
Received July 11, 2020, accepted July 26, 2020, date of publication August 11, 2020, date of current version August 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015917

Complex Emotion Profiling: An Incremental
Active Learning Based Approach
With Sparse Annotations
SELVARAJAH THUSEETHAN , SUTHARSHAN RAJASEGARAR , (Member, IEEE),
AND JOHN YEARWOOD, (Member, IEEE)
School of Information Technology, Deakin University, Geelong, VIC 3220, Australia

Corresponding author: Sutharshan Rajasegarar (srajas@deakin.edu.au)

ABSTRACT Generally, in-the-wild emotions are complex in nature. They often occur in combinations
of multiple basic emotions, such as fear, happy, disgust, anger, sadness and surprise. Unlike the basic
emotions, annotation of complex emotions, such as pain, is a time-consuming and expensive exercise.
Moreover, there is an increasing demand for profiling such complex emotions as they are useful in many
real-world application domains, such as medical, psychology, security and computer science. The traditional
emotion recognition systems require a significant amount of annotated training samples to understand the
complex emotions. This limits the direct applicability of those methods for complex emotion detection
from images and videos. Therefore, it is important to learn the profile of the in-the-wild complex emotions
accurately using limited annotated samples. In this paper, we propose a deep framework to incrementally
and actively profile in-the-wild complex emotions, from sparse data. Our approach consists of three major
components, namely a pre-processing unit, an optimization unit and an active learning unit. The pre-
processing unit removes the variations present in the complex emotion images extracted from an uncontrolled
environment. Our novel incremental active learning algorithm along with an optimization unit effectively
predicts the complex emotions present in-the-wild. Evaluation using multiple complex emotions benchmark
datasets reveals that our proposed approach performs close to the human perception capability in effectively
profiling complex emotions. Further, our proposed approach shows a significant performance enhancement,
in comparison with the state-of-the-art deep networks and other benchmark complex emotion profiling
approaches.

INDEX TERMS Active learning, complex emotions, emotion recognition, incremental learning, sparse data.

I. INTRODUCTION
Humans convey their emotions as different nuanced expres-
sions through their face. Although human regularly expresses
continuous and complex emotions through face, preemi-
nently, previous studies have mainly focused on detecting
the Ekman’s six basic emotions, namely happy, sad, surprise,
fear, disgust and anger [1]–[3]. Accurately predicting the
complex emotions (e.g., micro-emotions, pain and compound
emotions) is essential to respond appropriately for a situation
in many domains, such as medical, education and military.
For instance, deceptive detection during a legal investigation
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is a good example for the use of extracted complex emotions,
such as micro emotions. The detection of complex emotions
assists an investigator to profile the subject’s emotional state
more precisely. Another significant application of complex
emotion analysis is the detection of pain during a medical
observation.

Du et al. [4] defines 21 categories of compound emotions
that humans express in-the-wild. They have also demon-
strated the correlations between those emotions and the action
units (AUs), which are a group of muscles responsible for the
facial expressions. For example, as illustrated in the top raw
images of Figure 1, the compound emotion happily surprised
is revealed by the presence of several muscle movements,
namely AUs 1, 2, 5, 12, 25 and 26, as shown in the left image,
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FIGURE 1. Examples of complex emotions. Top row: same complex
emotions with different representations of AUs. Bottom row: Illustration
of two complex emotions, happily surprised (bottom left) and happily
disgusted (bottom right), that are formed from the combination of basic
emotions happy, surprise and disgust.

and AUs 1, 2, 5, 6, 12 and 25, as shown in the right image.
Further, the second row of images in Figure 1 shows two
complex emotions, happily surprised (left) and happily dis-
gusted (right), which are primarily formed as a combina-
tion of the basic emotions happy with surprise and disgust,
respectively. On the other hand, definition of another complex
emotion pain is provided in [5]. Micro-emotion is another
significant complex emotion, which occurs for a fraction
of a second, and hard to recognize in-the-wild using the
naked eye.

The existing techniques for complex emotion profiling
have limitations in terms of detecting them and often require
a large dataset for training the emotion profiling model.
Besides preliminary definitions, the complex emotions have
not been analyzed deeply in the past due to two more signif-
icant reasons.

