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Abstract

Evolutionary algorithms (EAs) and swarm algorithms (SAs) have shown their usefulness in solving combinatorial and
NP-hard optimization problems in various research fields. However, in the field of computer vision, related surveys
have not been updated during the last decade. In this study, inspired by the recent development of deep neural
networks in computer vision, which embed large-scale optimization problems, we first describe a literature survey
conducted to compensate for the lack of relevant research in this area. Specifically, applications related to the genetic
algorithm and differential evolution from EAs, as well as particle swarm optimization and ant colony optimization from
SAs and their variants, are mainly considered in this survey.
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1 Introduction

Many computer vision tasks can be regarded and for-
mulated as a convex optimization, which allows a global
optimum to be mathematically computed [110-112].
However, most of these tests can be highly non-convex
and even ill-posed. As a result, there may exist numer-
ous optima, with no solution, a non-unique solution,
or an unstable solution, particularly under real-world
settings that involve noisy or missing data. Regarding
the non-convexity, for example, segmentation problems
(Section 5) in computer vision can be cast as an energy
minimization problem, which is applied to formulate an
energy function over labels of pixels, such that the best
solution can be obtained by minimizing the amount of
energy. However, when the energy function given is com-
plex, finding the exact energy minimum is NP-hard and
the convex solvers are unable to explore the exponen-
tial number of local optima efficiently without adding
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additional constraints or hypotheses. Regarding the ill-
posed problem, many tasks require optimizing the param-
eters of a certain mathematical model to reproduce the
observations. For example, in face recognition problems
(Section 9), there are various parameters that need to
be tuned to model a “face likeness” Depending on the
amount and quality of the training samples, finding a
parameter setting that can reproduce the training labels
could be extremely difficult.

By contrast, evolutionary algorithms (EAs) and swarm
algorithms (SAs) are powerful metaheuristic tools used
to search for solutions within a potentially huge solution
space or provide approximate solutions for solving com-
binational constraints that may not hold stable solutions.
To avoid being trapped in the local optima and provide a
satisfactory solution, EAs and SAs have been successfully
adopted to solve various computer vision tasks, which are
listed and classified in this survey.

To the best of our knowledge, there have been no other
studies specifically providing a comprehensive survey of
EAs and SAs adopted to solving computer vision prob-
lems. Despite the many recent applications in computer
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vision combining deep neural networks with evolution-
ary optimization in recent years, we are interested in how
the EAs and SAs for computer vision-related tasks have
evolved. The main purpose of this paper is to present a
comprehensive understanding of the existing research on
EAs and SAs for solving computer vision tasks.

The remainder of this paper is organized as follows. In
Section 2, we briefly introduce the characteristics of the
algorithms focused upon in this survey. In Section 3, we
discuss why EAs and SAs are needed for computer vision
applications based on a simple example. In Section 4
through Section 11, we explain how EAs and SAs have
been applied to eight different computer vision tasks. For
clarity, the summary of contents of this paper is shown in
Table 1. Finally, we summarize the contents of this paper
in Section 12.

2 Evolutionary and swarm algorithms

EAs and SAs are two important research fields belonging
to the nature-inspired metaheuristics known as an evo-
lutionary computation (EC). These metaheuristics share
the following two characteristics: population-based pre-
sentation for the candidate solutions, and an iterative
procedure with a stochastic exploration.

A significantly important factor in a population-based
optimization method is a balance between exploration
and exploitation capabilities. An exploration is the ability
to search over a wide range of solution spaces by uniformly
distributing the population (i.e., the population maintains
its diversity). This brings robustness for a non-convex
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function landscape to a population. Even if some individ-
uals fall into local optima, others may still be able to find
a promising solution. By contrast, an exploitation is the
ability to concentrate a population at a promising solu-
tion based on information that has been acquired thus far.
An exploitation is necessary to obtain a converged popu-
lation. The more valid and reliable the information shared
within a population is, the faster a convergence can be
achieved. The successes of EAs and SAs are derived from
the nature-inspired operations potentially having a mech-
anism to adjust the above two abilities. These algorithms
start from a state in which individuals are randomly dis-
tributed, i.e., in the most diverse state, and operations
are designed to encourage convergence within the pop-
ulation and achieve balance between the two abilities
automatically.

In this survey, we concentrate on studying approaches
relevant to the following four representative algorithms:
the genetic algorithm (GA) and differential evolution (DE)
from the EAs, and particle swarm optimization (PSO) and
ant colony optimization (ACO) from the SAs. For a sim-
ple comparison, brief flowcharts of these algorithms are
shown in Fig. 1. More detailed procedures can be found
in the pseudo-codes of Appendix A. In the following, we
review the algorithms involved by analyzing their features
and differences.

2.1 Evolutionary algorithms
EAs are optimization algorithms inspired by Darwin’s
evolutionary theory. This generic category mainly consists
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of the GA, genetic programming (GP), evolution strategy
(ES), and evolutionary programming (EP). It also includes
algorithms that have similar frameworks such as a DE
algorithm in a broad sense. Each iteration in an EA (i.e., a
generation) is composed of parents selection, recombina-
tion (i.e., a crossover), mutation, and survivors selection,
as shown in Fig. 2. The two selections operate according
to the evaluation values (i.e., fitness), which bring about
a strong force of exploitation. However, a crossover and
mutation are responsible for the exploration within, some-
times outside of, the distribution of the population. These
operations together form a simulation of evolution for
individuals, which lead the population to the desired solu-
tions. Under the usual settings, an individual represents a
single solution candidate.

The GA is the most well-known algorithm in both
EAs and EC. An individual is a group of chromosomes,
which are typically encoded by a binary code with a
fixed length. The parent selection takes the fitness value

of all individuals into account, which is implemented
probabilistically. The selected parents produce the same
number of offspring by a crossover and mutation. These
two operations are a partial bit (i.e., gene) manipula-
tion. A crossover produces new individuals by swapping
the genes of the parent pairs. That is, a new individual
is composed of partial blocks of genes of the parents,
which implies the inheritance of the parental characteris-
tics. The purpose of a mutation is to introduce an impact
into a population that cannot be acquired by inheritance,
which is achieved by changing genes in a completely
independent and random manner. A mutation helps the
individuals escape from the local optima. Alternation of
generation (i.e., survivor selection) is realized by entirely
replacing a population of parents with a population of off-
spring. Because the GA is designed for general purposes,
it is often intuitive and simple to apply to real problems.
In addition, numerous researchers have been working on
developing a real-value coded GA with an improvement
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Fig. 2 Example of an one-generation cycle of GA. Modified genes in each step are shown in red
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of the genetic operators, which enables the GA to be
applied to not only combinatorial optimization but also
continuous optimization problems.

A DE is one of the most popular EA optimization
algorithms. An individual is termed a parameter vector
and composed of real-valued parameters, which allows
the algorithm to solve continuous optimization problems.
The most significant characteristic of a DE algorithm is
the existence of a donor vector constructed during the
mutation step from a parameter vector (i.e., a base vector)
and a difference vector of two parameter vectors. These
three parameter vectors are randomly selected from the
current population. The difference vector represents the
direction and magnitude of the change caused by a muta-
tion. In addition, selection from the population can reflect
valid information from the distribution fitted into the
functional landscape. That is, the donor vector is an indi-
cator of the search with an automatic scaling adjustment,
which improves the convergence of the algorithm. The
survivor selection step in the DE algorithm is a compet-
itive process between the target vector (i.e., parent) and
trial vectors (i.e., offspring created from the target vector
and donor vectors) based on the fitness values. Unlike the
GA, which preserves all offspring until the next generation
without exception, the offspring in the DE algorithm must
be equal to or outperform the corresponding parent to
survive. This strategy implies the preservation of best-so-
far solutions individually, which can make the population
maintain its diversity and improve its convergence over
the long term.

GA and DE repeat the common steps, although the
actual implementation of each step differs, as shown in
Table 2. Note that this is an example of a simple imple-
mentation, and many variants exist.

2.2 Swarm algorithms

SAs, inspired by the collective behavior of social ani-
mals and insects, are optimization algorithms belonging
to metaheuristics called swarm intelligence (SI). A swarm
includes multiple agents, and the behavior of each agent
is extremely simple, local, and stochastic. Despite a sin-
gle swarm not having a centralized structure to con-
trol the rule of the agent behavior, interactions between
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agents introduce global swarms and intelligent behavior.
The local behavior of each agent and the interactions
shared within the swarm correspond to an exploitation
and exploration respectively, and are combined as agent
movements within a simple implementation.

PSO is a continuous optimization algorithm inspired by
the collective behavior of flocking birds. All individuals
(particles) composing the population (swarm) fly around
the search space based on the corresponding velocity vec-
tor. The most attractive point of PSO is the preservation
of two important elements: the global best (ghest) and
the personal best (pbest). These are the memory of the
positions where the best fitness values can be observed
until the current iteration, with respect to the swarm and
each particle, respectively. Here, gbest is an element that
promotes the convergence of the swarm to the proper
locations, whereas pbest contributes to the maintenance
of the swarm diversity by generating unique behaviors for
each particle. Both gbest and pbest are mainly used for
a velocity update by considering the inertia. The veloc-
ity update function is similar to the target-to-best (type of
base vector)/1 (number of difference vectors) scheme of
the mutation step in the DE algorithm, which means that
PSO also benefits from the difference vector. By contrast,
PSO does not have a selection step like an EA, and an
iteration only consists of a self-update of the velocity and
position. The simple composition of this algorithm allows
for an easy coding and efficient computations.

ACO is a metaheuristic mainly designed for combina-
torial optimization problems, inspired by the behaviors of
ants. The task of the artificial ants is to construct a can-
didate solution by adding unused solution components
to the current partial solution iteratively. The ants prob-
abilistically choose a solution component based on the
pheromone intensity and heuristic information (if avail-
able). The pheromone intensity reveals the validity of the
corresponding choice, which is updated after the artifi-
cial ants construct a candidate solution. The update of
the pheromone consists of two mechanisms: deposit and
evaporation. Artificial ants increase the pheromones on
their own trail according to the evaluation value, and the
pheromones will decrease over time. If the choice is opti-
mal, it attracts more artificial ants because the deposit

Table 2 Differences between the implementations of GA and DE with respect to the four common steps of EAs

GA

DE

Parents selection Fitness-based selection

Crossover Genes swapping between two parents to
generate two offspring
Mutation Bit inversion of each gene

Survivors selection Complete replacement

Random selection

Components selection from parent (target
vector) and donor vector to generate one
offspring (trial vector)

Generation of one donor vector from three
individuals

Fitness-based competition
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exceeds the evaporation; otherwise, the choice will soon
become uncompetitive. The update of the pheromone is
a reflection of the experience accumulated by the arti-
ficial ant colony, which will improve the quality of the
following candidate solutions. Algorithms that share the
framework described above are generally referred to as
ACO algorithms.

The key point of the SAs is the information shared
within the swarm, which can directly influence the move-
ment of each agent. The differences between PSO and
ACO are summarized in Table 3.

2.3 Comparison of algorithm characteristics

Although the above algorithms have a common frame-
work of population-based iterative processing, there are
various differences in their specific implementations. In
this subsection, we discuss the characteristics of each
algorithm, which may provide an indicator to the question
of which algorithm is appropriate to exploit.

One advantage of the GA is its flexible gene represen-
tation. Owing to its long history and popularity, various
gene representations (e.g., binary, real-value, and graph)
and corresponding genetic operators have been devised.
Owing to the accumulation of these abundant implemen-
tations, the GA is widely used in various fields including
computer vision.

The DE algorithm is simple to implement, but achieves
a high optimization capability. This fact has been proven
through numerous competitions on real parameter opti-
mization [113]. Its effectiveness is expected to make it a
powerful tool in computer vision as well.

PSO has attracted the interest of researchers owing to
its simple implementation. The fast operators are effective
for applications that require a high-speed performance.
In addition, unlike the crossover operators in the GA and
DE algorithm, the majority of PSO processing requires no
interactions between particles. This fact shows that PSO
is compatible with parallel processing.

A characteristic of ACO is a graph exploration for
making probabilistic decisions. This unique process is
extremely effective in problems that can be modeled using
graphs.

Table 3 Differences between the information shared within the
swarms of PSO and ACO

PSO ACO

Information Global best Pheromone
shared within the position (gbest) intensity
swarm
Information that Best positions for Pheromone
affects agent global (gbest) and intensity and
movement personal (pbest) heuristic

information
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3 Applications in computer vision

Computer vision aims to extract and understand mean-
ingful information from images and videos. Various pro-
cesses for performing such tasks are often interspersed
with situations that require optimization, and the solution
spaces usually constitute a vast and complex landscape.
As a simple example, we demonstrated a simple object
detection using a sliding window method, as shown Fig. 3.
The reference image (Fig. 3a) is slide from the top left
of the target image (Fig. 3b), and the sum of absolute
differences (SAD) of the pixels at each position is calcu-
lated. That is, detection is achieved by finding the position
where the SAD is 0. From the plot of the SAD at each
position shown in Fig. 3c, we can observe a non-convex
functional landscape. The presence of many small valleys
makes optimization through a deterministic method diffi-
cult to achieve. In addition, the landscape becomes more
complex if we must consider the rotation and scaling of
the reference image. Therefore, EAs and SAs are expected
to be powerful tools for solving the optimization problems
occurring in computer vision.

We systematically summarize the studies in which four
selected algorithms are involved with respect to differ-
ent computer vision tasks: a neural network (Section 4),
image segmentation (Section 5), feature detection and
selection (Section 6), image matching (Section 7), visual
tracking (Section 8), face recognition (Section 9), human
action recognition (Section 10), and a few other studies
(Section 11). The timeline of the literature summarized in
this paper is listed in Table 4, and the statistics of the lit-
erature in terms of applications and algorithms are shown
in Fig. 4. In addition, we also present a summary table at
the end of each section to categorize the related studies.

