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Abstract: Efficient big data analysis is critical to support applications or services in Internet of Things
(IoT) system, especially for the time-intensive services. Hence, the data center may host heterogeneous
big data analysis tasks for multiple IoT systems. It is a challenging problem since the data centers
usually need to schedule a large number of periodic or online tasks in a short time. In this paper,
we investigate the heterogeneous task scheduling problem to reduce the global task execution time,
which is also an efficient method to reduce energy consumption for data centers. We establish the
task execution for heterogeneous tasks respectively based on the data locality feature, which also
indicate the relationship among the tasks, data blocks and servers. We propose a heterogeneous
task scheduling algorithm with data migration. The core idea of the algorithm is to maximize the
efficiency by comparing the cost between remote task execution and data migration, which could
improve the data locality and reduce task execution time. We conduct extensive simulations and the
experimental results show that our algorithm has better performance than the traditional methods,
and data migration actually works to reduce th overall task execution time. The algorithm also shows
acceptable fairness for the heterogeneous tasks.

Keywords: big data analysis; heterogeneous data-intensive task; IoT system; service response delay;
task scheduling

1. Introduction

Big data analysis plays an important role in many IoT application scenarios, it supports various
services for users. The cloud data center is the promising way to deal with the big data analysis tasks
and support data-intensive [1] services. However, it is becoming hard due to the big data analysis tasks
are becoming heterogeneous, it may be periodic data analysis tasks for enterprises to analyze user
behaviors, or online tasks from edge environment [2] to support various services [3]. For these tasks,
it has different expectation on task execution time. While scheduling heterogeneous tasks, the system
not only needs to reduce the execution time for periodic tasks, but also response online tasks as quickly
as possible, usually within a few minutes, even a few seconds [4]. Hence, it is an important issue to
schedule the heterogeneous tasks in data center to support various services, which is also important
for energy reduction since longer task execution also consumes more energy.

Researchers have proposed many approaches to meet the demand for periodic tasks or online
tasks [5]. Since the scenarios of applying big data are getting more and more complicated, only scheduling
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periodic tasks or online tasks cannot satisfy the needs of users. However, the computing resources in data
centers are not unlimited, periodic tasks and online tasks have to compete for resources. While scheduling
the heterogeneous tasks consist of periodic tasks and online tasks simultaneously, it is difficult to reduce
the execution time of periodic tasks and respond online tasks timely. In this paper, we propose an
algorithm to solve this problem of scheduling heterogeneous tasks and compare it with some classical
task scheduling methods. To reduce the task execution time, we prefer the task is executed in locality
mode, which means the task can access the required data from the server which hosts the task. It is
easy-understanding that remote data access is time consuming for network delay. Otherwise, the task
will be executed in remote mode, which indicates the task will access the data remotely. To reduce
task execution time, it is preferred to schedule a task from the queue to occupy the idle resource with
locality mode. However, it is impossible to achieve locality mode for all tasks due to the limited resource.
The delay scheduling [6] is proposed to achieve more data locality by delaying the task execution until
the desired server has idle resource. It is an efficient method to improve the data locality, and this also
motivate us move the data from one server to another actively, but not passively like the delay scheduling.

In this paper, we investigate the task scheduling problem, and propose the task scheduling
algorithm for heterogeneous tasks with data migration. We take the data block as an important part
since it affects the data locality directly. It is acceptable that we cannot schedule all tasks to be executed
in locality mode since the storage space is limited in data centers. The competition for computing
resources between periodic tasks and online tasks is also a problem. However, some traditional task
scheduling methods are no longer applicable to heterogeneous tasks like FIFO. To satisfy the demands
of time reduction, in our algorithm, we first established a time model for time calculation of tasks
executed in different modes based on some of our previous work [7]. In order to execute tasks in
locality mode as much as possible, we migrate the required data block to the server when scheduling
a task. We also compare the heterogeneous task scheduling algorithm with other classical algorithms
and conduct some simulation experiments. The results show that our algorithm can guarantee better
data locality and acceptable fairness for tasks so that improve the efficiency of whole system.

In summary, we make the following contributions in this paper.