First, the complex emotions can only be extracted from a
continuous observation in-the-wild, which is challenging due
to the variations present in an uncontrolled environment, such
as lighting and pose. Although in-the-wild facial analysis
with highly uncontrolled environments has become the center
of attention in the recent research studies, [6], [7], in-the-wild
extraction of complex emotions has not been well addressed
in the past. The applications, such as deceptive detection and
pain estimation, require feedback in uncontrolled environ-
ments to enhance the quality of service. Hence an in-the-
wild analysis of complex emotions demands an extensive
examination.

Second, the unavailability or insufficient labeled datasets
with annotations of complex emotions poses a significant
limitation for the training of current deep networks. There are
only a few benchmark datasets available with the annotations
of complex emotions, such as micro-emotions, compound
and pain emotions. Due to this limitation, the relatively

new attempts on complex emotion recognition, such as pain
intensity estimation, focused on using hand-crafted feature
extraction techniques [8]. However, the minimal changes in
facial muscles during the complex facial expression caused
poor discriminative capability for the hand-crafted feature
extractors. On the other hand, the rise of deep learning tech-
niques (e.g., Convolutional Neural Network (CNN)) in the
recent years enabled the computer vision systems to achieve
highly efficient outcomes [9]. In addition, the deep CNN
architectures have been widely utilized in recognizing the
basic emotion through facial expressions. However, state-of-
the-art deep learning techniques demand a large and balanced
training dataset to perform optimally.

In order to address the research gap identified above,
in this work, we propose a novel Active Hybrid Deep CNN
framework with fusion mechanism, named as AHDCNN,
to predict the complex emotions using facial expressions in-
the-wild automatically. In AHDCNN, we introduce a cost-
effective active learning (AL) based approach to improve
the performance, and accelerate in-the-wild recognition of
the complex emotion with a small amount of initial training
data. Recent successes in AL-based approaches in computer
vision provides motivations for complex emotion recogni-
tion with a small amount of annotated training data, which
provides a less expensive way to train the model. AL is
capable of providing a competitive classifier with a small
number of initial training samples integrated with a progres-
sive learning process in various image classification prob-
lems in-the-wild [10]. Further, the recently emerged AL
approaches also demonstrated the reduced cost of labeling
for training instances and improved performances [10]–[15].
However, integrating AL into deep architectures for image
classification problems is limited due to the challenges, such
as unavailability of techniques to define the optimal size
of initial training data for deep network architectures and
inefficient active selection algorithms.

Inspired by these two practical issues of integrating AL
with deep network frameworks, we propose an enhanced AL
technique that optimizes the initial training dataset. In par-
ticular, we utilize an image augmentation process. In addi-
tion, we propose an improved active selection algorithm that
incorporates a wide range of samples ranging from informa-
tive to non-informative stage in the model updating process.
We then propose an image pre-processing method to alleviate
the variations present in uncontrolled environments in-the-
wild. A variety of image pre-processing tasks have been
proposed in the past. However, those conventional image pre-
processing approaches have limitations for emotion profiling
tasks due to not being fine-tuned on more specific facial
emotions and low robustness of the pre-processing tasks of
image processing for unknown, in-the-wild, environments.
Motivated by these two image pre-processing related issues,
we propose a comprehensive image pre-processing technique
for in-the-wild facial emotion profiling task. This image pre-
processing task is integrated as an internal component of our
proposed framework.
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A. KEY CONTRIBUTIONS
In summary, the key contributions in this paper are as follows:

• First, we develop an incremental active learning-based
end-to-end deep CNN framework that performs accu-
rate in-the-wild prediction of various complex emotions,
such as micro-emotions, pain and compound emotions.
In our deep framework, we introduce an improved cost-
effective AL mechanism with a continuous and fully
automated feedback mechanism. Moreover, our end-to-
end framework is capable of estimating the optimized
emotion dataset for initial training.

• Second, we propose a comprehensive image pre-
processing mechanism, which is specifically designed
for facial emotion images, to handle the inconsistency
of an uncontrolled environment.