4 Neural network

During the last two decades, deep neural networks
(DNNs) have achieved a state-of-the-art performance on
a variety of computer vision tasks, for instance, in object
recognition, where problem-specific features can be auto-
matically learned. However, designing and learning opti-
mal network structures and their parameters are chal-
lenging tasks, requiring expert knowledge and significant
trial and error. Therefore, the development of automated
neural architecture search (NAS) methods is an attractive
field of research.

There are numerous different strategies used by
an NAS, including gradient-based methods, a random
search, Bayesian optimization, and reinforcement learn-
ing. In particular, the strategy of using EAs and SAs, called
NeuroEvolution, has received attention since the intro-
duction of this field. Although gradient-based NAS meth-
ods (e.g., [115, 116]) are much faster than evolutionary-
based NAS methods in many cases, the gradient-free
exploration of EAs and SAs is useful for tasks for which
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Fig. 3 Demonstration of a simple object detection by maximizing a SAD score. The plots of SAD at each detection window is shown by ¢, which can

gradient-based methods are not typically applicable, such
as learning building blocks and architectures of neural
networks [117]. Interested readers are also referred to sur-
vey papers [118] and [117] for the details of NAS strategies
and NeuroEvolution approaches, respectively.

Research on NeuroEvolution began in the 1990s with
many interesting approaches [119], which were originally
used to evolve the weights of a fixed architecture. In 2002,
Stanley and Miikkulainen proposed the NEAT algorithm
[120] to evolve the structure and connection weights of
a small-scale neural network. After the NEAT algorithm,
there has been a surging interest in using algorithms such
as EAs to automatically design DNNs along with the con-
nection weights and hyperparameters. However, with the
dramatically increasing scale of DNN:Ss, it has become dif-
ficult for even EAs and SAs to adjust the architectures and

weights simultaneously. To address this issue, recent Neu-
roEvolution approaches again incorporate gradient-based
methods to optimize weights [13, 118]. Through a series
of efforts, DNNs designed by EAs and SAs achieve com-
petitive performance for reinforcement learning [121] and
image classification tasks [1]. Nonetheless, for supervised
learning tasks, gradient-based optimization is by far the
most common approach.

This section reviews NeuroEvolution approaches, which
optimize the DNN structure, connection weights and
hyperparameters with respect to computer vision tasks
(particularly image classification tasks). We first describe
several studies on discovering the structure of neural
networks for large-scale image classification benchmarks
using EAs and SAs in Section 4.1. Next, some stud-
ies on the evolving structure for image restoration are
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elaborated in Section 4.2. Finally, EAs/SAs-based opti-
mization of other aspects of neural networks is discussed
in Section 4.3.

4.1 Evolving DNNs for image classification

In recent years, image classification has become one of
the most investigated tasks in computer vision, which has
been brought about by the development of DNNSs, par-
ticularly convolutional neural networks (CNNs). A typical
CNN consists of multiple building blocks, and the order
of placement affects the performance. This characteris-
tic makes it difficult to adopt certain NAS methods that
have been successfully applied to DNNS, such as a random
search and Bayesian optimization [2]. In this subsection,
we place emphasis on studies that aim to automatically
design optimum DNNs for large-scale image classifica-
tion benchmarks using the GA and PSO. The recent active
development of NeuroEvolution for large-scale image
classification began in 2017.

e LEIC

Real et al. [1] employ a GA at unprecedented scales
to discover models for large-scale image classification
benchmarks by using large computational resources (e.g.,
running on 250 GPUs for approximately 10 days), the
result of which have demonstrated that NeuroEvolu-
tion can achieve a competitive performance as a hand-
crafted model. In their study, they developed CNN
structures/models, where every individual (i.e., model) is

evolved from scratch and encoded as a graph. Through
the evolution process, different types of layers can be
incorporated into the individuals through specific muta-
tions (e.g., an insert convolution, remove convolution, or
alter stride). A weight evolution is also considered in this
study, they used pra backpropagation to allow the trained
weights to be inherited by the children whenever possi-
ble. Specifically, if a layer has matching shapes, the weights
are preserved. In addition, a binary tournament selection
[122] is used to perform pairwise comparisons of random
individuals, and the worst pair is immediately removed
from the population. This study is important because it
shows that NeuroEvolution can be used for large-scale
image classification with a simple algorithm. However,
such success requires an enormous amount of computa-
tional resources, which has been one of the challenges for
later studies.

e EvoCNN

Sun et al. [2] proposed EvoCNN, a GA-based approach to
automatically evolving the architecture and initial weights
of a CNN. Because the optimal depth of a CNN is
unknown, a variable-length gene encoding strategy is
employed in EvoCNN. EvoCNN is composed of three dif-
ferent building blocks, a convolutional layer, a pooling
layer, and a full connection layer, which are encoded in
parallel into one chromosome for evolution. Therefore,
each chromosome is separated into two parts. The first
part includes a convolutional layer and a pooling layer, and
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Fig. 4 Statistics of the literature in terms of applications and algorithms. The vertical axis indicates the number of related papers

the other part contains a full connection layer based on
the convention of a CNN. Two statistical real numbers,
the standard deviation and the mean value of the connec-
tion weights, are used to represent the numerous weight
parameters, which eases the implementations of the GAs.
When the optimum mean value and standard deviation
are achieved, the weight values are then sampled from
the corresponding Gaussian distribution. A slack version
of a binary tournament selection is used to select the
parent solutions for the crossover operations. The gen-
erated offspring conduct mutation by addition, deletion,
and modification, with respect to the parent solution. In
the fitness evaluation process, every individual is trained
by a small number of epochs to speed up the training.
Based on their structure and initialized weights, the mean
value and standard derivation of the classification error
are calculated on the validation set for the fitness of every
individual. These elements indicate the performance ten-
dency, which is sufficient information for evaluation. As a

result, this process dramatically speeds up the evaluation
by avoiding a thorough training as conducted in [1].

® CoDeepNEAT

CoDeepNEAT [3] is an extension of the NEAT algorithm,
which is dedicated to the evolving network structure and
hyperparameters of a DNN. The key idea of CoDeep-
NEAT is the coevolution of the modules and blueprints.
The blueprint chromosome is a graph where each node
contains a pointer to a particular module species, and
each module chromosome is a graph that represents a
small DNN. During a fitness evaluation, the modules and
blueprints are combined to create a larger assembled net-
work, which is further decoded into a phenotype (DNN)
and then trained for a fixed number of epochs. This
coevolution strategy allows efficiently acquiring an iter-
ative modular structure, which is a common feature in
many successful DNNs. Each node (layer) in the module
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chromosome contains a table of real and binary valued
hyperparameters that are mutated through a uniform
Gaussian distribution and random bit-flipping, respec-
tively. Over the generations, a structure (i.e., a layer) is
added to the graph incrementally through a mutation. To
ensure that the parent layer’s output is the same size as the
current layer’s input, the adjustment process is conducted
through a concatenation or element-wise sum operation.

e CGP-CNN

In the study by Suganuma et al. [4], Cartesian genetic
programming (CGP) is used in the evolution of a CNN
architecture and connectivity, where the hyperparameters
and connections of each layer along with the total num-
ber of layers are optimized. The architecture of a CNN
is represented as a directed acyclic graph with a two-
dimensional grid. The genotype consists of integers with a
fixed length, and each gene has information regarding the
type and connections of the node. Referring to the mod-
ern CNN architectures, highly functional modules such
as ConvBlock, ResBlock (consisting of convolution pro-
cessing, batch normalization, ReLU, and a summation),
and pooling are selected as node functions. The 1 + A
evolutionary strategy is employed to conduct a search
within the architecture solution space, which means that
A children are generated from a single parent at each
generation by applying a mutation, and the best perform-
ing child compared to the parent is updated as the new
parent for the next generation. The node type and connec-
tions of each node are randomly changed according to the
mutation rate.

® Genetic CNN

Xie and Yuille [5] encoded each network structure into
a fixed-length binary string and applied the GA to auto-
matically learn the structure of a deep CNN. The search
space is restricted by imposing constraints on the net-
work structures such that a network is composed of a
limited number of stages, and each stage is defined as a set
of predefined building blocks (convolution and pooling).
The Russian roulette process [123] is used for the selec-
tion. In each generation, the standard genetic operations,
for example, a crossover and mutation, are conducted to
generate competitive individuals.

e HREAS

Liu et al. [6] proposed a GA-based structure search
method using multi-level hierarchical representations of
DNNs, allowing flexible network structures (directed
acyclic graphs) at each level of the hierarchy. The key
idea of a hierarchical representation is to have several
graphs (or motifs) at different levels of the hierarchy,
and the lower-level graphs (such as a graph of primitive
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operations, e.g., convolution, pooling, etc.) are used as
building blocks during the construction of the higher-level
graphs. During the generation, a hierarchical genotype
has mutated a sequence of actions that include selecting
the hierarchy level, selecting the target graph at the tar-
get level, and modifying the target graph using add, alter,
and remove operations. Similar to the approach by Real
et al. [1], the evolutionary search algorithm is based on a
queue-based tournament selection, which is implemented
in an asynchronous distributed manner, consisting of a
single controller responsible for performing mutations
over the genotype and a set of workers responsible for
their evaluations.

e DENSER

Assunccao et al. [7, 8] proposed a two-level representa-
tion. The outer level, i.e., GA-level, encodes the general
structure of the network and is responsible for represent-
ing the sequence of layers. The inner level, i.e., dynamic
structured grammatical evolution (DSGE), encodes the
parameters associated with the layers. Because there is a
one-to-one mapping between the layers and their param-
eters, the evolution of the networks keeps the genetic
material of each layer together. This makes the manipula-
tion of the solution easier. Two crossover operations are
developed, acting on both levels of the genotype. A one-
point crossover is used to exchange the layers within the
same module. A module is a set of layers that belongs to
the same GA structure index, such as the features (convo-
lution or pooling) and classification (fully connected). A
bit-mask crossover is used to exchange modules between
two parents. In a mutation, they used two sets of mutation
operations that act at the GA and DSGE levels, respec-
tively. For example, the addition, replication, and removal
are at the GA level, and the grammatical mutation and
integer/float mutation are at the DSGE level.

In addition, Kramer [9] utilized a (1 + 1)-EA for opti-
mization of the structure and hyperparameters of convo-
lutional highway networks, which are methods for con-
structing networks with a large number (hundreds and
even thousands) of layers. The convolutional highway
network is represented as a bit string.

Several studies have adopted a PSO, taking advantage of
its easy implementation and lower computational cost.

e PSOAO

The authors of EvoCNN [2] proposed a flexible con-
volutional auto-encoder (CAE). This flexible CAE aims
to overcome the constraints of the classical CAE, which
has only one convolutional layer and one pooling layer
in the encoder. Its architecture optimization is achieved
by a PSO consisting of variable-length particles, called
PSOAQO. A variable-length encoding strategy is applied to
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the PSOAO algorithm, where each particle contains dif-
ferent numbers of layers with different parameters (such
as the filter width/height, stride width/height, convolu-
tional type, number of feature maps, and pooling type).
The main flow of the PSOAO algorithm follows the simple
PSO algorithm. One challenge resulting from the adop-
tion of variable-length particles is the need to calculate
the gbest. To this end, the padding and truncation opera-
tions are used to keep the length of the layers unchanged
in the global best and the reference (current) particle. In
addition, the reconstruction error is taken as the fitness.

e [PPSO

In a study by Wang et al. [11], the PSO is utilized to search
the optimal architectures of a CNN for image classifica-
tion tasks. In their approach, a new encoding scheme is
proposed, which defines a “network interface” containing
the IP address and its corresponding subnet to carry the
configurations of a CNN layer. The network IP address
can be divided into numerous subsets, each of which can
be used to define a specific type of CNN layer (convolu-
tion, pooling, or fully connected). This means that a high-
dimensional particle vector (i.e., the entire IP address)
can be divided into several parts (i.e., CNN layers), which
facilitates the convergence of the PSO. To attain variable-
length CNN architectures, a new layer called a disabled
layer is defined to disable some of the layers in the fixed-
length IP address encoding.

As a quantitative summary, the classification perfor-
mances of the discovered models on large-scale image
classification benchmarks such as MNIST, Fashion-
MNIST, CIFAR-10, CIFAR-100, and ImageNet are listed
in Table 5.