• We formulate the scheduling problem for heterogeneous tasks in data centers, and propose
a data-migration based algorithm to achieve better data locality for task scheduling. To the best of
our knowledge, this is the first attempt to introduce the active manner to schedule both periodic
tasks and online tasks simultaneously.

• The proposed algorithm take both delay scheduling and data migration into account to improve
the data locality. We establish the task execution model to predict the task execution time,
and make measurable comparison for various execution cost to achieve better decision.

• We conduct extensive simulation experiments to evaluate the efficiency of the algorithm.
The results show that the algorithm has better performance on task execution time reduction.
In addition, the fairness of the tasks is also acceptable.

The rest of this paper is organized as follows. Section 2 describes the related work on task
scheduling and data deployment. Section 3 introduces how to establish the model of server selection
and how to calculate different time consumptions. Then, we introduce the heterogeneous task
scheduling strategy in Section 4. In Section 5, we conduct some experiments and evaluate the efficiency
of the algorithm. Finally, we conclude this paper in Section 6.

2. Related Work

The research community have conducted the task scheduling from various aspects, like makespan
reduction, resource sharing, energy saving, fault tolerance and so on. In addition to the scheduling
in cloud data centers, it is also a hot topic in Internet of Things (IoT) system [8–10], and Mobile Edge
Computing (MEC) [11,12]. In this paper, we focus on the big data analysis task scheduling issue in
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cloud data centers. For the data-intensive tasks, except the resources, data locality is the core issue to
improve the task scheduling efficiency, it greatly affects the execution time of tasks [13].

MapReduce [14] is the typical data processing paradigm for big data analysis. For the Hadoop [15],
the opensource implementation for MapReduce, the default task scheduling strategy is First In First
Out (FIFO), which is simple and has low overhead. However, it is unacceptable for the heterogeneous
tasks with different Quality of Service (QoS) requirements, and the performance cannot be guaranteed
since the data distribution could be not suitable for task execution due to frequent data transmission.
Hence, Fair Scheduler is proposed based on multi-user environment [16]. This scheduling method sets
a pool of resources for each user in cluster which can ensure that the users can occupy the same amount
of resource with high probability. The Fair Scheduler support some kind fairness among different
tasks, and also brings resource waste or resource shortage since the tasks have heterogeneous resource
requirements, which limits the performance improvement for Fair Scheduler. To improve the resource
utilization, Capacity Scheduler [16] is proposed by providing resource-aware task scheduling. The core
idea is to adjust the tasks in the queue by sensing the resource usage case.

Most of the former task scheduler, like ShuffleWatcher [17], BAR [18], LATE [19], and SAMR [20],
mainly focus on the resources, especially for the computing resources, since the computation with
CPU is the main work for the task. However, there will be frequent I/O operation for the big data
analysis tasks, which make the data locality more important since the local data I/O could reduce
the task execution time efficiently than remote data access. Delay scheduling [6] is the representative
scheduler to schedule the online tasks dynamically by achieving better data locality. The core idea is to
let the task waits for a few moment if the server with the desired data has no sufficient computing
resource until some task release resources or reach the threshold time. The method works since it
can achieve data locality with more opportunities. We can also regard it makes a tradeoff between
the waiting time and the data transmission time.

The delay scheduling could be a passive method to achieve data locality for online task
scheduling. Since the data placement is important for data locality, there are also some work focus
on the data placement issue to provide more data locality opportunity. CoHadoop [21], Scarlett [22],
and PACMan [23] are presented to place the data reasonably for achieving better data locality.
The joint task and data placement is another approach to achieve data locality for offline tasks [24],
which analyzes the relevancy between task and data to decide how to arrange the data placement
and task assignment comprehensively. In addition, with the different idea, the migration approach [7]
is proposed to achieve data locality actively. The main idea is to compare the cost between waiting
cost and migration cost. The data will be moved from some server to the desired server if the data
migration can achieve data locality and with less cost.

As more and more date is generated in the mobile edge devices, the task scheduling issue will
be discussed in edge computing environment. The cache-aware task scheduling method in edge
computing is proposed to achieve better data locality [25], which obeys the similar idea is this paper.
This trend also prompt the task scheduling issue in System on a Chip (SoC), an energy-aware task
scheduling is proposed for heterogeneous real-time MPSoCs in IoT [26].