• Third, we show that the proposed framework yields
state-of-the-art emotion prediction accuracies with small
training sets in profiling the complex emotions in-the-
wild. To validate this, we have compared the prediction
accuracy with existing complex emotion recognition
methods discussed in the literature and other five fine-
tuned state-of-the-art deep networks.

The remainder of this paper is structured as follows.
In Section II, the preliminaries of AL approach and complex
emotions are reviewed. The methodology is introduced in
Section III. Then, the Section IV describes the extensive
experiments and evaluation. Lastly, Section V provides the
conclusion and future directions of our work.

II. RELATED WORK
In this section, we describe the recently proposed related
works on complex emotion profiling and active learning
techniques.

A. COMPLEX EMOTION PROFILING
Apart from the basic emotions, humans express many com-
plex emotions during continuous conversations. Although
most of the existing works have focused on six basic human
emotions, a list of complex emotions, such as pain, micro-
emotions and compound emotions have been identified in
the past due to its significance in many applications, such as
medical interventions, human-computer interaction, sociable
robots and social conversations.

1) COMPOUND EMOTIONS
Compound facial emotions are formed from a combination
of a few existing basic emotions (e.g., happily surprised
is a combination of basic emotions happy and surprise).
Du et al. [4] defined 22 emotion categories, including the
six basic emotions with neutral and 15 compound emotions.
These compound emotions have not been analyzed in-depth
using deep learning approaches due to the insufficient amount
of labeled data to train the model. In particular, with 10-fold
cross-validations, the authors of [4] have achieved classifica-
tion accuracies of 73.61%, 70.03% and 76.91% when using

shape, appearance and combined features respectively. Simi-
larly, for the leave-one-out cross-validation, 72.09%, 67.48%
and 75.09% classification accuracies were reported for shape,
appearance and combined features. During the comparison,
authors have reported that their shape and appearance-based
model outperformed the multi-class SVM proposed in [16].
However, due to insufficient labeled data, authors have not
compared the performance of their model with any of the
existing deep networks.

2) MICRO EMOTIONS
Micro-emotion appears for a short duration with low inten-
sity, which is also considered as one of the complex emo-
tions since it is difficult to recognize in-the-wild. Numerous
handcrafted feature extraction techniques have been proposed
in the past to recognize the micro-emotions from videos.
However, in recent years, a few prominent research works
such as [17]–[19] have shown potential improvements in
micro-emotion recognition using deep techniques.

In [17], authors have used a dual temporal scale CNN
architecture to recognize the micro-emotions spontaneously.
To avoid overfittingwhile training the deepmodel with sparse
dataset, a dual architecture has been constructed based on
two shallow CNN networks. Further, to acquire higher-level
features, authors have used the optical flow frames instead of
raw images. The experimental results show that the proposed
architecture achieved 10% better accuracy than the state-
of-the-art techniques. In [18], another significant study on
micro-emotion recognition is presented, where the authors
have utilized an enriched long-term RCNN. In this approach,
the CNN modules are used to extract the features, and a long
short-term memory (LSTM) is used to predict the micro-
emotions. This approach also outperformed existing micro-
emotion recognition techniques. However, the approaches
proposed in [17] and [18] were not tested with sparse raw
image training samples to recognize the micro-emotions.

Peng et al. [19] have proposed a transfer learning-based
approach to recognize the micro-emotions considering a
small training data. The ResNet10 [20] deep network that was
pre-trained on Imagenet [21] dataset has been used to trans-
fer learn on a small micro-emotion dataset. This approach
achieved prediction accuracy rates of 70.59% and 75.68%
on SAMM [22] and CASME II [23] datasets, respectively.
Apart from the fact that it is working well with small datasets,
a major limitation of this approach is its poor prediction accu-
racies compared to existing state-of-the-art micro-emotion
recognition techniques.