4.2 Evolving DNNs for image restoration

Image restoration, which recovers a given corrupted
image to the original clean image, is an important task of
computer vision along with image classification. There are
several studies that have addressed this task for networks
designed using NeuroEvolution.

e DPPN

Fernando et al. [12] proposed a differentiable pattern pro-
ducing network (DPPN), which combines the evolution of
a network structure and learned weights using a Lamar-
ckian approach for an auto-encoder neural network. With
DPPN, every individual is encoded using a connection
matrix and a node list. During each generation, the auto-
encoder is trained through a gradient descent approach,
and the learned weights are inherited by the offspring.
Two evolutionary algorithms (a microbial genetic algo-
rithm (mGA) and an asynchronous binary tournament
selection) are used to select the parent solutions, where
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Table 5 Classification accuracy of discovered models by
evolutionary approaches on different datasets

Dataset Approach Accuracy OPT. time #GPUs
CIFAR-10 LEIC[1] 94.60 10 days 250
CoDeepNEAT [3] 92.70 - -
CGP-CNN [4] 94.34 10.4 days 2
Genetic CNN [5] 92.90 2 days 10
HREAS [6] 96.40 1.5 days 200
DENSER [7, 8] 93.29 - -
PSOAO [10] 835 34 days 1
CIFAR-100 LEIC[1] 77.00 - -
Genetic CNN [5] 70.97 - -
DENSER [7, 8] 77.51 - -
MNIST EvoCNN [2] 98.82 2-3 days 2
DENSER [7, 8] 99.70 - -
PSOAO [10] 99.51 5 days 1
IPPSO [11] 98.87 - -
Fashion
MNIST EvoCNN [2] 94.53 4 days 2
DENSER [7, 8] 95.11 - -
ImageNet Genetic CNN [5] 72.13 - -
HREAS [6] 79.70 - -

two random individuals and random pairs (whenever
more than two workers are working simultaneously) are
chosen, respectively. The chosen individuals are then
trained and their fitness is evaluated. The mutated copy of
the winner overwrites the loser. Three types of mutations
are applied to generate the network structure: the addition
of a random node, the removal of a random edge, and the
addition of a random edge. During a crossover operation,
hidden units (nodes) of both parents are combined. The
mean squared error is used as a fitness function.

e E-CAE

Suganuma et al. [13] introduced an evolutionary algo-
rithm that searches the optimum architecture of the
CAEs for an image restoration. The CAEs in this study
are built using only standard ConvNet building blocks
(i.e., convolutional layers with an optional downsampling
and skip connections) that involve symmetric encoder-
decoder structures. Nevertheless, the results show that
the CAEs generated by an EA can achieve a competitive
performance compared to hand-crafted models for image
inpainting and denoising tasks. The representation and
evolutionary strategy for the CAEs are the same as those
described by Suganuma et al. [4]. At each generation, A
children are generated by applying mutations to the parent



Nakane et al. IPSJ Transactions on Computer Vision and Applications

and are trained to minimize a standard /, loss. The fitness
of every individual is measured using the peak signal-to-
noise ratio (PSNR) between the restored and ground truth
images on the validation set. The genotype is updated to
maximize the fitness as the generation proceeds.

4.3 Evolving DNNs for other tasks
In [14] and [15], the GA is employed to evolve the weights
of a fixed CNN and pass the local optimum, moving
toward the global optimal during the training. A method
presented in [15] shows that this can improve the per-
formance of a pure CNN. To find the best weights for a
CNN, the authors used a crossover operation exchanging
the layer weights and threshold values between two chro-
mosomes and a mutation operation changing the layer
weights and threshold values. In [14], a standard GA is
employed to train the weights of a CNN for crack detec-
tion on the image. However, the authors reported that the
results are no better than when training the CNN through
a backpropagation.

In short, Table 6 summarizes the information from the
literature reviewed in this section.

5 Image segmentation

Image segmentation aims at partitioning a digital image
into multiple segments according to the informa-
tion extracted from the pixels. Many computer vision
approaches employ segmentation for a pre-processing
to easily understand the parts that construct the image.
Informative segmentation such as semantic segmenta-
tion and instance segmentation is now active in the

Table 6 Brief information of the literature summarized in

Section 4

Algorithm Author Section

GA Real et al. [1] Section 4.1
Sunetal. [2] Section 4.1
Miikkulainen et al. [3] Section 4.1
Suganuma et al. [4] Section 4.1
Xie and Yuille [5] Section 4.1
Liu et al. [6] Section 4.1
Assunccao et al. [7, 8] Section 4.1
Kramer [9] Section 4.1
Fernando et al. [12] Section 4.2
Suganuma et al. [13] Section 4.2
Zhining and Yunming [15] Section 4.3
Ouellette et al. [14] Section 4.3

PO Sunetal [10] Section 4.1
Wangetal.[11] Section 4.1
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field of image segmentation, which is typically pow-
ered by high-level deep features with DNNs. On the
other hand, most existing segmentation works using
EAs and SAs focus on only classical tasks. That is,
segmentation is achieved by dividing pixels based on
low-level intensity information. The difficulty of an
accurate segmentation typically increases as the num-
ber of segments increases. In addition, a determina-
tion of the optimal number of segments is also a
challenging task.

In this section, we mainly describe the typical thresh-
olding (in Section 5.1) and clustering (in Section 5.2)
approaches used in image partitioning. Other approaches,
such as contour-based methods, are described in
Section 5.3.

5.1 Thresholding approaches

Thresholding is a simple and popular technique used in
image segmentation. This approach is typically divides
a histogram of the pixel intensities. As a simple exam-
ple, a demonstration of two-level segmentation is shown
in Fig. 5. The pixel intensity, regarded as boundary, is
determined according to the distribution of the histogram.
There are two representative thresholding methods: a
fuzzy partition and the Otsu method.

e Fuzzy partition

The fizzy partition is the probabilistic representation of
the likelihood that each pixel intensity belongs to an class.
The probability of belonging to each class is defined by
the membership function, and the threshold between the
two classes is set at the intersection of the membership
functions, as shown in Fig. 6.

EAs and SAs are exploited in tuning the parameters of
the membership functions. Tao et al. [16] optimized six
integer parameters using the GA to segment a gray-level
image into three clusters. Each parameter is encoded as
a simple 8-bit string. These parameters are tuned such
that the fuzzy entropy [124] is maximized. Later, Tao et
al. [17] proposed a fuzzy entropy maximization method
using ACO and applied it to the two-level segmentation of
infrared images. The initial positions of the ants are ran-
domly chosen from all possible solutions. The ants then
search for more attractive solutions from the neighbor-
hood according to their transition probability. Puranik et
al. [18] presented a modified PSO to select the rules of the
fuzzy logic for color the image segmentation. Each color
class is described by several fuzzy sets in the HSL color
space, specifically, ten sets for hue, five sets for saturation,
and four sets for lightness. The task of PSO is to produce a
smaller number of fuzzy roles while preserving a low error
rate. In the velocity update, each dimension of the parti-
cle can be updated by learning the pbest of other particles,
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(a) Original image

(b) Segmented image

Fig. 5 Demonstration of a simple two-level segmentation. Pixels in the original image a is segmented into two levels with a intensity threshold of
200. As a consequence, alphabets are extracted in b

including particles in different generations. The algorithm
is thus called comprehensive learning PSO (CLPSO).

e Otsu Method

The Otsu method selects the feasible thresholds only
from gray-level histograms without any prior knowledge.
It considers a threshold that maximizes the variance
between classes to be reasonable. However, an exhaustive
search conducted using to find the optimal threshold is
a time-consuming procedure, and an extension to multi-
level thresholds requires additional computational costs.
EAs and SAs have attracted attention as feasible search
methods. Liang et al. [19] utilized a simple ACO in com-
bination with Otsu thresholding (ACO-Otsu) for image
segmentation. This is much faster in terms of 2~4-level
segmentation than the Otsu method with an exhaus-
tive search. Ghamisi et al. [20] introduced an improved
PSO, called fractional-order Darwinian PSO (FODPSO),

to tackle hyperspectral image segmentation. As the two
main changes from a traditional PSO, several swarms of
traditional PSOs are treated in parallel to enhance the abil-
ity to escape from the local optima, and a fractional calcu-
lus controlling the convergence rate is added. Particles are
encoded with the thresholds and the final optimal thresh-
olds are combined with the results from other methods
through a voting procedure. As with the Otsu method, the
variance between classes is used for the adaptive degree
function.

One of the challenging tasks in multi-level thresholding
is to determine the number of thresholds. An automatic
provisioning of the optimal number of thresholds can
be applied to more practical situations. To improve the
ACO-Otsu approach [19], Liang et al. [21] proposed an
ant colony system (ACS) using the Otsu method (ACS-
Otsu), introducing a hierarchical search range and uni-
formity measure to automatically determine the search
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Fig. 6 lllustration of fuzzy partition in the case of three-level segmentation. The probability of each pixel intensity belonging to a class is defined by
the corresponding membership functions (colored curves). Each threshold between two classes (vertical dotted line) is set at the intersection of two

membership functions
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ranges and number of thresholds, respectively. ACS-Otsu
is also combined with a local search process for the
best ant if the informative heuristics cannot be defined.
The method is then combined with an expectation-
maximization method [22], which initializes the ACS-
Otsu method and obtains refined parameters from the
approach. With the numbers of thresholds and positions
determined through iterative Otsu thresholding, Chan-
der et al. [23] introduced a “momentum” and “social”
PSO to refine the thresholds. A particle encoded with
such thresholds is placed in the “momentum” weight and
“social” weight categorizes in the velocity update, which
are variables depending on the fitness of the particle. The
“momentum” weight emphasizes the influence of the pre-
vious iteration, whereas the “social” weight stresses the
relationship with gbest. The two weights can favor each
particle in moving toward the global optima.

5.2 Clustering approaches
Clustering is also an important technique in image seg-
mentation. Thresholding-based segmentation determines
the boundaries between classes, whereas clustering-based
segmentation deals with the centroids of classes. The posi-
tions of the cluster centroids are adjusted by minimizing
the distance defined between the pixels and centroids
based on certain features. Omran et al. [24] proposed opti-
mizing the cluster centroids with a fixed number of clus-
ters to segment the image using the PSO. The evaluation
of the particles is applied according to three principles:
(1) minimizing the intra-distance between pixels and their
cluster means, (2) maximizing the inter-distance between
any pair of clusters, and (3) minimizing the quantization
error. The fitness function is the sum of the weighted
objective functions, which requires no effort to address
the multi-objective problem for PSO. In addition, the
pheromone matrix of ACO is useful for an image segmen-
tation. Instead of segmenting an image using image prim-
itives such as the intensity and color, Malisia et al. [25]
proposed clustering the pheromone matrix of ACO into
two clusters using a k-means approach. The ants move to
the neighboring pixels and drop their pheromones there.
After the ACO iteration is completed, the normalized
pheromone matrix is combined with the original normal-
ized gray-level image. K-means clustering classifies the
values of the combined dataset as black or white.
Determining the optimal number of clusters is an
important task in a clustering-based approach. Numerous
studies have aimed at developing methods that automati-
cally provide the optimal number of clusters. Maulik et al.
[26] proposed a pixel classification method using a vari-
able string length genetic algorithm (VGA), where each
chromosome consists of a cluster of centroids encoded by
real numbers, and the number of clusters (i.e., the length
of the chromosome) is variable. The crossover guarantees
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that there are more than two clusters owing to the con-
straints of the range of crossover points. Omran et al. [27]
proposed dynamic clustering using PSO (DCPSO). With
this method, the position of each particle is a binary rep-
resentation, and a value of 1 in the binary code means
that the corresponding element in the cluster centroids
pool is chosen. Then, the best set of centroids is refined
using the k-means approach. The process is repeated a
user-defined number of times with an updated centroid
pool, which is the union of previous results and randomly
chosen centroids. Awad et al. [28] proposed a hybrid GA
(HGA), which includes a hill-climbing algorithm in the
update to quickly find the local optima, for satellite image
segmentation. The chromosomes are encoded with the
features of self-organizing maps of the full image, avoiding
the determination of the number of clusters and allowing
the evolution to be the final result. After that, Awad et al.
[29] presented a hybrid dynamic GA (HDGA), having the
advantages of both HGA [28] and VGA [26], in solving the
segmentation problem. On the one hand, HDGA employs
the hill-climbing algorithm in the update, demonstrating
the “hybrid” aspect of the approach. On the other hand,
a chromosome, encoded with a cluster centroid and its
pixel value, is set to a fixed length with an ending mark
to confirm the actual flexibility of the chromosome, i.e.,
illustrating the “dynamic” aspect. A crossover occurs only
at the cluster centroid bits, rather than at the pixel value
bits or the bits after an ending mark. Bansal et al. [30] pro-
posed an approach that focuses on the pheromone matrix,
as in [25]. Each ant marks (updates the pheromone) and
combines similar traveled pixels until all pixels have been
marked. They amend the image to a fully connected graph,
i.e., all pixels are connected to each other such that the
ants travel toward unmarked pixels during every step. The
number of clusters is automatically calculated based on
the CMC distance, which is applied as a similarity mea-
sure. Halder et al. [31] proposed a GA-based clustering
method for gray-level images. They first apply fuzzy c-
means (FCM) and encode its result as an individual. This
process is repeated until the population pool is filled, and
a simple GA framework is then applied. To investigate
the appropriate number of clusters, the GA is run multi-
ple times, increasing the clusters to a predefined number.
The results for each number of clusters are then evalu-
ated using the validity index. The FCM-GA framework
was applied to tumor detection in the brain [32].

Among the different methods available, there are major
differences regarding whether the process of finding the
optimal number of clusters is built into the EAs and SAs.
In [26, 27, 29], EAs and SAs optimize the number of clus-
ters and their centroids simultaneously. Subjected to this
setting, the methods can be further categorized according
to whether the length of the candidate solutions is fixed.
Although a variable-length representation (e.g., [26]) is
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more natural, fixed-length representations (e.g., [27, 29])
have an advantage in that the traditional operations can be
directly embedded. However, in [28, 30, 31], the EAs and
SAs are not involved in the optimization of the number of
clusters. [28, 30] applied other methods, and [31] adopted
a simple approach in which the results of all situations are
compared.

5.3 Other approaches

Ouadfel et al. [33] proposed a Markov random field
(MRF)-based image segmentation using ACO. The ants
trace over a solution space with pixel and label pairs as
components and attempt to construct a solution that min-
imizes the posterior energy function. The search process
adopts ACS, which is one of the implementations of ACO
that incorporates two-step pheromone updating (local
and global).

Pignalberi et al. [34] applied the GA to existing meth-
ods for parameter tuning. One hindrance to the adoption
of the GA is the fact that some of the parameters are real
numbers. Thus, they adopted an extended logical binary
coding which uses the symbol set as {0, 1, dot}, allowing
real numbers to be represented by a fixed precision. The
fitness function is defined as a weighted sum of four com-
ponents, which represents pixel- and cluster-level errors.