For the most of the approaches discussed above, they work for scheduling only periodic tasks
or only online tasks, and work in passive manner. In this paper, we propose the scheduling strategy to
schedule heterogeneous tasks consist of periodic and online tasks with active manner, which is a new
attempt for task scheduling. The comparison of the features is shown in Table 1.

For the most scheduling strategies discussed above are applied to schedule only periodic tasks
or only online tasks. They cannot satisfy the demand for scheduling both two kinds of tasks
simultaneously. Hence, we propose our scheduling strategy to schedule heterogeneous tasks consist of
periodic and online tasks and take the input data into consideration.
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Table 1. The feature comparison for representative approaches.

Approach Periodic Task Online Task Passive Manner Active Manner

FIFO
√ √ √

ShuffleWatcher
√ √

DealyScheduling
√ √

CoHadoop
√ √

Scarlett
√ √

This Paper
√ √ √

3. Problem of Server Selection

3.1. Task Execution with Data Migration

For the data center with homogeneous servers, all the periodic tasks and online tasks share
the resources and data and resources in the cloud data center. Because the tasks we discussed are
data-intensive, for each of them, the execution is associated with two important factors: resources
and input data. For each server in the cluster, it will be split into uniform resource units like Containers
or Virtual Machines (VMs). Therefore, an idle server can allow several tasks to be executed on it
at the same time. However, in this paper, to simplify the problem, it is acceptable that we assume
each server as one resource slot and each time it could only execute one task. It is easy to expand one
server with one resource slot to one server with many resource slots. In addition, the input data is
also necessary. The location of data blocks affects the execution of tasks. For each task, there could be
two execution modes: locality mode or remote mode. The locality mode indicates the task is executed
on the server who hosts the input data for the task. Otherwise, the task executes in remote mode by
accessing the input data from another server. It is easy to understand that we always want tasks to be
executed in locality mode as much as possible since better data locality means less task execution time.
However, the resources is limited and it is impossible to execute all tasks in locality mode.

To evaluate the efficiency of our algorithm, we need to calculate the execution time of all tasks in
system. In this paper, the heterogeneous tasks consist of periodic tasks and online tasks. We use Pi
to indicate the ith periodic task in the task queue, and Oi represents the ith online task. For the task
execution time, we use Tr as the task execution time indicator in remote mode while Tl as the indicator
in locality mode.

For the data center, it contains N servers and K different data blocks for task execution. For each
data block Di, it has 3 data replicas deployed on different servers. We use fi to indicate the required
input data of task Pi or Oi. According to the location of fi when scheduling tasks, we will use
the following indicators to classify the task execution mode.

φ(Pi, fi) =

{
0, locality mode;

1, remote mode.
(1)

where locality mode means the periodic task Pi is executed locally.

φ(Oi, fi) =

{
0, locality mode;

1, remote mode.
(2)

where locality mode means the online task Oi is executed locally.
In our algorithm, we combine delay scheduling with data migration to improve data locality.

For the task scheduling decision when some idle resource is available, we need to make a decision by
a comparison between the costs of delay scheduling and data migration. With the delay scheduling
manner, the selected task will wait until the desired server has idle resource to achieve data locality.
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Another method to achieve data locality is to migration the input data from some server to the server
with idle resource which will host the selected task. This method is known as data migration in this
paper. However, the data migration also bring cost by data transmission. Hence, it is necessary to
make a comparison between data migration and delay scheduling. We use Tm to indicate the data
migration time. It means the time of transferring a data block from a server to another server is Tm.