3) PAIN
Highly social species, including humans, use face to express
emotional states, such as pain during social andmedical inter-
action. In the past, researchers have mainly focused on classi-
fying the pain into binary classes, namely having pain or not.
However, a vast number of recent research have focused on
estimating the intensity of pain at a fine-grained level rather
than a simple twofold classification. Facial action coding
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system (FACS) provides a standard way of defining the pain
intensity estimation, where FACS represents a movement
of facial components based method, which is effective to
represent emotions with rich expression states, such as pain.
Numerous researchers have used FACS to estimate the pain
intensities in the past. However, the Prkachin and Solomon
Pain Intensity (PSPI) [5] metric has been widely used to
estimate the pain intensities in a sixteen-level ordinal scale
from a combination of six action units (AUs).

The majority of the existing pain estimation approaches
are based on typical handcrafted feature-based techniques
[8], [24], [25]. The lack of labeled data and standard rules
cause the automatic feature extraction based pain intensity
estimation challenging. Due to the limited deviations in
painful facial expressions between subsequent PSPI scales,
researchers tend to curtail the number of pain intensity classes
to improve better detection performances. One notable work
carried out by Hammal and Cohn [8] estimated the pain
intensity into four levels using a handcrafted feature extrac-
tion method; defined as PSPI = 0 (none), PSPI = 1 (trace),
PSPI= 2 (weak) and PSPI ≥ 3 (strong). In this work, canon-
ical appearance (C-APP) derived from the active appearance
model (AAM) is traversed through Log-Normal filters in
order to extract the features to classify the pain intensity
classes. Additionally, four separate support vector machines
(SVMs) have been trained using both 5-fold and leave-
one-out cross-validation techniques. The classification rates
achieved for the 5-fold and leave-one-out cross-validations
are (97, 61), (96, 72), (96, 79), (98, 80) for the pain intensity
levels none, trace, weak and strong respectively.

Roy et al. [24] designed another novel framework to esti-
mate the pain intensity levels in four classes, as defined
in [8]. A Gabor filtering was used for feature extraction,
and Principal Component Analysis (PCA) was applied for
feature compression. An SVM is then used to classify various
pain intensity levels. The experiment was carried out under
the frame level and image level settings in order to verify
the robustness and accuracy of the framework under per-
son dependent and person independent environments, respec-
tively. Results show that this framework achieved 82.43%
average classification accuracy over the four-level pain inten-
sities. In [26], authors have categorized the pain intensities
into six meaningful levels, namely none, mild, discomforting,
distressing, intense and excruciating. Zhao et al. [25] stud-
ied estimation of the same six-level pain intensities, which
are defined in [26]. The maximum estimation accuracy was
achieved under a supervised setting among the experiments
performed under fully supervised, semi-supervised and unsu-
pervised settings. As observed, in [8], [24] and [25], the clas-
sification rate obtained for leave-one-out is significantly low,
which is identified as a major limitation. It leads to a general-
ization issue for the proposed models, which is not effective
across a range of different datasets.

Although the deep learning approaches have shown
promising results during the recent years in various appli-
cations including computer vision, only a few works have

been performed using automatic feature extractive deep
learning techniques, especially in the automatic pain detec-
tion area [27]–[29]. In most cases, a limitation observed is
the unavailability of annotated data for distinct pain inten-
sity levels. By addressing this limitation, deep techniques
still achieved comparable performances in this domain.
In [27], Martinez et al. proposed a Recurrent Neural Network
(RNN) based approach to estimate the pain intensity using
the visual analog scale (VAS). A Long Short-Term Memory
Recurrent Neural Networks (LSTM-RNNs) [30] was used
as the core of this model. Although it has achieved higher
accuracies on lower intensity levels, the limited training data
caused poor average accuracies on higher intensity levels.
Wang et al. [28] and Zhou et al. [29] have recently attempted
to use recurrent CNN to estimate the pain intensity auto-
matically. In [28], authors fine-tuned a pre-trained network
to transfer the knowledge for pain estimation. Conversely,
in [29], a five-layer convolutional network has been used to
train the system. In both cases, the proposed models were
trained using the whole pain dataset and showed low clas-
sification accuracy.