The studies described below are similar in that they
accurately extract the contours of the objects. Jiang et al.
[35] proposed a cell image segmentation using a parallel
GA. The GA adjusts the parameters of the cell bound-
ary model, which is designed based on prior knowledge
about the cell shape. The parallel GA divides the popu-
lation into multiple sub-populations, which self-evolves
in parallel. It also includes an elite migration between
the sub-populations randomly. Therefore, the diversity
is preserved. Feng and Wang [36] derived a method
for searching a space using ACO, given the active con-
tour model. To reduce the computational cost of the
pheromone updates, a finite grade ACO (FGACO) is pro-
posed, which classifies the pheromones into finite grades.
Pheromone updates are realized by changing the grades,
which only requires addition and subtraction operations
and allows independence from the objective function
value. Ma et al. [37] proposed a texture segmentation and
representation scheme based on ACO. They first pro-
posed an ACO-based image processing framework and
applied it to an image segmentation and texture represen-
tation. The difference between both methods can be seen
in the design of the direction probability vector and the
difficulty of movement, which affect the transition proba-
bility and pheromone update, respectively. With the ACO
image segmentation algorithm (ACO-ISA), the direction
probability vector considers two additional similarity fac-
tors, the gray-level between cells and the texture between
sub-images. The difficulty of movement is designed to
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reduce the pheromone intensity at the edge cells. By
contrast, an ACO-based texture representation algorithm
(ACO-TRA) requires the ants to become sensitive to local
changes in the gray-levels. For the direction probability
vector, two elements added into ACO-ISA are changed to
emphasize the difference in gray-level. The difficulty of
movement is designed to increase the pheromone inten-
sity at the edge cells according to changes in texture.

In summary, Table 7 shows a brief outline of the studies
described in this section.

6 Feature detection and selection

Analyzing the content of the image for detecting an object
or region of interest is highly dependent on the features,
which provide rich information of the image. Extracting
features from images is fundamental in many computer
vision applications, e.g., recognition, detection, matching,
and reconstruction. Detecting and selecting high-quality
features are challenging tasks owing to the large search
space. A variety of methods have been applied to solve the
feature detection (Section 6.1) and selection (Section 6.2)
problems, among which the EA and SA techniques have

Table 7 Brief information on the literature referenced in Section 5

Algorithm Author Section
GA Tao etal. [16] Section 5.1
Maulik and Bandyopadhyay [26] Section 5.2
Awad et al. [28] Section 5.2
Awad et al. [29] Section 5.2
Halder et al. [31] Section 5.2
Halder et al. [32] Section 5.2
Pignalberi et al. [34] Section 5.3
Jiang et al. [35] Section 5.3
PSO Puranik et al. [18] Section 5.1
Ghamisi et al. [20] Section 5.1
Chander et al. [23] Section 5.1
Omran et al. [24] Section 5.2
Omran et al. [27] Section 5.2
ACO Taoetal. [17] Section 5.1
Liang etal. [19] Section 5.1
Liang and Yin [21] Section 5.1
Liang and Yin [22] Section 5.1
Malisia and Tizhoosh [25] Section 5.2
Bansal and Aggarwal [30] Section 5.2
Ouadfel and Batouche [33] Section 5.3
Wang et al. [36] Section 5.3
Ma et al. [37] Section 5.3
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received significant attention and achieved a remarkable
success.

6.1 Feature detection

Feature detection aims to find or locate features (e.g.,
edges, shapes, and interest points). One of the main con-
tributions of EAs and SAs is to reduce the computation
time through a parallel and efficient search. Conventional
methods typically involve high computational processing,
such as linear filtering operations of a Canny edge detec-
tor for edge detection and applying a histogram to the
transform space of a Hough transform for circle detection.
By contrast, several studies have aimed at improving the
interest point descriptors. The operators synthesized by
EAs and SAs have shown desirable properties.

Several ant-based algorithms have been proposed to
solve the problem of edge detection. The method pro-
posed by Nezamabadi-pour et al. [38] is one of the earliest
approaches employing an ant algorithm to detect edges
by formulating the image as a directed graph. In [39],
Baterina and Oppus introduced the concept of applying
a pheromone matrix that reflects the edge information at
each pixel based on the routes formed by the ants. The
movement of the ants is guided by the local variation of
the pixel intensity values.

For a shape detection, Cuevas et al. [40] introduced a
circle detection method based on the DE algorithm. This
approach uses the encoding of three edge points to rep-
resent a candidate circle on the edge image of a scene.
Guided by the value of an objective function for evalu-
ating whether a candidate is presented within the edge
image, the set of candidates is evolved using the discrete
DE (DDE) algorithm. Dong et al. [41] introduced a com-
bined evolutionary search method for circle detection,
called chaotic hybrid algorithm (CHA). The authors com-
bined the strengths of both PSO and the GA by including
the standard velocity and position update rules of PSO
with the ideas of selection, crossover, and mutation from
the GA. Specifically, in each generation, after the fitness
values of the individuals are calculated, the proportion
of the bottom individuals undergoes breeding (selection,
crossover, and mutation). The velocities of all individu-
als are updated and new information is acquired from the
population for updating the position. During the mutation
process, the chosen individual is reinitialized through the
chaos initialization method.

Interest point detection can also be formulated as an
optimization problem, and Trujillo and Olague [42] solved
this problem using GP. In their study, GP was used to
synthesize low-level image operators that detect inter-
est points on digital images. In a newer version [43],
the authors improved the performance of previously pro-
posed detectors by considering the operator’s geometric
stability (by presenting 15 new operators) and the global
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separability of the detected points. Following the same
philosophy, Perez and Olague presented several meth-
ods [44, 45] in which GP is used as a strategy to evolve
the image descriptors for object detection. For exam-
ple, in [44], the authors used GP to synthesize mathe-
matical formulas to improve the scale-invariant feature
transform (SIFT) image descriptor. They further extended
their study in [45] by presenting an optimization-based
approach using GP and a hill-climbing algorithm, which
creates composite image operators for improving the SIFT
descriptor.

6.2 Feature selection

Feature selection [125] is an important task in machine
learning and computer vision to reduce the dimensionality
of the data by removing irrelevant and redundant fea-
tures. In the computer vision community, feature selection
targets constructing/choosing important visual content
(features, e.g., pixel, edges, color, texture, shape, and other
problem-specific items) for the interpretation of the image
content. Based on its importance, the problem of feature
selection has been extensively investigated by researchers
from both the machine learning and computer vision
communities. To the best of our knowledge, almost all
major EC paradigms have been applied to feature selec-
tion in the field of computer vision. Studies related to the
GA and DE algorithm from EAs, and PSO and ACO from
SAs, are mainly discussed in this section.

The GA is the earliest EC technique applied widely
to feature selection problems. In [46], the GA with a
binary representation is employed for feature selection to
enhance the performance of hyperspectral data classifi-
cation. The experiment results show that the number of
features obtained can be decreased over the generations.
Treptow and Zell [47] showed that the GA can be used
within the Adaboost framework to find features, resulting
in better classifiers for object detection such as faces and
soccer balls. The chromosome encodes the parameters of
the features using a string of up to 13 integer variables.
The results demonstrate that, instead of an exhaustive
search over all features, an evolutionary search can speed
up the training and effectively find good features in a large
feature pool within a reasonable time.

The DE algorithm was introduced to solve the feature
selection problems in 2008, when Khushaba et al. [48]
proposed a method called DE-based feature subset selec-
tion (DEEFS) to utilize the DE optimization method for
the feature selection problem. The improved version is
[49]. A new feature distribution factor is introduced to
aid in the replacement of the duplicated features by utiliz-
ing a roulette wheel weighting scheme. Experiments show
that the proposed DEFS algorithm outperforms GA/PSO-
based algorithms and other traditional feature selection
algorithms on brain-computer-interface tasks. Gosh et
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al. [50] applied a self-adaptive DE algorithm for feature
selection in a hyperspectral image. In their study, the self-
adaptive DE algorithm outperforms the GA [46], ACO,
DE algorithm, and combination of ACO and DE-based
methods in terms of the classification accuracy and Kappa
coefficient.

Ghamisi et al. [51] exploited FODPSO to solve the fea-
ture selection problems for hyperspectral data. Each parti-
cle uses a binary representation for the selection problem.
The authors used the overall accuracy of a support vec-
tor machine (SVM) classifier on the validation set as the
fitness function to evaluate the goodness of the selected
features. Because SVM is capable of handling the curse
of dimensionality, the proposed approach is capable of
handling extremely high dimensional data even with a lim-
ited number of training samples. In the following year,
Ghamisi et al. [52] proposed a PSO-based CNN method
for the classification of hyperspectral data. To tackle the
imbalance problem between the high spectral dimension-
ality and the limited number of training samples available
for a CNN, a FODPSO-based feature selection method
is employed to find the most informative bands from the
hyperspectral data.

Al-Ani [53] applied the ACO algorithm for feature selec-
tion and claimed that it can perform better than the GA
in the texture classification scenario. The algorithm uti-
lizes both the local importance of the features and the
overall performance of the feature subsets to search the
feature space for optimal solutions. Chen et al. [54] pro-
posed an efficient ACO-based feature selection algorithm
for image classification by introducing a new representa-
tion scheme to reduce the size of the search space (i.e., a
directed graph). Each node/feature is linked by two dis-
tinct edges showing whether a node/feature is selected.
This representation scheme significantly reduces the total
number of edges that the artificial ants need to traverse.

In summary, Table 8 shows a brief overview of the
studies discussed in this section.

7 Image matching

The purpose of image matching is to superimpose the
common parts of multiple images. Matching is typically
conducted by transforming the reference image into a
coordinate system of the target image. Therefore, image
matching is essentially an optimization problem used
to find the transformation parameters that maximize
the similarity. Template matching and image registra-
tion, which are typical applications of image matching,
are described in Sections 7.1 and 7.2, respectively. In
addition, this section deals with the jigsaw-puzzle-like
problems of aligning the given parts to restore the origi-
nal image (described in Section 7.3). In addition, methods
for matching the features extracted from an image are
described in Section 7.4.
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Table 8 Brief information on the literature summarized in
Section 6

Algorithm Author Section
GA Dong et al. [41] Section 6.1
Trujillo and Olague [42] Section 6.1
Trujillo and Olague [43] Section 6.1
Perez and Olague [44] Section 6.1
Perez and Olague [45] Section 6.1
Yu et al. [46] Section 6.2
Treptow and Zell [47] Section 6.2
DE Cuevas et al. [40] Section 6.1
Khushaba et al. [48] Section 6.2
Khushaba et al. [49] Section 6.2
Gosh et al. [50] Section 6.2
PSO Dong et al. [41] Section 6.1
Ghamisi et al. [51] Section 6.2
Ghamisi et al. [52] Section 6.2
ACO Nezamabadi-pour et al. [38] Section 6.1
Baterina and Oppus [39] Section 6.1
Al-Ani [53] Section 6.2
Chenetal. [54] Section 6.2
7.1 Template matching

The purpose of template matching is to find the region
that is most comparable to a template in the target image.
An illustration of template matching is shown in Fig. 7.
There are two main categories of methods used to search
the target image: feature- and pixel-based approaches. In
the former case, the transformation matrix between the
template and target image is estimated from the feature
descriptor such as SIFT. However, occasionally situations
occur in which it is difficult to detect the key points, i.e.,
blurry and texture-less images [56]. The latter-category of
methods such as SAD are robust to the above situation,
although an efficient method to search the target image
is required. In particular, as the degrees of freedom (DoF)
of the template transformation increase, an exhaustive
search on the target image becomes a more undesirable
approach.

EAs and SAs are effective choices to explore in an exten-
sive and complex solution space such as in the above situa-
tion. The three studies described below address matching
at different DoFs (specifically, 5, 6, and 8, respectively).
They commonly incorporate strategies for a further effi-
cient exploration into the GA. Zhang and Akashi [55]
proposed a simplified GA for template matching. In this
case, the GA is simplified by replacing a crossover and
mutation using global and local sampling, where global
sampling controls the high-order of the chromosome,
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Target image

Fig. 7 lllustration of template matching. Similarity between template and candidate regions (black rectangles) are computed over the target image.
Candidate region with the highest similarity is the matching result (red rectangle)

and local sampling controls the low-order chromosome.
Although the simplified GA is more efficient and accu-
rate in simulated template matching, its operation in
real-world cases and in cases with large variations, and
in finding the global optimization without a mutation,
remain challenges. Zhang and Akashi [56] introduced a
level-wise adaptive sampling (LAS) based on the GA to
solve affine template matching over a Galois field. With
an increase in the number of computations, Galois field
can narrow the search range in the target image, and can
finally locate the area. To reduce the number of compu-
tations, the researchers presented the LAS under the GA
framework, which preserves the genetic variety through
the selection of individuals from each fitness level uni-
formly, rules out the inferior individuals using learning
thresholds, and simplifies the computational complexity
of each individual by inspecting only a small fraction
of pixels. The method have turned out to be robust
and efficient, but a problem still remains regarding how
effective it is in cases with large variations, and no the-
ories exist that prove the method will not converge to
the local optimum solutions without a mutation. After
that, Zhang and Akashi [57] extended [56] to projec-
tive template matching using a binary finite field that
can deal with a large DoF. Although the LAS under the
GA framework saves considerable computational costs
while retaining its accuracy, the algorithm is still far
from achieving real-time capabilities for a large DoF. In
addition, it may fail when the template image has large
variations.