3.2. Server Selection

In this paper, we have assumed that each server has one resource slot and can execute one task
at each time. Hence, the task scheduling problem can be treated as assign the task to some server
or select some server to host the task. Therefore, we can transfer the problem to select a proper
server for each task. In a data center, the heterogeneous tasks consist of periodic tasks and online
tasks. Periodic tasks are in a queue and wait for scheduling while online tasks arrive in another
queue randomly. For a periodic task, it has much longer response time than online task. The goal
of scheduling periodic tasks is to shorten the execution time so that improve the efficiency of whole
system. While for online tasks, the response time is short. An online task cannot wait for a long time
because the users need the system to respond as quickly as possible. To meet this demand, the goal of
scheduling online tasks is to scheduling them before the deadline of response. This is more urgent
than time reduction. A heterogeneous task scheduling strategy which can satisfy the requirements of
periodic tasks and online tasks is necessary.

We use Sj to represent the idle server in data center. As mentioned above, Di indicates the ith
data block, and fi means the replica of Di. Therefore, we can define the indicators to represent the
assignment decisions on idle server Sj as follows.

π(Di, Sj) =

{
0, there is no replica of Di on Sj;

1, otherwise.
(3)

π(Pi, Sj) =

{
1, Periodic task Pi is assigned to server Sj;

0, otherwise.
(4)

π(Oi, Sj) =

{
1, Online task Oi is assigned to server Sj;

0, otherwise.
(5)

We want to reduce the task execution time to improve the efficiency in cluster. The running time
of whole system is determined by the running time of each server. In addition to the calculation of
task execution time, we also need to calculate the running time of servers. We assume that the time is
split into time-slots and the workload of each server is used to represent the required running time.
Hence, for the workload of some server, say Sj, it contains two parts, the initial workload the tasks
assigned the server. The initial workload can be represented by the symbol Li(Sj). Then, the total
workload for server Sj, which also reflects the whole task execution time, could be represented like
the following equation:

L(Sj) = T(Pi) · π(Pi, Sj) + Li(Sj)

Generally, we summarize the related notations in the Table 2, so as to describe the problem properly.
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Table 2. Notations.

Symbol Description

N number of servers in the data center

K number of data blocks

response_time response time of online tasks

π(Di, Sj) data assignment indicator

π(Pi/Oi, Sj) task assignment indicator

φ(Pi/Oi, fi) task execution mode indicator

T(Pi/Oi) task execution time for task Pi or Oi

L(Sj) workload of server Sj

Tm data migration time

4. Heterogeneous Task Scheduling

4.1. Scheduling Heterogeneous Tasks with Data Migration

For a data center consists of multiple uniform servers with a default data (blocks) placement,
which ensures that there are 3 data replicas for each data. The problem is to assign the heterogeneous
tasks on the servers such that the task execution time is minimized. It could be formulated as:

min.maxL(Sj), 1 ≤ j ≤ N

s.t.∀t,
K

∑
1

π(Di, Sj) ≤ M, 1 ≤ j ≤ N

∀J ∈ (∪O) ∪ (∪P), J.start_time ≤ J.response_time

where L(Sj) is the workload, which indicates the task execution time as mentioned above. The number
of servers in the data center is N, and the number of data (blocks) is K.

The first constraint means that the hosted data (blocks) for each server should not exceed
its storage capacity, represented by M. The second constraint means that the task response time,
indicated by J.response_time, should be greater than the task start time, J.start_time, where ∪O means
the set of online tasks while ∪P represents the set of periodic tasks, and we have | ∪O| = m, | ∪ P| = n.

Since there are N servers working at the same time, each server has a workload L(S). If we find
that server Sj has the maximum workload and we minimize the maximum load of Sj, the whole job
execution time of system will be reduced. To achieve this goal, each time we assign a task to the server,
we select the server with the least workload in the system, and execute the task in the mode with
the least execution time. Obviously, it could be better to achieve data locality for the tasks to reduce
the task execution time. Hence, the problem is to pick one task from the queue to occupy the available
computing resources. If there is no proper task, which means none of the tasks could be executed
locally, we need to make a decision between waiting and remote access to achieve better benefit.
Therefore, we propose the heterogeneous task scheduling as shown in Algorithm 1.
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Algorithm 1 Heterogeneous task scheduling.