B. ACTIVE LEARNING
Recent deep learning-based architectures heavily rely on
accurately annotated training datasets to learn accurate mod-
els. In particular, as discussed before, complex emotions are
challenging to be annotated, which leads to insufficient anno-
tated training data. In order to mitigate the aforementioned
problem, AL techniques have been proposed for use in a
range of computer vision tasks. AL-based models are usually
trained with sparse data, and actively improved using most
informative samples. Various AL algorithms in conjunction
with deep networks have been proposed in the past for vision
tasks [10], [31]–[34].

Most of the existing works consider only the most infor-
mative or minority samples after an active user labeling is
performed [32], [33], adopting common AL methods, such
as least confidence, margin sampling and entropy. In [31],
Li et al. proposed an adaptive AL framework that con-
siders an uncertainty measure and a density measure to
select the critical samples. This approach also failed to con-
sider the majority or high confidence samples. In contrast,
Wang et al. [10] presented a cost-effective active learning
algorithm for deep image classification tasks that selects both
majority and minority samples during the active selection
process. This approach again depends on a costly and time-
consuming human labeling process. Huang et al. [34] pro-
posed a slightly different framework that considers two novel
criteria, namely distinctiveness and uncertainty. Although the
extensive experiments reported that this framework outper-
formed other active model adaptation techniques, a limitation
is that it only considered binary classification. Further, their
approach did not consider a diverse range of samples from
unlabeled data. Thus the AL algorithm will fail to contem-
plate the majority of the samples during the selection pro-
cess. However, previous studies have shown that considering
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FIGURE 2. The proposed active learning based architecture to profile complex emotions.

FIGURE 3. Pipeline of normalization steps included in the pre-processing unit in our framework.

samples with different confidence values improves the pre-
diction accuracy.

III. METHODOLOGY
Based on the challenges observed in the literature survey
above, in this section, we propose a novel incremental
AL-based deep framework for complex emotion profiling
in-the-wild. The proposed framework consists of three com-
ponents, namely pre-processing unit, optimization unit and
an active learning unit, as illustrated in Fig. 2.

A. PRE-PROCESSING UNIT
In this section, we develop a comprehensive pre-processing
mechanism, which is crafted specifically for complex emo-
tion profiling tasks. Normalization and augmentation are two
phases of our pre-processing descriptor. This pre-processing
technique extends the one we proposed in [35].

1) NORMALIZATION
The complete overview of the normalization phase in the pre-
processing unit is illustrated in Fig. 3. In the normalization
step, first, the input video frames are converted into greyscale
images in order to reduce the cross-database discrepancy
between the video frames.
Rotation Correction: We then make two copies of each

greyscale image to perform rotation corrections. This process
eliminates the rotation variation related complexity while
extracting the features, thus providing a reliable way to
extract emotion features from the face. During the rotation
correction, as indicated in Fig. 3, we align the active appear-
ance model (AAM) facial feature points 37 and 46 of eyes
on the first image, and AAM facial feature points 49 and 55
of mouth on the second image horizontally. After that, first
and second images are used to select the expression centric
areas of the eye and the mouth regions, respectively, and are
then spatially normalized.
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FIGURE 4. ROI selection and spatial domain normalization: (a) selected
eye region (b) selected mouth region.

ROI Selection and Spatial Domain Normalization:
Eliminating insignificant information (e.g., background
information) in the input video frames will improve the detec-
tion or classification accuracy. The raw images of publicly
available complex emotion datasets have a lot of background
information in them. In the past, facial emotion recognition
studies, such as [36], have eliminated the background infor-
mation and certain portion of the face from the facial images
to reduce the complexity. In our approach, not only the image
is cropped to eliminate the background information and some
portion of the face, but also the expression specific features
are selected by focusing on the eye and mouth regions. The
cropping process of eye and mouth regions are illustrated
in Fig. 4.