Considering a more practical situation, the approach is
useful for matching when there are multiple detection tar-
gets on the target image. Sato and Akashi [58] proposed

a method for distributing the population in deterministic
crowding (DC), which is derived from the GA, to deal
with multi-object template matching. The crossover in
DC involves the interaction between parents and chil-
dren (which can be mutated), thereby possibly leading
to multi-local optimization, which can be solved using a
method that loops the selection of the best-fit individ-
ual and a local search. This method has been successful
in multi-object template matching with a simple back-
ground, the accuracy of which decreases with an increase
in the background complexity. In addition, it is not nec-
essarily the case that only materials that look perfectly
the same (e.g., those produced in factories) are eligible
for matching, and several studies use template models
based on prior knowledge of the target. Lee et al. [59]
proposed the application of GA-based template matching
to lung nodule detection in computed tomography (CT)
images. They employ GA-based template matching to
detect the approximate location of nodules, and a conven-
tional template matching to detect the nodules accurately.
The template image used in lung detection is spheri-
cal/circular nodular models. Ugolotti et al. [60] compared
PSO with the DE algorithm to solve the object detection
problem, and validated the methods in two real-world
computer vision problems—hippocampus localization in
histological images, and human pose estimation in image
sequences. Their method requires that the object follow
certain models, which are defined to transform the prob-
lem into an optimization problem that can be searched
using PSO and the DE algorithm individually. In addition,
to accelerate the method, they take advantage of a GPU
for parallel computations.
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7.2 Image registration

The task of image registration is to convert multiple
images into an unified coordinate system allowing the
common parts to overlap. One of the most popular appli-
cations is an overlapping of multiple images taken from
different viewpoints or at different times by remote sen-
sors, as shown in Fig. 8. De Falco et al. [61] transformed a
satellite image registration into the problem of optimizing
the affine transformation according to the mutual infor-
mation between images, and optimized the problem using
the DE algorithm. Ma et al. [62] proposed an orthogo-
nal learning DE (OLDE), which combines the orthogonal
learning (OL) strategy with the DE algorithm, for remote
sensing image registration. During the crossover step,
multiple candidate vectors are generated from the parent
vectors based on the OL strategy, and the vectors with
higher fitness are selected as offspring. This incorporation
of OL strategies enhances the ability to select promising
search directions toward the global optimum. The two
methods above were compared in experiments described
in [62] using the Ottawa and Yellow River datasets, and
the results demonstrated that OLDE outperforms a simple
DE method.

In this subsection, we also cover the registration
between 2D images and 3D objects. Wachowiak et al.
[63] applied a modified PSO to a single-slice 3D-to-3D
biomedical image registration. The authors assumed that
the users of their proposed system are skilled clinical
experts and can be given an accurate initial orientation,

V.
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3

Fig. 8 lllustration of image registration. Two given images are aligned
such that the common parts are overlapped
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which is an important benefit to the complexity of medical
image registration. Therefore, they added a term included
in the initial orientation to the velocity update, which
is expected to prevent a fall into the local optima. This
modified velocity update is incorporated into three mod-
ified PSO approach (e.g., hybrid PSO with a crossover)
selected through preliminary experiments. Liebelt and
Schertler [64] addressed the registration of 3D models for
use in images. The six parameters of the 3D model are
optimized using a simple PSO. In addition, to accelerate
the algorithm, the authors treat each inherently parallel
optimization in different threads of the GPU. The simi-
larity measure uses mutual information, which is a typical
similarity metric in this field and represents the relative
entropy of two images, with improved robustness owing
to its fusion with edge-based measurements.

7.3 Jigsaw-puzzle-like problems

Jigsaw puzzles are popular all around the world. The
player must reconstruct the original image from the given
non-overlapping pieces, as shown in Fig. 9. Automatic
jigsaw puzzle solvers with a computational aid can solve
puzzles with an extremely large number of pieces, and
such a technique can also be applied to a reconstruc-
tion, such as archeological artifacts and torn documents.
Sholomon et al. [65] proposed a GA-based jigsaw puzzle
solver for puzzles of known size and piece orientation. The
pairwise compatibility of the adjacent pieces is evaluated
based on color similarity along their abutting edges. A
chromosome is represented by a matrix of the same size as
the puzzle, and each element is assigned a piece number.
This simple encoding causes a serious problem: offspring
yielded from a traditional crossover may contain dupli-
cate and/or missing pieces. Thus, the authors proposed a
novel crossover operator based on a kernel-growing tech-
nique, which starts with a single piece and gradually joins
other pieces at the available boundaries. The selection and
assignment of the pieces to be joined are conducted using
a three-phase process from a bank of available pieces,
which ensures that every piece appears only once. The
development of an applicable crossover operator enables
the introduction of the GA into the jigsaw puzzle solver
field and brings about significant improvements in the
solving power. Specifically, the proposed method achieves
an accurate reconstruction of 22,834 pieces, which is
more than twice the existing results. After that, Sholomon
et al. [66] confirmed the effectiveness of each phase in the
crossover, as well as the robustness of the objective func-
tion experimentally. They also accelerated the crossover
in [65] using multiple threads. In addition to type 1 puz-
zles (puzzles with pieces whose location is unknown),
Sholomon et al. [67] extended the GA-based solver in [65]
to solve type 2 puzzles (puzzles with pieces whose loca-
tion and orientation are unknown) and type 4 puzzles
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Fig. 9 lllustration of jigsaw puzzle problem. The given non-overlapping pieces are correctly rearranged to construct the original image

(two-sided puzzle with pieces whose location, orientation,
and face are unknown). To consider the orientation, the
authors adopt a graph representation where each node
corresponds to a piece and each edge corresponds to a
joint edge of two adjacent pieces. The crossover opera-
tor is similar to that in [65], i.e., it is applied based on a
kernel-growing technique. In addition, for type 4 puzzles,
a constraint is added to maintain the geometrical valid-
ity: the flipping side edge of an already jointed edge is not
selected. This method outperforms the existing method in
type 2 puzzles and was the first to successfully solve type 4
puzzles. The experiments in these studies were conducted
in a common format. We summarize the results with the
largest number of pieces regarding the neighbor compar-
ison that measures the fraction of correct neighbors, in
Table 9.

Wall painting reconstruction is similar to but more
complex than jigsaw puzzles, it is not limited by a rectan-
gular shape and can be eroded and lose some of its frag-
ments. Sizikova and Funkhouser [114] proposed solving a
wall painting reconstruction using a modified GA, modi-
fying the selection in two steps, including fragment- and
binary-based selection, and premodifying the crossover
in two categories, a crossover by fragmentation and a
crossover by matching. The GA framework starts with
one or two fragments, grows to optimize the orientation
and translation of the merges, and ends based on a set
number of iterations or the completion of all fragments.

Table 9 A brief summary of the experimental results of the
jigsaw puzzle solvers. The results for each image are the average
of multiple runs using different random seeds, and the average
best is the largest score among them

Approach Type Number of pieces Average best
Sholomon et al. [65] Type 1 22,834 96.28
Sholomon et al. [66] 30,745 93.40
Sholomon et al. [67] Type 2 22,755 91.07

Type 4 10,375 99.20

7.4 Feature matching
Graph representations are useful for representing local
features in an image along with spatial relationships (i.e.,
nodes and edges represent local features and relation-
ships, respectively) [126, 127], and hence graph match-
ing, which aims at finding similarity between graphs, is
used as one of the techniques for image matching. Myers
and Hancock [68] proposed a multimodal GA for graph
matching. They avoid the extra computations caused by
a non-replacement during the selection through a biased
selection without a replacement, thereby reducing the
computational cost. Similarly, points are also important
features in an image. Zhang et al. [69] presented a GA-
based, incomplete (not one-to-one mapping), unlabeled
(using no other information, e.g., color) point pattern
matching method. They select several sets of triple points
in two images, maximizing the partial bidirectional Haus-
dorff distance between the triple points sets in different
images. The GA-based point pattern matching is more
efficient than that of traditional optimization methods
such as geometric hashing [128].

In summary, Table 10 shows a brief overview of the
studies analyzed in this section.

8 Visual tracking

The purpose of visual tracking is to find a target object in
each frame within a video sequence. Visual tracking can
be regarded as a sequential detection problem when con-
sidering the variation in the object state. It is essentially
equivalent to a dynamical optimization problem.

Most tracking algorithms can be classified into deter-
ministic or stochastic methods. Deterministic methods,
such as a mean shift, are computationally efficient, but
suffer from the local optimum. By contrast, stochastic
methods, such as condensation and a particle filter, can
provide robust tracking, but require high computational
costs. In addition, these methods may cause a degradation
in the long-term tracking. EAs and SAs are the ratio-
nal choice to alleviate these weaknesses. For instance,
[72] showed that the iteration process of PSO is helpful
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Table 10 Brief information on the literature referenced in

Section 7

Algorithm Author Section

GA Zhang and Akashi [55] Section 7.1
Zhang and Akashi [56] Section 7.1
Zhang and Akashi [57] Section 7.1
Sato and Akashi [58] Section 7.1
Lee et al. [59] Section 7.1
Sholomon et al. [65] Section 7.3
Sholomon et al. [66] Section 7.3
Sholomon et al. [67] Section 7.3
Sizikova and Funkhouser [114] Section 7.3
Myers and Hancock [68] Section 7.4
Zhang et al. [69] Section 7.4

DE Ugolotti et al. [60] Section 7.1
De Falco et al. [61] Section 7.2
Ma et al. [62] Section 7.2

PSO Ugolotti et al. [60] Section 7.1
Wachowiak et al. [63] Section 7.2
Liebelt and Schertler [64] Section 7.2

for restoring particles sampled from inappropriate tran-
sition models to the appropriate (i.e., higher observable
likelihood) region.

We categorize the visual tracking problem into
single-object tracking and multiple-object tracking in
Sections 8.1 and 8.2, respectively.

8.1 Single object tracking

Several studies have addressed block matching where the
entire image is divided into non-overlapping blocks and
the difference in position over successive frames for each
block is computed. The difference in position is called
the motion vector, and motion vectors of blocks con-
taining the of interest are useful for tracking. Bhaskar
et al. [70] proposed a motion estimation algorithm with
variable-size block matching using the GA. Block-based
motion estimation is accomplished by finding the same
region in the next frame for blocks that represent seg-
mented regions of the image. Variable-size block division
is achieved through a quad-tree decomposition, which
divides an entire image into four equivalent sized regions
recursively. The GA is executed on all blocks, and moves
the centroid of the block to match the block in the suc-
cessive frame. With the genetic operator, only a mutation
is executed. Individuals that have lower than the mean
fitness are the targets of mutation, and others are taken
into the next generation directly. Although experimen-
tal results show a better performance than that of other
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methods, the combination of a recursive division and
the GA is a time-consuming process. Cuevas et al. [71]
attempted to speed up the processing of fixed-size block
matching using the DE algorithm by reducing the number
of similarity evaluations. During a DE search, all fitness
values are stored in the history array, and most individuals
are evaluated through a nearest-neighbor-interpolation
based estimation based on the stored fitness of the nearby
individuals. This fitness estimation strategy substantially
reduces the number of evaluations rather than exhaus-
tive evaluations within a search area while maintaining the
accuracy.

In the following tracking methods, the target is repre-
sented by a rectangle. The candidates have rectangular
parameters, such as location, rotation angle, and scaling,
and look for the most similar region based on the appear-
ance model. Because the rectangular parameters are real
values, PSO and the DE algorithm are preferred for opti-
mization. Zhang et al. [72] proposed a sequential PSO
that incorporates the sequential information into the tra-
ditional PSO. The attractive point of the sequential PSO is
the introduction of a re-diversification mechanism using
previous results and an adaptive parameter tuning. In
addition, a spatially constrained Gaussian mixture model
(GMM) for the appearance of the tracked object is used
to evaluate each particle. From a Bayesian inference per-
spective, sequential PSO is a combination of multi-layer
importance sampling and a particle filter, which can avoid
the sample impoverishment problem in a particle filter.
Cheng et al. [73] proposed a visual tracking technique
to utilize a fragment-based appearance model, which can
acquire the robustness of the target occlusion. The target
state is divided by rectangle fragments, and the saliency
based on the SIFT feature is assigned to each fragment.
Particles of the PSO have affine transform parameters
and are evaluated using the saliencies and an HSV color
histogram. In addition, the initialization of the particles
in each frame uses a Gaussian distribution constructed
from the previous results to maintain diversity. Lin and
Zhu [74] proposed an improved fast DE (IF-DE) algo-
rithm to alleviate the evolution stagnation. The IF-DE
algorithm focuses on inferior parents and trial individu-
als, which are discarded in the previous generation. These
individuals are introduced as a difference vector during
the mutation stage, which serves to extend the search
space. Three scaling parameters during a mutation opera-
tion are changed dynamically based on the best individual
or diversity information. The evaluation of each individual
for the tracking process utilizes the GMM, similar to that
described in [72]. Nenavath and Jatoth [75] introduced
a hybrid SCA-DE, which is a combination of the sine-
cosine algorithm (SCA) and the DE algorithm. The flow
of the hybrid SCA-DE is simple: after every individual is
updated by the SCA, DE operations including a mutation,
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crossover, and survivor selection are applied. Whereas
the SCA conducts a global exploration with a large step
size, the DE algorithm is in charge of the local search
to encourage the population to reach the best solution,
which enables the hybrid SCA-DE algorithm to balance
between global and local searches. The tracking method
using the hybrid SCA-DE approach optimizes a state vec-
tor consisting of the location, speed, and scaling with a
kernel-based spatial color histogram as the observation
model.

In the four studies above, the initialization of the candi-
dates in each frame exploits the previous result. To achieve
diversity, the authors adopt a Gaussian distribution [72—
74] and random walk (RW) model [75]. This commonality
is unique to dynamic optimization problems. Most track-
ing performance results are given as graphs plotting the
accuracy per frame. In particular, the comparison results
with [72] can be found in [73] and [74], respectively.