Require: ∪O: the set of online tasks which have arrived the system;
∪P: the set of periodic tasks which have arrived the system;
Sv: the server with minimum workload;
Si: the ith server;
t: the final completion time;

1: t← 0;
2: for i← 1 to N do
3: if Si.slot > 0 then
4: if ∃Oj ∈ ∪Oandπ(Dj, Si) = 1 then
5: assign(Oj, Si);

6: else if ∀Oj ∈ ∪O, π(Dj, Si) = 0 then
7: if π(Dj, Sv) = 1 then
8: if ∆T = Li(Sv)− t + Tl(Oj) and Li(Sv)− t < Oj.response_time then
9: assign(Oj, Sv);

10: else
11: assign(Oj, Si);
12: else if π(Dj, Sv) = 0 then

13: ScheduleTaskwithDataMigration(Oj);
14: else if ∪O = ∅and∃Pj ∈ ∪P, π(Dj, Si) = 1 then

15: assign(Pj, Si);
16: else if ∪O = ∅and∀Pj ∈ ∪P, π(Dj, Si) = 0 then

17: if π(Dj, Sv) = 1 then
18: ∆T = min(Li(Sv)− t + Tl(Pj), Tr(Pj));
19: if ∆T = Li(Sv)− t + Tl(Oj) then
20: assign(Pj, Sv);
21: else
22: assign(Pj, Si);
23: else if π(Dj, Sv) = 0 then
24: ScheduleTaskwithDataMigration(Pj);
25: t← t + 1;
26: update();
27: return t;

In Algorithm 1, Si is an idle server with available resource slots and we need to assign a task to
it. Because the heterogeneous tasks consist of periodic tasks and online tasks, we first check whether
there is an online task in the queue. If the queue of online tasks is not empty, we will select one task Oj
and judge if it can be executed locally. We assign the task Oj to Si if it can access its input data from
Si. Otherwise, we find the server Sv with minimum workload.if Sv has the required data of task Oj in
the data center, we make a comparison between two kinds of time: (1) the waiting time until Sv is idle,
and the execution time locally, represented by by Li(Sv)− t + Tl(Oj); (2) the time of executing task Oj
on server Si in remote mode, the time is represented by Tr(Oj). We compare them and find the less
one and indicate it with ∆T. Here, with the result of ∆T, we have two choices as follows:

• ∆T = Li(Sv)− t + Tl(Oj). It means we can schedule task Oj to be executed on server Sv so that
the remote task can be a local task and reduce the execution time. However, this a an online
task scheduling problem. As mentioned before, an online task has a constraint that it has to be
executed before its deadline of response time. It means the waiting time until the server Sv to be
idle cannot exceed the response time of Oj. Therefore, before we schedule Oj, we should guarantee
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that the waiting time Li(Sv)− t is less than Oj.response_time. This manner of scheduling refers to
delay scheduling.

• ∆T = Tr(Oj). If the time of executing task Oj in remote mode is minimum, we can assign task Oj
to server Si and execute it in remote mode immediately.

If task Oj cannot be executed locally on server Si and there is no local data blocks of task Oj
on server Sv, we could consider whether to introduce data migration to execute Oj. The strategy of
scheduling tasks with data migration will be interpreted in next subsection.

If the queue of online tasks is empty, we will schedule the periodic tasks. We first check if there is
a local periodic task Pj and assign it to the idle server Si. If all periodic tasks cannot be executed locally
on Si, we need to find the task (say Pj) with the least execution time, indicated as ∆T. Then, we still
need to check the execution mode for Pj. If ∆T = Li(Sv)− t + Tl(Pj), the task Pj will be assigned
to server Sv with locality mode by data migration. Or, the task Pj will be assigned to server Si with
remote execution mode, as shown in the algorithm. Since periodic tasks have much longer response
time than online tasks, we do not need consider the waiting time and response time.

4.2. Data Migration

In Section 3 of this paper, we have discussed that data migration will bring extra time
consumption. Because data transferring costs network, it must influence the execution of remote tasks.
Therefore, we must consider the impacts on remote tasks before migrating data blocks. We explain the
process of scheduling a task with data migration in Algorithm 2 as follows.

Algorithm 2 ScheduleTaskwithDataMigration(J).