For the eye region, we define a as the distance between
AAM facial feature points 37 and 46. The width and heights
are then set to 1.2 (0.1 times extended in each side) and
0.5 (0.3 times above and 1.1 below the eye corner AAM facial
feature points) factors of a. Similarly, for the mouth region, b
is defined as the distance between the lip corner AAM facial
feature points 49 and 55. Then the width and heights are set
to 1.8 (0.4 times extended in both left and right sides from
the lip corner AAM facial feature points) and 1 (0.5 times
above and 0.5 below the lip corner AAM facial feature points)
factors of b. This is the average size of the active eye and
mouth regions of all images used in the complex emotion
datasets.
Intensity Normalization: The variations in image features,

such as brightness and contrast often increase the complexity
of classification tasks. Contrast limited adaptive equalization
(CLAHE) [37] is one of the techniques that can be used
to eliminate the variations in contrast and brightness of an
image. CLAHE is a widely used variant of the adaptive his-
togram equalization algorithms, which can be applied on both
colored and grayscale images. The slope of a transformation
function, which is proportional to the cumulative distributive
function (CDF) of neighborhood pixels, provides the contrast
amplification of a pixel value. In CLAHE, before the compu-
tation of CDF, the contrast amplification is constrained by
a pre-defined value called the clip limit of the histogram.
The clip limit in CLAHE regulates the noise level that has
to be smoothed, and the contrast that has to be enhanced.
The primary advantage of CLAHE is that it redistributes
the histogram part, which exceeds the clip limit between all
histogram bins rather than just eliminating it. The clip limit

FIGURE 5. Illustration of the intensity normalization process applied on
eye and mouth regions: (a) before and (b) after the intensity
normalization process.

and the α value are set to 0.01 and 1, respectively, for the
Rayleigh distribution used in this study. Fig. 5 illustrates an
example of a sample image before and after the intensity
normalization process.
Scale Normalization: As the last step of the normalization

phase, we performed a scale normalization, where we down-
sampled the size of the image to 128×128 pixels using linear
interpolation. Scale normalization reduces the complexity of
feature extractor by placing identical facial feature points of
different images approximately at the same location.

2) DATA AUGMENTATION
Deep networks often show better performances with large
training sets while performing classification tasks, such as
profiling the complex emotions accurately. However, in this
research, we have used a small portion of the benchmark com-
plex emotion datasets for the training purposes. Therefore,
we use synthetic data augmentation, which is often utilized to
enhance the training set in the field of deep learning. Further,
this technique has been widely used for many traditional deep
network training purposes. Simard et al. [38] proposed a
data augmentation method using elastic deformations (trans-
lation, rotation and skewing) on real images. Adopting this
approach, we used a 2D Gaussian distribution to add random
noise in the eye and mouth regions of the face to produce the
synthetic frames separately. The Gaussian standard deviation
is carefully engineered since both small and large variations
can generate meaningless identical images and create a more
complex learning environment for the classifier, respectively.
Moreover, the augmented samples with large variations are
carefully removed once again during the sample selection
process.We synthesize all the rotation corrected images (both
eye and mouth regions corrected images) and used to train the
initial classifier.

B. SAMPLE SELECTION CRITERIA
In this section, we introduce the active sample selection
criteria used in our framework. The main stages in sample
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selection, namely confidence value calculation criteria, self
pseudo labeling with high confidence samples and threshold
fine-tuning are described below.

1) CALCULATION OF CONFIDENCE VALUE
In the past, many approaches have been proposed to calculate
the confidence value using the probability of a predicted
sample P(yi = j | Ii;�) for a given deep CNN model �.
Among them, three commonly used active learning tech-
niques are least confidence [39], margin sampling [40] and
entropy [41].

Culotta and McCallum [39] defined the least confidence
criteria, which sorts the samples in an ascending order accord-
ing to the classification probability predicted by the current
model. Eq. 1 describes the definition of the least confidence
criteria.

lci = max
j
(Pθ (yi = j | Ii;�)) (1)

where, P(yi = j | Ii;�) indicates the classification probabil-
ity of the sample Ii for the jth class under the current model θ .
The classifier is uncertain about a predicted sample when it
records a lower confidence value.

Margin sampling [40] strategy, on the other hand, measures
the confidence value according to the margin between the
highest and the second-highest probable classes, as described
in Eq. 2.

msi = Pθ (yi = jfirst | Ii;�)− Pθ (yi = jsecond | Ii;�) (2)

where, Pθ (yi = jfirst | Ii;�) and Pθ (yi = jsecond | Ii;�)
indicate the first and the second-highest classification proba-
bilities of the sample Ii under the currentmodel θ . The smaller
margin indicates higher uncertainty of predicted sample by
the current classifier. Thus, the samples are ranked in an
ascending order.