8.2 Multiple object tracking

As an extension of single-object tracking, multiple-object
tracking requires managing multiple objects, which is a
difficult task particularly owing to the occlusions occur-
ring between objects within the same proximity. An occlu-
sion may cause a finding of the foreground regions and a
partial or full hiding of the objects. Therefore, it is essen-
tial to overcome the occlusion problem to achieve a stable
tracking.

Huang and Essa [76] proposed a two-level approach,
which consists of a region-level association process and
an object-level localization process, for tracking with a
stationary-camera. In the region-level tracking process,
associations of the foreground regions from successive
frames are characterized by a binary correspondence
matrix. Rows and columns respectively correspond to
existing and new foreground regions, and a non-zero
element represents an association between the corre-
spondence regions. Association events can be analyzed
from a matrix, e.g., if a column has two or more non-
zero entries, correspondence regions will be merged into
one region in the current frame. Constructing reliable
matrices is cast as an optimization problem based on
the GA with the likelihood of associations. Initializa-
tion, crossover, and mutation operations are customized
based on certain heuristics. During the object-level track-
ing process, objects are labeled for correct regions and
localization based on the association events. The object
model used by localization adopts an appearance model
and a spatial distribution, as well as an occlusion rela-
tionship, to deal with a splitting event. Zhang et al. [77]
proposed a species-based PSO, which divides a swarm
into several species according to the objects. To overcome
the occlusion between different objects, competition and
repulsion models for species are introduced. A species
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with a higher competitive ability indicates that the corre-
sponding object is more likely to occlude other objects,
and its repulsive force, which is defined as the product of
its competitive ability and velocity, is stronger. A species
in which an occlusion has occurred encourages an oppo-
nent to be repelled by inserting a repulsion force term
into its opponent’s velocity update process. Moreover,
the authors presented an annealed Gaussian-based PSO
(AGPSO) approach, which enables a parameter reduc-
tion and fast convergence. AGPSO introduce zero-means
Gaussian perturbation noise in velocity update procedure.
Its covariance matrix elements decrease exponentially as
the iteration progresses, which enables a fast convergence
rate.

From these studies, we can find differences in the
parts served by the EAs and SAs. In [76], the GA con-
centrates on reasoning the complex interrelationships
between objects using a binary correspondence matrix. By
contrast, in [77], PSO is in charge of the entire tracking
framework, and an occlusion resolution is well integrated
into the general procedure.

In short, Table 11 describes a brief overview of the
studies summarized in this section.

9 Facerecognition

Face recognition is an important technology in security
systems and human-computer interaction. The goal of
face recognition is to identify individuals in database who
are identical to the input face image. This classification
process is conducted using a model trained with fea-
ture sets extracted from face images in the database. An
illustration of a face recognition procedure is shown in
Fig. 10.

In many cases, EAs and SAs are exploited to select or
weight the features, as described in Section 9.1. More-
over, fusion methods for features extracted from visible
and infrared (IR) images are introduced in Section 9.2. In
addition, other methods including the localization, detec-
tion, and tracking of the faces and eyes, are shown in

Table 11 Brief information on the literature summarized in

Section 8

Algorithm Author Section

GA Bhaskar et al. [70] Section 8.1
Huang and Essa [76] Section 8.2

DE Cuevas et al. [71] Section 8.1
Lin and Zhu [74] Section 8.1
Nenavath and Jatoth [75] Section 8.1

PSO Zhang et al.[72] Section 8.1
Cheng et al. [73] Section 8.1
Zhang et al. [77] Section 8.2
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Section 9.3, which are relevant to the pre-processing of an
automatic face recognition framework.

9.1 Feature selection/weighting
e Feature selection

The quality of the feature set extracted from a face image
has a significant impact on the performance of a face
recognition. However, the feature set typically includes
noisy, irrelevant, or redundant data. The task of the EAs
and SAs is to reduce a feature set of size n to a sub-
set of size m (m < n) to improve the face recognition
accuracy. Owing to the large number of possible feature
subsets, many existing feature selection methods employ
a heuristic or random search strategy [82], including a
sequential search, tabu search, and greedy algorithms. By
contrast, population-based searches using EAs and SAs
significantly contribute to high-quality subsets against an
extensive search space.

Applying the GA for feature selection is a natural idea
because it utilizes bit strings for representing chromo-
somes. A binary bit value can be used to indicate if a
corresponding element assigned is selected or not. Liu
and Wechsler [78] proposed an evolutionary pursuit to
find the optimal basis by which faces can be projected.

[ Training images ] [Test image]

|
Feature extraction
$§ 3 1

Database

!

| Similarity measurement |

!

[ Recognition result ]

Fig. 10 lllustration of face recognition procedure. The models for
each individual are created by extracting features from the training
images and stored in database. The test image is identified by finding
the model which is most similar to the test image
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Specifically, the GA is applied to search the rotation angles
for pairwise axes and the combination of basis vectors
against the given whitened principal component analysis
(PCA) space. The evaluation of every individual is based
on the recognition rate and the scatter index. The GA can
improve the results by balancing both the classification
accuracy and generalization. Zheng et al. [79] proposed
the GA-Fisher algorithm, which combines a GA-PCA for
a dimension reduction with a linear discriminant analysis
(LDA). The GA-PCA approach searches the optimal prin-
cipal components based on the PCA dimension reduc-
tion theorem (PCA-DRT), which claims that some of the
small principal components may have useful information.
Crossover and mutation operators are improved to retain
the number of selected principal components. Each chro-
mosome is evaluated using a fitness function consisting
of three terms based on the PCA-DRT. The GA-Fisher
approach integrates the GA-PCA with a whitening trans-
formation into the LDA. Vignolo et al. [80] applied the GA
and multiple objective functions for feature selection. An
aggregative fitness function integrates two types of evalu-
ation functions with relevant parameters. In addition, the
multi-objective GA is used to search the optimal Pareto
front over three types of objective functions. The intro-
duction of multiple objective functions provides a more
flexible classification (e.g., considering not only the accu-
racy but also a class overlap), and the GA is an effective
tool to accomplish this.

Regarding the methods using SAs, Kanan et al. [81]
presented a feature selection method based on ACO. In
this case, the ants travel on a complete graph consist-
ing of nodes representing the features. Every time an
ant chooses any node through a probabilistic transition
rule, the current subset is evaluated based on the mean
square error (MSE) of the classifier. If the MSE cannot be
decreased within several steps, the exploration will ter-
minate and the subset will be output as a candidate. A
recognition is achieved using the nearest neighbor classi-
fier, and the obtained MSE is further used by the update
of the pheromone in the ACS or rank-based ant system
(ASrank)- Ramadan and Abdel-Kader [82] utilized a binary
PSO whose particles are represented using a binary string
similar to a chromosome in the GA. A binary bit indicates
whether the corresponding feature is selected. The veloc-
ity function is defined as a probability distribution for the
update of the particle position. Each particle is evaluated
by the class separation term. The term includes the scatter
index and searches the optimal subset for discrete cosine
transform (DCT) or discrete wavelet transform (DWT)
features. Comparison experiments with the GA showed
that the binary PSO can acquire smaller feature vectors at
the expense of the training time.

Even with the common goal of face recognition, there
are many choices of features to be targeted. EAs and SAs
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are useful methods because they only need to encode
the target of the selection on the gene or graph directly.
In addition, the GA and ACO, which use a two-optional
representation, are preferred in terms of selection.

e Feature weighting

Feature weighting assigns a real value to each feature
element. It allows determining the contribution of each
feature element in a more detailed way, which can expect
to improve the quality of the face recognition. Senaratne et
al. [83] proposed EBGMpsp, which is an extension of the
elastic bunch graph matching (EBGM) [129] algorithm by
including PSO during various phases. With the face graph
matching procedure, the face graph, which consists of an
interior-node grid and a head-boundary-node grid, is rep-
resented by particles. The location and size of each grid
can vary (each particle has six parameters), and the PSO
searches the optimal parameters to maximize the graph
similarity. During the recognition phase, recognition-
phase-landmark-weights (RPLWs) optimized by the PSO
are used to compute a similarity score. In addition, Gabor
wavelet features hybridized with eigenface features are
also adopted. PSO plays a role in tuning the hybridiza-
tion weights. The decision to adopt the PSO is based on
its lack of limitations (e.g., non-linear and discontinuous).
It also has the advantage of a fast convergence. Bhatt et
al. [84] introduced a multi-objective evolutionary granular
algorithm to recognize surgically altered face images. Each
face image is divided into non-disjoint face granules based
on three levels of granularity. Because the granules include
diverse features, each granule should be assigned a suit-
able feature extractor and a weight. The GA achieves these
two objectives simultaneously using two populations. One
population consists of bit string chromosomes for select-
ing the feature extractors (values of 0 and 1 correspond
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to SIFT and extended uniform circular local binary pat-
terns (EUCLBP) [130], respectively). The other population
consists of chromosomes having real value genes repre-
senting weights. All populations evolve independently and
are combined when computing the fitness function. To
optimize the two objectives with different parameter types
simultaneously, the GA is a choice reasonable owing to its
encoding flexibility.

For a brief performance comparison, recognition rates
of the studies described in this subsection are listed in
Table 12.

9.2 Fusion of visible and IR features

Variations in the illumination are a significant problem
in face recognition for visible images. IR images can be
exploited to overcome this problem. However, IR images
also have several drawbacks, such as sensitivity to tem-
perature in the surrounding environment and occlusions
by eyeglasses. Because the advantages and disadvantages
of both are complementary, the combination of both vis-
ible and IR images is considered to allow more accurate
recognition performance to be achieved.

Methods of fusing visible and IR images using the GA
have been proposed in several studies. Typically, each
gene of the GA represents the weight of the corresponding
feature component, and the optimum fusion solution is
exploited under the framework of the GA. Bebis et al. [85]
used a bit string to represent a chromosome and select
the feature components from either a visible or IR image.
They used the GA for two different fusion schemes, i.e.,
pixel- and feature-based fusion. The first assigns wavelet
coefficients to each gene to obtain a fused image. The sec-
ond assigns eigenfeatures to each gene to obtain the fused
eigenspace. The gene length corresponds to the number of
wavelet coefficients or eigenfeatures, and the value of the

Table 12 Recognition rates of the studies summarized in Section 9.1 on different databases

Database Approach #individuals ~ #Training images  #Testimages per individual ~ Recognition rate
per individual

FERET database Liu and Wechsler [78] 369 2 1 92.14
Zheng et al. [79] 255 3 1 89.37
Senaratne et al. [83] 1195 1 1 97.1

CMU PIE database Zheng et al. [79] 68 3 18 96.81

Essex face database Vignolo et al. [80] 100 5 15 98.00

ORL database Kanan et al. [81] 40 - - 99.75
Ramadan and Abdel-Kader [82] 40 4 6 96.8

Plastic surgery face Bhatt et al. [84] 540 - - 87.32

database

Combined heterogeneous Bhatt et al. [84] 1080 - - 89.87

face database
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gene determines whether the corresponding wavelet coef-
ficient is selected from the IR or visible spectrum. Desa
and Hati [86] improved the feature-based fusion scheme
[85], using kernel-based face subspaces and real number
chromosomes. A chromosome represents a weighted vec-
tor against the extracted features. The weight given to the
corresponding visible and IR features from a gene is com-
plementary, i.e., if any IR features are weighted as «, the
corresponding visible feature is weighted as (1 — «). The
fused features consist of the sum of the weighted visi-
ble and IR features. Similarly, Hermosilla et al. [87] used
real number chromosomes to represent weights for the
descriptors. However, they assign the weights indepen-
dently to visible and IR descriptors, and thus, the genetic
coding consists of the two corresponding types of weights.
The face images are divided into small regions, and the
histogram of each region is obtained by the descriptor.
The similarities between the probe image and the gallery
image are then evaluated based on the sum of the his-
togram intersections weighted by the corresponding gene
values in all regions. Despite requiring genes for both visi-
ble and IR features, this method using small regions allows
the gene length to be reduced more than in the approaches
by [85] and [86].

The three methods detailed in this subsection can be
observed as natural extensions of the complexity of a
gene representation along the timeline. Consequently, an
experiment using the Equinox database in [87] confirms
that these extensions directly contribute to an improved
recognition rate.

9.3 Other methods

In this subsection, we discuss detection and tracking asso-
ciated with the face, eyes, and facial expressions, which are
important technologies for applications such as human-
machine interfaces and surveillance systems.

Wong et al. [88] proposed a face detection and facial
feature extraction method for gray-level images using the
GA. As the key idea of this approach, the location of the
face can be inferred from the location of both eyes. This
is based on the fact that the size of a human face is pro-
portional to the distance between both eyes. Therefore,
the task of the GA is to select the appropriate pair from
the detected eye candidates. This search space limitation
and search capability of the GA allow to the high com-
putational cost, which is a challenge to existing methods,
to be overcome. A chromosome contains two indexes in
a buffer, which stores the candidates of the eye regions,
and the eigenfaces are used to evaluate the fitness. Akashi
et al. [89] proposed a size- and orientation-invariant eye
tracking method for real-time video processing through
template matching with the GA. The GA optimizes the
parameters of the geometric transformations for the tem-
plate, consisting of the coordinates, scaling, and rotation.
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To achieve real-time tracking, they proposed the use
of evolutionary video processing. To utilize information
between video frames, genetic information in a previous
frame is inherited by the current frame (i.e., the evolution
continues throughout the entire video sequence), which
enables an exploration within a small population size.
Perez et al. [90] derived a template generation method
using PSO for face localization. The position of the vector
components of the PSO correspond to pixels of the tem-
plate, which represents an angle for directional images.
Only the vector components within the allowed range
are used as the template, and the evaluation of each par-
ticle is defined as a liner integral value of the template
over the face directional image. This method and the iris
anthropometry template proposed by [131] are applied to
a video sequence to localize the face and iris. The tem-
plate generated through PSO improves the accuracy of
the localization more than using an anthropometric tem-
plate and reduces the computational time because of the
decreased number of pixels in the template.