Require: Si: the ith server; J:the selected task; Sv:the server with minimum workload in cluster

without DJ .
1: if There is a remote task on Sv and (Li(Sv)− t ≤ Tm) then

2: ∆T = minLi(Sv)− t + Tm + Tl(J), Tr(J);
3: else if There is a remote task on Sv and (Li(Sv)− t > Tm) then

4: ∆T = min2(Li(Sv)− t) + Tm + Tl(J), Tr(J);
5: else if There is a local task on Sv and (Li(Sv)− t ≤ Tm) then

6: ∆T = minTm + Tl(J), Tr(J);
7: else if There is a local task on Sv and (Li(Sv)− t > Tm) then

8: ∆T = minLi(Sv)− t + Tl(J), Tr(J);
9: if ∆T = Tr(J) then

10: assign(J, Si);
11: else

12: migration( f J , Sv);
13: assign(J, Sv);

In Algorithm 2, task J can be executed on Si in remote mode or executed on Sv after data migration.
Both of the two execution modes need data transmission, which brings transmission cost. We need to
compare two time costs: Li(Sv)− t and Tm. The first Li(Sv)− t means the task on server Sv still needs
to take Li(Sv)− t to execute. Tm is the time of transferring required data block by selected task J to
server Sv. We consider data migration while the Sv is executing a previous task. If Tm is larger than
Li(Sv)− t, which means the data migration will not finish when Sv is idle. Hence, task J needs to wait
for the end of data transferring before it can be executed. Otherwise, data migration will finish before
Sv being idle, and task J can be executed when Sv completes its previous task. Based on this time
comparison and decision on if there is a remote task on server Sv, we can list four scenarios as follows:

• There is a remote task on Sv and (Li(Sv)− t ≤ Tm): In this condition, the time of migrating data is
over the rest execution time of previous task on Sv, task J needs to wait the end of data migration
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before it can be executed. Because the previous task on Sv is remote task, Li(Sv)− t and Tm will
double. The work load of Sv will increase (Li(Sv)− t), so that the new workload of Sv is :

Li(Sv) + (Li(Sv)− t)

Because the previous task on Sv will finish before data migration, the time of migrating data will
not be twice when Sv is idle. The rest time for task J to wait and be executed when Sv is idle is:

2Tm − 2(Li(Sv)− t)
2

+ Tl = Tm − (Li(Sv)− t) + Tl

Therefore, the task execution time with data migration could be:

Li(Sv) + (Li(Sv)− t) + Tm − (Li(Sv)− t) + Tl − t = Li(Sv)− t + Tm + Tl

The time of executing task J on Si in remote mode is Tr(J), we compare these two kinds of time
and select the mode with less time.

• There is a remote task on Sv&&(Li(Sv)− t) > Tm: In this condition, data migration has finished
before Sv is idle. The task J could be executed directly on Sv. Li(Sv)− t and Tm will also double
when executing a remote task and migrating data at the same time on Sv. If data migration is
finished, Sv will still take some time to execute its remote task, and the time is:

2(Li(Sv)− t)− 2Tm

2
= (Li(Sv)− t)− Tm

The new workload of server Sv is:

Li(Sv) + 2Tm + (Li(Sv)− t)− Tm

Therefore, the whole time for task J to wait and be executed on Sv is:

Li(sV) + 2Tm + (Li(Sv)− t)− Tm + Tl − t = 2(Li(Sv)− t) + Tm + Tl

We also compare the time above with Tr(J) and select the less one.
• There is a local task on Sv&&(Li(Sv) − t) ≤ Tm: Because local tasks do not need network,

data migration will not affect local tasks. Similarly, we compare Tm and Li(Sv)− t, and calculate
the whole time for task J to be executed on Sv, the time is Tm. We choose the less one between
Tm + Tl(J) and Tr(J) and execute J in corresponding mode.

• There is a local task on Sv&&(Li(Sv) − t) > Tm: Similar to the situation above, we calculate
the whole time for task J to be executed on Sv, the time is Li(Sv)− t + Tl(J). We compare it with
Tr(J) and choose the less one.

From the case analysis, we find that we will execute J on Si in remote mode with few cases.
Otherwise, we migrate the required data of J to from other server to server Sv and execute it in locality
mode. Here, we will introduce more about data migration. The algorithm on how to migrate a data
block is described in Algorithm 3.