Inspired by information theory, in entropy sampling [41]
criteria, all the predicted class probabilities are utilized to
measure the entropy, which is defined in Eq. 3. Higher
entropy values for the predicted samples indicate the uncer-
tainty of the current classifier. Hence, all the samples are
arranged in descending order.

eni = −
m∑
j=1

Pθ (yi = j | Ii;�) logPθ (yi = j | Ii;�) (3)

where, eni is defined as the summation of the probabilities of
all possible classes (i.e., j = 1 . . .m).

2) AUTOMATIC PSEUDO-LABELING
High confidence samples from the unlabeled dataset are
selected to label the samples automatically, which are then
included in the labeled set for the next training phase.
We adopt the approach proposed in [42], where the authors
have utilized least confidence, margin sampling and entropy
criteria, in high-confidence sample selection for automatic

Algorithm 1 Learning Algorithm for OSS
Input: Labeled samples L, which is a subset of the emotion
dataset D. The optimization training set O. LR and LA are
the reserved and augmented datasets respectively. SR and SA

are the selected samples from the reserved and augmented
datasets. The CNN parameters � that has to be optimized.
Output: The optimized CNN classifier’s parameters �O

1: procedure SAMPLE-SELECTION-OPTIMISATION(L, �)
2: Initialise the CNN parameters� to�I with the initial

training set LI

3: while not reached themaximum training iterations do
4: if Ii ∈ {LR} then
5: Select a set of random samples SR

6: end if
7: if Ii ∈ {LA} then
8: Select the high confidence samples SA using

Eq. 4
9: end if
10: Add SR∪SA samples into the optimization dataset

O
11: Fine-tune the CNN parameters �I to �O using

Eq. 6
12: Update the selection threshold δ using Eq. 5
13: end while
14: return �O

15: end procedure

pseudo-labeling.

j∗ = argmax
j

(Pθ (yi = j | Ii;�))

yi =

{
j∗, eni < δ or msi, lci > δ.

0, otherwise.
(4)

In equation 4, j∗ is the most probable label of the sample Ii
with the current model. yi describes the label with the highest
prediction probability, where lci, msi and eni are calculated
using equations 1, 2 and 3 respectively.

The classification ability of the model incrementally grows
during the active learning process. Thus, the selection thresh-
old needs to be updated to improve the model’s reliabil-
ity with newly added labeled data. We update the selection
threshold δ using the equation 5.

δ =

{
δ0, t = 0.
δ − dr ∗ t, otherwise.

(5)

where, the threshold δ is initially set to δ0 and updated in each
iteration using a learning rate decay dr .

In the next subsection, we provide details about the opti-
mization unit proposed in our framework.

C. OPTIMIZATION UNIT
After obtaining the pre-processed data, during the optimiza-
tion phase, we train the initial optimized model, as illustrated
in Fig. 6. To optimize the deep CNN model, we use the
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FIGURE 6. Illustration of the optimization unit. The optimization unit uses the optimization sample selection (OSS) algorithm to obtain an optimized
model.

FIGURE 7. Active learning unit that uses the proposed active sample selection algorithm.

labeled dataset L, which is a subset of a given complex emo-
tion dataset D (i.e., L ⊂ D). Initially, the deep CNN network
is trained using 30% of the labeled data, which is LI (0.3×L),
to initialize the parameters of the deep CNN parameters to
�I . The rest of the annotated dataset LR (0.7×L) is reserved
for model optimization. The samples of the initial training
dataset are randomly selected from the labeled data. After the
initialization step, as indicated in Eq. 6, the model is updated
incrementally using the optimization training set O, which
is obtained from a combination of selected reserved LR and
augmented LA samples.