Considering an application operating in a real environ-
ment, the front of the target face is not always clearly
shown. A head in a 3D space may have an arbitrary pose,
which has a significant adverse effect on a face recog-
nition system. Several studies have thus addressed the
treatment of 3D face models. Mpiperis et al. [91] proposed
a 3D facial expression recognition approach that classi-
fies expressions based on the rule discovered by the PSO
or the Ant-Miner (a variant of ACO) framework. ACO
explores a graph whose nodes represent the attributes,
whereas PSO controls those particles having two param-
eters (the lower and upper bound per attribute). The dif-
ference between the two swarm intelligence approaches is
the representation of the attributes. PSO can apply contin-
uous attributes, whereas ACO requires a discretization of
the attributes for an assignment of each node. A facial sur-
face is represented as a deformation of a generic 3D mesh,
and its facial expression is classified based on a certain
rule. Chandar and Savithri [92] introduced an algorithm
for estimating a 3D face model from a face with a non-
frontal view. This algorithm regards an estimation as an
optimization problem when searching for the pose param-
eters for a face a non-frontal view consisting of angles
around the x-, y-, and z-axes, and for depth values of the
facial feature points of a frontal-view 3D face model. They
used a two-step DE optimization, abbreviated as DE2. In
the first step, the pose parameters are optimized, and in
the second step, the results of the first step are applied
to update the depth values. The two-step optimization
enhances the accuracy of the estimated depth values of the
facial feature points.

In addition, considering the real-time processing, the
application suffers from a constraint in terms of the com-
putational cost. As one solution to this issue, several stud-
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ies have used 2D approximate multiview face models. Sato
and Akashi [93] introduced a high-speed multiview face
localization and tracking method using template match-
ing and the GA. This method approximates a human head
using a cylinder, which allows a multiview face to be rep-
resented through the development of the lateral surface of
a cylinder. Although this approximation avoids the com-
putational cost from using a 3D head model, an increase
in the parameters of the template matching is induced to
create the template from the cylinder head model. The GA
provides a significant contribution to the matching (i.e.,
optimization) with a feasible speed from this extended
search space. You and Akashi [94] put forward a mul-
tiview face detection algorithm using an existing frontal
face detector that requires a training process for frontal
faces only. The main idea with this algorithm is a flipping
scheme that utilizes a mirror reversal. A proper horizon-
tal reversal for the candidate regions makes it possible
to generate frontal faces from multiview faces. The GA
is applied to search for the candidate region parameters,
which consist of a center point, and scale factors for x- and
y-axes and angles. Because speeded-up robust features
(SURF) cascade is adopted for the frontal face detection,
the fitness function for the GA comprises the number of
stages passed and the probability output at the exit stage.
When this algorithm is applied to video frames, it can fur-
ther use the evolutionary video processing proposed by
[89]. The two multiview face detection methods described
above are designed to operate in real-time. The GA pro-
vides a sufficient quality solution with high-speed, thereby
contributing to the real-time processing.

In summary, Table 13 provides a brief overview of the
studies discussed in this section.

10 Human action recognition

Vision-based human action recognition is an essential
part of the development of human-computer interaction
technologies. To accurately analyze a complex human
body structure, many studies use 3D data with depth
information as input. In particular, Kinect has made
it possible to easily handle RGB-D information. EAs
and SAs are effective for processing 3D images involv-
ing a high computational cost. Moreover, the affinity
for parallel processing is often useful for implementa-
tions with practical processing times. We categorize the
parts of interest, and provide discussions of each, as fol-
lows: body (Section 10.1), hands (Section 10.2), and head
(Section 10.3).

10.1 Human body

A human body posture estimation generally aims to
fit a human body model, e.g., a skeleton as shown in
Fig. 11, to the observed data. This is important for many
computer vision applications and is also an input for

(2020) 12:3 Page 25 of 34

Table 13 Brief information on the literature referenced in
Section 9

Algorithm Author Section
GA Liu and Wechsler [78] Section 9.1
Zheng et al. [79] Section 9.1
Vignolo et al. [80] Section 9.1
Bhatt et al. [84] Section 9.1
Bebis et al. [85] Section 9.2
Desa and Hati [86] Section 9.2
Hermosilla et al. [87] Section 9.2
Wong et al. [88] Section 9.3
Akashi et al. [89] Section 9.3
Sato and Akashi [93] Section 9.3
You and Akashi [94] Section 9.3
DE Chandar and Savithri [92] Section 9.3
PSO Ramadan and Abdel-Kader [82] Section 9.1
Senaratne et al. [83] Section 9.1
Perez et al. [90] Section 9.3
Mpiperis et al. [91] Section 9.3
ACO Kanan et al. [81] Section 9.1
Mpiperis et al. [91] Section 9.3

action recognition, which is described in the second half
of this subsection. Because human models usually have
numerous DoFs, the fitting problem constructs a high-
dimensional and nonlinear solution space. Many of the
existing methods employ Bayesian approaches, such as
Kalman filtering and particle filtering, but have difficul-
ties in terms of incorporating anatomical constraints and
devising realistic body movement models [95].

EAs and SAs can be effective at overcoming the above
weaknesses without prior knowledge. Robertson and
Trucco [95] proposed an upper-body posture estimation
system from multi-view markerless point cloud sequences
scanned using a laser scanner. The posture estimation
is accomplished by fitting a 24-DoF skeleton model to
the given point cloud. The system exploits PSO by com-
paring the input point cloud with the positions of pairs
describing each limb of the skeleton with the abso-
lute distances. They also applied a hierarchical fitting to
PSO, which predicts some simply predictable parts on
the human body. Furthermore, they proposed a paral-
lel version of PSO across multiple CPUs to increase the
efficiency. Their method is highly accurate and can be
applied in real-time. Zhang et al. [96] presented a search
strategy for 3D human body tracking using an annealed
PSO based particle filter (APSOPF). Compared to nor-
mal PSO, they applied the annealing strategy into the
velocity updating equation of the PSO, which includes a
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Fig. 11 lllustration of fitting a upper-body skeleton model to the
observation data. The fitting procedure is achieved by the adjustment
of joint positions indicated by the red circles

sampling covariance and annealing factors. The annealing
strategy gradually confines the search area. Experimental
results show that this strategy can alleviate the inconsis-
tencies between the observation model and ground truth
caused by a self-occlusion. The tracking results are rep-
resented as a 3D 31-DoF kinematic tree. Panteleris and
Argyros [97] proposed a moving object tracking system
with a RGB-D camera in a static environment through
simultaneous localization and mapping. The RGB-D cam-
era can provide a dense point cloud of the environment
and is registered to another 3D point cloud representing
a frame (the cloud contains the object). The registration
according to the structure and color information is con-
sidered as an optimization, which is optimized using the
PSO. The system achieves a real-time capability owing
to the efficiency of the PSO. Their tracking results are
not accompanied with a human model and are used for
a cognitive navigation prosthesis, i.e., a safe navigation of
cognitively impaired people in public spaces.

An action recognition is a fundamental technology for
applications such as sports analysis and video surveil-
lance. In many cases, the classification of the input data
is achieved using machine learning algorithms. EAs and
SAs are engaged in supporting such algorithms, and their
domains can be categorized into training data [98, 99] and
parameter tuning [100, 101]. Although machine learning
can solve the problem of vision-based human body action
recognition, Chaaraoui and Flérez-Revuelta [98] believe
that the learning is insufficient until the training data are
complete. Thus, based on the GA, the authors proposed
an evolving bag of key poses. When a new pose is input,
it can be added to the training dataset for learning. When
the new pose belongs to a present pose class, the new pose
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is operated by a crossover and can go through a muta-
tion under a certain probability. The results of an evolving
bag of key poses with both RGB-D and RGB images reveal
the availability of incremental learning. Chaaraoui et al.
[99] utilized an evolutionary algorithm to determine the
optimal subset of human joints in a bag of key poses
based on human action recognition with RGB-D cameras.
The proposed evolutionary algorithm is comparable to,
and based on, the GA but different in terms of crossover.
Because a human pose can be regarded as a tree topol-
ogy, their crossover is aware of such a topology. Their
method achieves better results and higher efficiency than
other competitive methods at the same time. Ijjina and
Chalavadi [100] combined the GA with a CNN to deal
with human action recognition. They trained the initial
weights of the CNN using global and local optimiza-
tion by applying the GA and gradient descent algorithm,
respectively. During the fitness evaluation step, the CNN
classifier is trained using the decoded weights and the gra-
dient descent algorithm, and its classification accuracy is
regarded as the fitness value. That is, the GA identifies
several local basins, and the gradient descent algorithm
quickly finds the optimum within a basin. The human
action recognition framework introduced by Nunes et al.
[101] involves the DE algorithm. Their framework con-
sists of a feature extraction from the input skeleton data
and classification using random forest (RF). The DE algo-
rithm is employed to find the splitting node with the best
condition in each decision tree. RF using the DE algorithm
has no thresholds to tune, and the DE has certain parame-
ters that are extremely well adjusted based on past studies
(i.e., they are controllable, independent of other param-
eters, and input and output data.) For these studies for
action recognition, the performance on different datasets
is listed in Table 14.

10.2 Human hands

Similar to the body models, hand models also have the
problem of a complex configuration owing to the exis-
tence of numerous DoFs. In addition, the presence of

Table 14 The performance of the action recognition approaches
on different datasets

Dataset Approach Evaluation index Performance

MSR-Action3D dataset Chaaraoui and
Florez-Revuelta

Recognition rate 93.10

[98]
Chaaraoui et al. 93.23
[99]
UCF50 dataset ljjina and Recognition rate 99.98
Chalavadi [100]
CAD-60 Nunes etal. [101] Precision 81.83
Recall 80.02
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similar parts and severe self-occlusions make the hand
model more difficult to handle. Ye et al. [102] put for-
ward a hand pose estimation method for depth images
by incorporating a CNN with PSO in each layer. The
results predicted by a CNN can often incur a kinematic
error, which is solved by the PSO in their research. Each
hierarchy of a hand structure is predicted by a refined
CNN, in which the refinement is achieved using PSO. The
refinement is treated as another optimization problem
that takes kinematic constraints into account. Because
the next layer is based on the current layer, refining
each layer increases the accuracy, but decreases the effi-
ciency. Panteleris and Argyros [103] introduced stereo
RGB images (using two monocular cameras) into a hand
tracking method. Unlike a naive method that tracks after
recovering the depth information and achieves a low accu-
racy, they transform the hand tracking to maximize the
color consistency between the stereo RGB images through
the PSO. Particles take the parameters of the observed
or tracked hands and are initialized around the center
upon the first iteration. Although their method must pro-
cess multiple images, the method still achieves a real-time
implementation.

As a more challenging situation, studies have attempted
to track both hands at the same time. More severe occlu-
sions from complex hand interactions have shown that
simple extensions of single-hand tracking are insufficient
to ensuring the accuracy [104]. Oikonomidis et al. [104]
proposed a two-hand tracking method using PSO and
RGB-D data. PSO searches in a 54-dimensional solution
space to construct an articulation hypothesis. The penalty
function is regarded as an objective function consisting
of two terms: a prior term that penalizes an invalid artic-
ulation hypothesis and a data term that quantifies the
incompatibility of the observation with an articulation
hypothesis. The proposed method achieves a frame rate
of 4 Hz through a parallel implementation using a GPU.
Since then, Oikonomidis et al. [105] proposed a novel evo-
lutionary quasi-random search method to achieve a faster
processing. The key to this method is the use of a Sobel
sequence [132], which allows for a more uniform coverage
of the sample space. The method defines a center posi-
tion at each step of the iteration and generates candidates
around it based on the Sobel sequence. All candidates are
recorded, and a new center position is determined accord-
ing to the best candidates and their fitness. This method
applies eight parameters, which are tuned using PSO. For
two hand tracking, the new method achieves a speedup of
8-times that of the existing method while maintaining the
level of accuracy.

10.3 Human head
Head pose estimation is a partial problem of human pos-
ture recognition. Padeleris et al. [106] formulated a head
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pose estimation for depth images as an optimization prob-
lem, which is solved using PSO in their research. As the
targets of the search, six pose parameters that represent
a particular view are applied. The surface model obtained
from the depth camera is rendered from the candidate
views, and its similarity to the reference range image (the
frontal face range image obtained at initialization) is mea-
sured. By combining the parallel structure of the PSO with
the GPU, the method achieves a frame rate of 10 fps.

Table 15 displays a brief overview of the studies analyzed
in this section.

11 Others
This section introduces some studies that are outside the
above categories.

Rodehorst and Hellwich [107] proposed GASAC, which
is a robust parameter estimation approach using the GA.
The task of GASAC is to estimate correct projective
transformation parameters by avoiding outliers, which are
undesirable correspondences. A chromosome is a tuple
of a homologous point index, the length of which is
defined as the minimum number of points required to
construct the transformation model. Genetic operations
are considered to avoid a duplication of the index on the
chromosome. The parallel evaluation using the GA makes
it possible to improve the estimation accuracy. Moreover,
the non-linear optimization method can provides more
desirable results because small measurement errors are
eliminated. However, the computational cost will increase.

