic allocation
of leadership weights, as well as leader random walks based
on Lévy flight. Meanwhile, the efficiency is achieved from
two perspectives, i.e. the ascertained dominance of the best
wolf leader during the search process, and the dedicated local
exploitation around the global best solution at the final stage
of the search process. As such, the enhanced GWO model
is more likely to escape from local stagnation and attain the
global optimality. Therefore, the complex interactions among
CNN-LSTM hyperparameters can be thoroughly explored
by the proposed GWO variant, and effective CNN-LSTM
configurations can be identified swiftly. The efficiency of
the proposed GWO-based CNN-LSTM network is evidenced
by the superior empirical results on the three time series
problems, supported by the statistical test results. In contrast,
the baseline GWO variants, e.g. prLeGWO and FuzzyGWO,
achieve less efficient trade-offs between reassuring the dom-
inance of the best leader and retaining diversity in recon-
struction of leadership hierarchy. Besides that, there is a
lack of refinement in terms of the transition between explo-
ration and exploitation among the baseline GWO variants

and other search methods. Overall, the enhanced GWO
algorithm demonstrates great advantages in devising optimal
CNN-LSTM networks and outperforms eight baseline meth-
ods significantly in undertaking time series prediction and
classification tasks.

V. CONCLUSION AND FUTURE DIRECTIONS
We have proposed an evolving CNN-LSTM network to solve
time series prediction and classification problems. A GWO
variant has been proposed for automatic optimal hyperparam-
eter and topology identification of the network architectures.
The proposed GWO variant employs a nonlinear exploration
rate for search boundary adjustment, a sinusoidal chaotic
map for the leadership allocation pertaining to the dominant
wolf leaders, an enhanced spiral local exploitation scheme,
as well as a Lévy flight-based leader enhancement mech-
anism. As such, the search process becomes more diversi-
fied owing to the expansion of the search territory, random
exploitation of the wolf leaders, and chaotic aggregation and
periodical diversification of the guiding signals. In addition,
the search efficiency and convergence rate are improved
owing to the dominance of the global best wolf leader over the
combined distractions from the remaining two leaders during
the search process, as well as the intensified local exploitation
around the global best solution at the final search stage.

The proposed GWO-based evolving CNN-LSTM model
has been evaluated using two time series prediction problems,
i.e. energy consumption forecast and PM2.5 concentration
prediction, and a time series classification task, i.e. HAR.
Our devised evolving deep networks outperform the default
network and those yielded by a total of seven baseline search
models including four classical search methods and three
advancedGWOand PSOvariants on all the test data sets, with
statistically significant difference in performance. Moreover,
the empirical results indicate that our optimized CNN-LSTM
networks are characterized by a higher number of filters
in the convolutional layers and moderate settings in terms
of the numbers of nodes in the LSTM layer and the fully
connected layer. Such devised networks possess superior
capabilities in capturing temporal and sequential informa-
tion over those identified by all the baseline methods for
undertaking time-series prediction and classification tasks.
In other words, the identified optimal network configurations
are able to thoroughly examine the interactions among time
series variables, and provide efficient network representa-
tional capacities without suffering from either overfitting or
underfitting issues.

For future research, we aim to deploy the proposed
GWO-optimized evolving CNN-LSTM model for tackling
other sophisticated time series prediction tasks, such as
EEG-based medical diagnosis [90], video classification [91],
and language generation [92]. Besides that, investiga-
tions on deep architecture generation with residual and
dense connectivity using the proposed GWO algorithm for
large-scale object detection and recognition [93], image
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segmentation [94], [95], and image description genera-
tion [96] problems will be conducted.

From the algorithmic perspective, in addition to greedy
search, we will investigate other potential effective interac-
tion schemes between the wolf leaders and the remaining
wolf individuals. The aim is to maximize the adaptation of
the wolf population in the long run, i.e. sacrificing short-term
rewards for long-term benefits during evolution. On the other
hand, we will explore advanced local search strategies by
incorporating personal best experiences [42] or merits from
other metaheuristic algorithms [97], [98], to further enhance
the proposed GWO algorithm. Other LSTM variants will also
be explored to increase efficiency of the resulting network.
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