For the migration procedure, we first judge if the destination server has enough storage capacity
(Sv.space > 0), we can migrate the data block to it and the number of data replica ( f J .replica) increases
by one. If target server has no space to store the data block, we will find the data block Dd with least
degree, which means there is few task needs the data block. If the replica number of Dd is more than
one, we can replace it with the migrated data block. This is because we have to guarantee that each
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data block in the data center must has at least one replica. If the replica is the only one, we give up
the operation of data migration.

Algorithm 3 migration( f J , Sv).

Require: J: the selected task; Sv: the destination server; num: the number of replicas of each data;

degree: the number of tasks which require data f J as input;Sv: the target server for data migration.
1: if Sv.space > 0 then

2: assign f J to Sv;
3: f J .replica+ = 1;
4: else

5: for i← 1 to M do

6: Dd ← minimalDegree(Sv);
7: if Dd.num > 1 then

8: replace fd with f J ;

5. Experimental Results

To evaluate the proposed approach, we first establish a time model by some real experiments of
task execution and data migration. Then, we evaluate our heterogeneous task scheduling algorithm by
comparing it with other scheduling approaches.

5.1. Time Model

To validate and establish the time model, we transfer data blocks with different size and research
the effect of network competition on time. We test the data transmission time on five groups with
various data sizes. For each group, first, we transfer one data block each time from one server to
another. Then we transfer two data blocks with different size at the same time. The results are shown in
Table 3, where the time unit is millisecond (ms). Learn from results, we can conclude that the network
competition will almost doubles the time of transferring time.

Table 3. Time of transferring different data blocks (ms).

Data Size 1 Data Block 2 Data Block

64 MB 947,829 1,519,609

128 MB 1,495,165 2,669,139

256 MB 2,648,865 4,950,684

512 MB 4,939,071 9,511,114

1024 MB 9,535,483 20,151,628

Because HDFS has a default data block size of 64 MB, we ran a sorting program on a server
and record the results with and without data migration, which means that the program reads files
from local server and from another remote server respectively. We run the program for multiple times
and calculate the average value. The final results are shown in Table 4. We analyze the results and find
the conclusion as:

Tr = α · Tm, α ≈ 1.3

which means remote tasks spend more time than local tasks, and the remote access time is about
1.3 times of local data access.

Second, data migration will prolong the execution time of remote tasks, but it will not influence
local tasks. Our algorithm needs to schedule online tasks and local tasks at the same time.
This conclusion tells us that before migrating a data block, we must consider the effects on remote tasks.
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Table 4. Tasks executed in two modes (ms).

With Data Migration Without Data Migration

Locality mode 1,578,563 1,593,488

Remote mode 3,584,282 2,120,580

5.2. Simulation Analysis

We conduct extensive simulations with various settings and introduce the results on our
algorithms. We compare our heterogeneous task scheduling strategy with traditional FIFO strategy
and delay scheduling. We also compare it with HRTPS [27], a dynamic scheduling algorithm
with precedence constraints for hybrid real-time tasks. The HRTPS classifies the process of task
scheduling into static situation and dynamic situation. In static situation, it assigns some of servers
to periodic tasks to guarantee that all periodic tasks could be scheduled in a period of time. Then it
considers the dynamic situation with real-time tasks arriving randomly. It reserves some servers
for these real-time tasks so that they can be scheduled in time. As a result, the HRTPS can schedule
heterogeneous tasks simultaneously.

In our experiments, we make the simulation settings as follows. (1) Set N = 50 for the data
centers, and M = 20 for each server; (2) There are K = 300 data blocks and 3 replicas for each data
block. The replicas are placed in the servers randomly while any server will not host the same replicas;
(3) The input data for each task is randomly assigned; (4) The task execution time with data locality
is a random value; (5) There are m = 500 periodic tasks and n = 500 online tasks; (6) The online
tasks arrive randomly within 100 time slots; (6) The online tasks must be finished before its deadline,
which is a random value within 20 time slots.