Ghosh et al. [108] introduced a moving object detec-
tion method that solves a task by integrating spatial and
temporal segmentation. With spatial segmentation, a seg-
mentation is regarded as a pixel labeling problem, which
is solved by the maximum a posteriori (MAP) estimation

Table 15 Brief information on the literature referenced in
Section 10

Algorithm Author Section

GA Chaaraoui and Flérez-Revuelta [98] Section 10.1
Chaaraoui et al. [99] Section 10.1
ljjina and Chalavadi [100] Section 10.1
Oikonomidis et al. [105] 10.2

DE Nunes et al. [101] Section 10.1

PSO Robertson and Trucco [95] Section 10.1
Zhang et al. [96] Section 10.1
Panteleris and Argyros [97] Section 10.1
Ye etal. [102] Section 10.2
Panteleris and Argyros [103] Section 10.2
Oikonomidis et al. [104] Section 10.2
Padeleris et al. [106] Section 10.3
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of a multi-layer compound MRF. The authors proposed
a distributed DE (DDE) algorithm for a MAP estimation.
A parameter vector in the DDE algorithm corresponds to
each pixel in the targeted video frame and consists of a
segmented output for each RGB channel. Therefore, the
size of a population is equal to the number of pixels in
the video frame, and the result of the evolution is output
as the complete population. To increase the convergence
speed, the authors adopted a neighborhood-based muta-
tion. They defined a neighborhood using a small window
centered at the target vector to maintain the spatial regu-
larity. A donor vector is generated by three parameter vec-
tors chosen in the window. Moreover, they use a randomly
chosen index in a crossover operation, which ensures that
a trial vector including at least one parameter forms a
donor vector. The segmented frames are used by the tem-
poral segmentation, which classifies whether the region
has changed (i.e., is a moving object).

Kumar et al. [109] derived the DE for image enhance-
ment (DE-IE) algorithm. They first design a 2D histogram,
which reveals the existence of homogeneous regions
based on diagonal values. Because larger diagonal values
require a higher intensity enhancement, a color enhance-
ment is achieved by smoothing the 2D histogram. The
authors consider a probability distribution, in which each
probability density is the pixel length of the gray-level
image, as the population for the DE algorithm. The DE
algorithm minimizes the difference between the proba-
bility distribution of the input image and a satisfactory
output image. They endow the mutant factor F a differ-
ent role than a conventional DE algorithm; the F value
changes based on the difference in the probability distri-
bution between the input image and the output image.
An adaptive scheme can be adopted during a mutation
operation.

Table 16 provides a brief overview of the studies sum-
marized in this section.

12 Conclusion

This literature survey extensively summarized various
computer vision applications employing EAs and SAs
developed since 2000. First, we briefly introduced EAs and
SAs, focusing particularly on their characteristics and dif-
ferences. Next, we analyzed and discussed studies apply-
ing EAs and SAs to solve computer vision tasks. Different

Table 16 Brief information on the literature referenced in

Section 11

Algorithm Author Section

GA Rodehorst and Hellwich [107] Section 11

DE Ghosh et al. [108] Section 11
Kumar et al. [109] Section 11
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computer vision tasks are described in Section 4 through
Section 11, and each general task was classified into sub-
sections according to the problem setting and types of
solutions. The vast number of references considered in
this paper demonstrate that EAs and SAs are powerful
tools for computer vision applications.

Among the four algorithms focused in this paper, the
GA and PSO are more popular optimization tools in
computer vision applications. Because the GA and PSO
are the most representative algorithms of EAs and SAs,
respectively. Many characteristics and related researches
of GA and PSO have been well verified and studied, such
as parameter tuning, improvement of the efficiency, and
applications to practical applications. Such accumulated
experience in the community make the adoption of GA
and PSO to computer vision applications easier. Since the
DE is a relatively new algorithm, the application of the
DE is not as active as the GA. However, the powerful
optimization capability of the DE algorithm may have the
potential to attract more researchers in the future. ACO is
employed in limited (especially graph-based) topics, such
as Sections 5 and 6.

Based on the taxonomy applied in this paper, it can be
seen that the solution to whether EAs and SAs should be
directly or indirectly adopted varies based on the tasks.
For instance, because the tasks described in Sections 7
and 8 are essentially similarity maximization problems
between images or models, EAs and SAs play a role
as fundamental tools in this process. As described in
Section 5 and Section 6, EAs and SAs have frequently
been directly applied. However, for recognition problems,
such as those described in Sections 9 and 10, classification
using machine learning methods is the basis of process-
ing, and EAs and SAs are mainly engaged in boosting the
performance. In particular, it can be seen from Table 4
that the development of NAS methods using EAs and SAs
described in Section 4 has been an extremely attractive
field in recent years.

There exist many foreseeable challenges when apply-
ing EAs and SAs to computer vision tasks. First, due
to the variety of algorithms, the optimal choice of algo-
rithm for a particular problem remains an open question.
Also, the tuning of hyperparameters and the combina-
tion of appropriate operators require human experience
[30, 60, 87, 114]. Second, many methods include time-
consuming processes especially with expensive fitness
function, which makes real-time applications difficult to
implement [32, 51, 57, 106]. Finally, but not limited to,
many real-world problems embed multi-objective opti-
mization, which requires the EAs and SAs to find solu-
tions on the Pareto front [80, 98, 133, 134]. Such chal-
lenges need to be faced in order to achieve a break-
through in applying EAs and SAs to computer vision
tasks. Moreover, since DNNs have drawn much attention
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in computer vision in recent years, the combination of
EAs/SAs and DNNs, such as NAS described in Section 4,
is one of the promising research directions in this field.
Our study can provide a comprehensive reference to the
use of EAs and SAs in helping solve various computer
vision problems. In addition, we expect that this paper will
help broaden the perspective and motivate new insight
and research in the relevant fields in the future.

Appendix A: Pseudo-codes

In this section, the pseudo-codes of GA, DE, PSO, and
ACO for solving a minimization problem are introduced.
Before we get into the description of each algorithm, the
notation of the common variables are defined. A popu-
lation or swarm, i.e., a pool of NP candidate solutions is
denoted by X = {x1,..,a4np} where x; is the ith candi-
date solution called individual, particle, ant, etc. in each
algorithm. Each candidate solution also consists of D ele-
ments, denoted as x; = {x;1,..,%;p} where x;; is the jth
element of ith candidate solution. The domain of elements
depends on each algorithm. The evaluation value (fitness)
of x; obtained by the fitness function is denoted as f(«;),
and the function evaluate() calculates the fitness of all
input candidate solutions. In addition, considering that
these algorithms require iteration processes, the current
number of iterations is denoted as ¢ and given as super-
script (i.e., tth X is X?). In the following subsections, the
pools of intermediate solution candidates generated dur-
ing iteration processes use the same notation rule for X.
Also, the alphabets assigned to the variables are only valid
within each subsection. Note that the following pseudo-
codes are traditional processes, and there are various
improved versions.

GA

The pseudo-code of GA is described in Algorithm 1. Each
individual x; has a chromosome encoded by a binary
string, i.e., x;; € {0, 1}. O represents the pool of offspring.

e selectParents() (Algorithm 1, line 6)

Two individuals as parents are selected from the input
population according to their fitness. For instance, the
roulette wheel selection defines the probability of each
individual being selected:

S (=)
oS ()

where p; is the probability that ith individual is selected.

P =

1)

e crossover() (Algorithm 1, line 7)

The elements (i.e., genes) of the two input parents x,; and
xp2 are probabilistically exchanged. The two individuals
after the operation become part of O as offspring. This
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Algorithm 1: GA
input :t=0,X' =9
output: Estimated global optimum x*

// initialization
1 NP individuals in X* are randomly initialized;
2 evaluate(X?);

3 while termination criterion is not satisfied do
4 0 =0

5 while O do not get NP individuals do

// parents selection

6 Xp1, Xp2 = selectParents(X");
// crossover

7 O = O U crossover(xp1,%xp2);

8 end

9 fori=1,..,NPdo
// mutation

10 0; = mutate(0;);

// fitness evaluation
11 evaluate(o0;);

// survivors selection
12 xf“ =o0;;
13 end
14 t=t+1;
15 end

16 return x* = min, y:f(x);

operation is performed according to the constant proba-
bility called crossover rate p., and the parents are directly
regarded as offspring if crossover is not performed.

e mutate() (Algorithm 1, line 10)

A bit swapping is executed for each gene in each individual
with the constant probability called mutation rate p,,,. The
Pm is generally set to a small value to prevent the infor-
mation inherited from the parent from being destroyed
excessively.

DE

The pseudo-code of DE is described in Algorithm 2. DE
generally assumes a continuous optimization problem,
ie, x; € RP. During the iteration, the corresponding
donor vector v; and trial vector u; are generated for each
parent (target vector) ;.

o mutate() (Algorithm 2, line 5)

The ith donor vector is created using three randomly cho-
sen individuals x,1, #,2, and &,3 from the input population
as follows:

2)

Vi = %1 + F(xp — %r3),
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Algorithm 2: DE

Algorithm 3: PSO

input :t=0,X' =9

output: Estimated global optimum x*

// initialization
1 NP individuals in X* are randomly initialized;
2 evaluate(X?);

3 while termination criterion is not satisfied do

4 fori=1,..,NPdo
// mutation
5 v; = mutate(X");
// crossover
6 u; = crossover(v;, x.);
// fitness evaluation
7 evaluate(u;);
// survivors selection
8 if f(u;) < f(x!) then
9 REARE
10 else
11 ‘ At =l
12 end
13 end
14 t=t+1;
15 end

16 return x* = min,y:f(x);

where F is a scaling factor. The indices 7,71, 72, and r3 are
non-duplicated integers in the range [ 1, NP].

e crossover() (Algorithm 2, line 6)

Similar to the crossover of GA, the input target vector and
donor vector probabilistically exchange their own com-
ponents. Only one trial vector is generated, which is a
competitor to the corresponding target vector.

PSO

The pseudo-code of PSO is described in Algorithm 3. PSO
also assumes a continuous optimization problem similarly
to DE. A candidate solution x; represents the position in
a solution space of the corresponding particle, which is
modified by velocity v; of the particle. The pbest x, and
gbest x4 are the best positions so far for personal particles
and the swarm, respectively.

® adjustVelocity() (Algorithm 3, line 8)

Velocity is updated using pbest and gbest as follow:

fo = a)vf + c1r1 (Kpi — xf) + cara(xg — xf), (3)
where w is the inertia weight, ¢; and ¢, are the acceleration
coefficients, and r; and r; are uniformly random values in
the range [ 0.0, 1.0].

input :t=0,X' =0, Vi=02
output: Estimated global optimum x*
// initialization
1 NP positions in X* are randomly initialized;
2 NP velocity in V* are randomly initialized;
3 evaluate(X?);
4 Each x; is initialized by the corresponding initial
position;
5 Xy is initialized by the best position in the swarm;

6 while termination criterion is not satisfied do
7 fori=1,..,NPdo
// velocity adjustment
8 Vit = adjustVelocity(v, &%, %1, %,);
// position adjustment
9 «*1 = adjustPosition(vit1, xt);
// fitness evaluation
10 evaluate(xf“);
// pbest update
11 iff(xf“) < f(#xp;) then
12 Xpi = xf“;
13 end
// gbest update
14 iff(xf“) < f(x,) then
15 | g =t
16 end
17 end
18 t=t+1;
19 end

20 return x* = xg;

o adjustPosition() (Algorithm 3, line 9)

Based on updated velocity, a position update (in other
words, generation of the new candidate solution) is exe-
cuted as follow:

t+1 _ ot t+1
X=X + v . (4)

ACO

The pseudo-code of ACO is described in Algorithm 4.
ACO assumes a combinatorial optimization problem,
which is achieved by a feasible walk on a graph whose
nodes are solution components (denotes a solution com-
ponent as c¢x) and edges are connections between com-
ponents. For instance, if the ith ant is on the ¢; as initial
position and moves to ¢; (denotes this movement as c]i),
elements of the corresponding candidate solution are con-
structed as x;0 = ¢x and x;; = ¢;. Every edge is assigned a
pheromone (denotes the pheromone on the edge between
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Algorithm 4: ACO
input :t=0,X'=0,T' =0
output: Estimated global optimum x*

// initialization
1 Every pheromone in T is initialized to a value 7o;

[

while termination criterion is not satisfied do
fori=1,.,NPdo
// solution construction

4 &l = constructSolution(T");

end

// local search (optional)
6 daemonActions(X?);

// fitness evaluation
7 evaluate(X");

// pheromone update

8 T = updatePheromones(T*, X");
9 t=t+1;

10 end

11 return x* = min,y:f (x);

¢ and ¢; as 1y and set of all pheromone as 7)) that
indicates the validity of selecting the corresponding com-
ponent.

e constructSolution() (Algorithm 4, line 4)

A feasible solution is constructed by a probabilistically
walk of the ant on the graph. Let the current partial
solution of x; be s, and the set of solution components
with feasibility be N (s,), then a probability of a solution
components is chosen is defined as follow:

o B
Tkt

Ve € N(sp),  (5)

!
plcg | sp) = w
"N (sp) Tk Tkm

where 7 is heuristic information, and « and 8 are parame-
ters that adjust the influences of pheromone and heuristic
information, respectively. The choice according to Eq. (5)
is repeated until the construction of ; is complete.

e daemonActions() (Algorithm 4, line 6)

Optional local search operations, called daemon actions,
can be applied to constructed solutions. These operations
are generally centralized actions that cannot be performed
by individual ants.

® updatePheromones() (Algorithm 4, line 8)

The pheromone update is performed by two mechanisms:
evaporation and deposit. While the former gives an equal
change to all pheromones, the latter gives a change which
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depends on the fitness of the ants including the corre-
sponding path. The implementation of these mechanisms
is achieved as follows:

1
it =0-prh+ Y. 7o (6)

xethciex

where p is a parameter in the range (0.0, 1.0] called evap-
oration rate.
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