We conduct the simulation with different scheduling approaches, the basic results are shown
in Figure 1. In the figure, the y-coordinate is the CDF value, which increases by time increasing in
x-coordinate. For each point, it means the percentage of completed tasks under the fixed time-slot.
The performance of FIFO is not good, and the proposed heterogeneous task scheduling method
improves the performance significantly. Meanwhile, the heterogeneous task scheduling method has
better performance than HRTPS and delay scheduling.

Figure 1. Experimental results of scheduling heterogeneous tasks.

Figure 2 describes the server utilization of each scheduling approach for given time slots. We use
N1 indicates the number of servers which are occupied. The server utilization can be calculated
by N1/N and N is the number of all servers in data center. From the result, we can know that our
algorithm has the best server utilization among all three methods at the beginning and decreases
from the intermediate period of the experiment, this is because most of tasks have been completed.
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The result shows that our heterogeneous task scheduling algorithm has nice performance on server
utilization and can reduce the execution time of tasks.

Figure 2. Experimental results of server utilization.

We also conduct experiments to study the differences under different ratios of online tasks to
periodic tasks. The number of all tasks are 1000. The results is described in Figure 3. The x-coordinate
represents the ratios of online tasks to periodic tasks. The y-coordinate is the time slots which indicate
the finish time of all tasks in system. From the results we can conclude that the heterogeneous task
scheduling strategy has better performance when the amount of online tasks is large. The result also
shows that when the ratio is bigger, the whole execution time is larger. This is because the online tasks
will be scheduled to occupy the resources with high priority. However, the limited resource cannot
meet the locality task execution for all tasks. Hence, some online tasks are executed in remote mode
or locality mode with data migration, both of which brings extra data transmission time. At the same
time, the larger ratio means more online tasks are executed without locality mode and the execution
time increase.

Figure 3. Experimental results of different ratios.

For the above simulations, we also record more data for different approaches. (1) The average
server utilization: The server utilization is shown as Figure 2, and we calculate the average server
utilization based on the value of each time slot. (2) Overtime online tasks: We record the completion
time for each online task and check if it is larger than its deadline. (3) Waiting time: The time duration
between the arrival time and scheduled time for the online tasks. We compare these factors with
the FIFO, delay scheduling, and HRTPS. The results are shown in Table 5. Learn from the results,
we find that our heterogeneous task scheduling algorithm has the least average waiting time, which is
the major focus in this paper. For the average server utilization, the value of delay scheduling
and HRTPS is close to our algorithm though our algorithm has less task execution time as shown in
Figures 1 and 2. This is because the tasks occupy the server with longer time due to remote data access
for the delay scheduling and HRTPS algorithm. For the number of overtime online tasks, our algorithm
and the delay scheduling algorithm will lead to some overtime cases since the waiting mechanism for
tasks. Actually, this could be fixed by adjusting the default waiting time or weight for the online tasks.
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Generally, the proposed heterogeneous task scheduling algorithm can improve the performance on
task execution time reduction by reasonable data migration. It is a valuable attempt for task scheduling
with active manner.

Table 5. Comparison of three methods in three aspects (time slots).

Averag Server Utilization Number of over Time Online Tasks Average Waiting Time

FIFO 42.3% 5 197

Delay scheduling 64.0% 3 68

HRTPS 68.3% 0 72

Heterogeneous 64.4% 2 64

6. Conclusions

In this paper, we proposed a heterogeneous task scheduling method to schedule periodic tasks
and online tasks simultaneously for IoT system. The method take both the delay scheduling and data
migration into account to improve data locality. The core idea is to compare the cost of different
decisions and choose the reasonable one to schedule the task. We conduct extensive simulations,
and the experimental results show that our algorithm has better performance on task execution
time reduction compared the FIFO, delay scheduling, and HRTPS. This work indicates that the data
migration is an efficient way to improve data locality, which actively occupy resource by moving data
from one server to anther server. This is total different from the classical delay scheduling, which waits
for idle resource passively. However, it is still a challenging problem to improve the performance of data
migration since the system is complex. In addition, it is valuable to discuss how to control the number
of data replicas dynamically such that there would be more opportunities for data migration.
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