�O
= ω(�I

i + εiOi) (6)

In Eq. 6, �O is the optimized model, �I
i and εiOi are the

initial model and the optimizing weights in ith iteration of the
incremental process, where i = 1 . . . n.
We propose a robust sample selection algorithm that

can progressively select the samples from the optimization

training set for the incremental model updating process.
Algorithm 1 explains the steps involved in the optimization
sample selection (OSS) algorithm in detail. The reserved
data instances of the optimized training set are picked in the
model updating process without any conditions. However,
from the augmented portion of the optimization training set,
only the majority of samples with high prediction confidence
(i.e., clearly classified) have been selected for the incremental
model updating process. This mechanism helps eliminate the
augmented images that are highly deviated from the original
images. Generally, augmented samples with high deviation
increase the complexity of the deep classifiers.

In the OSS algorithm, the active user participation is not
required to select samples from both reserved and augmented
datasets. We only use previously annotated data to optimize
the model. Hence, the selection of random samples from the
reserved dataset is entirely based on the available annota-
tions. Another advantage of OSS is the elimination of active
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FIGURE 8. The proposed CNN architecture in our incremental active learning based deep framework.

Algorithm 2 ASS Algorithm
Input:Unlabeled samplesU , which is a subset of the emotion
dataset D. The CNN parameters �O that need to be fine-
tuned.
Output: The fine-tuned CNN classifier’s parameters �F

1: procedure ACTIVE-SAMPLE-SELECTION(U , �O)
2: while not reached themaximum training iterations do
3: Select the high confidence samples UH using

Eq. 4
4: Fine-tune the CNN parameters �O to �F using
UH

5: Update the selection threshold δ using Eq. 5
6: U = G(U − UH )
7: end while
8: return �F

9: end procedure

user participation through a high confidence sample selection
technique to obtain the training samples from the augmented
dataset. Thus, OSS completely eliminates the expense of
active user participation in the optimization process.

D. ACTIVE LEARNING UNIT
The main purpose of proposing an active learning unit in our
framework is to actively learn and enhance the classification
capability of the obtained optimized model with minimum
training data. Fig. 7 shows the proposed active learning unit,
which uses a comprehensive active sample selection (ASS)
algorithm. The proposed ASS algorithm, which is illustrated
in Algorithm 2, utilizes the majority samples (i.e., clearly
classified samples with high confidence values) in each iter-
ation, like used in other conventional AL approaches. The
intuition behind this algorithm is to select the samples with
high confidence values to automatically annotate and add
them into the training set. However, our approach additionally

considers the minority samples (i.e., informative samples)
in subsequent phases during an incremental model updating
process. As illustrated in phase 1 of Figure 7, we use the
optimized model�O, which is derived from the optimization
phase, to select the majority samples from the unlabeled data
U . We then utilize the majority samples UH to update the
model. We then add Gaussian (G) noise to the minority sam-
plesU−UH , and reserve the resultant samplesG(U−UH ) to
present as an input for the next phase along with the updated
model. Subsequently, we update the selection threshold using
Eq. 5.We repeat the aforementioned incremental basedmodel
updating process until there is no further significant improve-
ment in learner performance is observed, i.e., the training loss
of the classifier is converged.

Next, we explain the deep CNN architecture used in our
approach.

E. DEEP NETWORK
The novel CNN architecture integrated into our framework
is illustrated in Figure 8. Our proposed deep network archi-
tecture consists of two parallel CNN stacks, each with six
convolution layers, which is shallower than the majority of
the existing state-of-the-art deep networks. Since the training
process starts with small complex emotion datasets, in both
optimization and active stages, using very deep networks
are vulnerable for overfitting. Hence, as indicated in the
figure, we have chosen a network with fewer convolution
layers with appropriately placed residual blocks, where, each
adding six extra convolution layers to our network. Residual
blocks ultimately increase the number of layers in the net-
work while providing flexibility to skip the training of a few
convolution layers, and hence minimizing the complexity of
the deep network. Generally, the skipped connections in the
residual block eliminate the degradation problem during the
training phase. In addition, after each convolution layer in
our primary network, multiple rectified linear units (ReLU),
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FIGURE 9. Comparison between state-of-the-art deep networks and our approach for optimization and active learning stages on Compound dataset (use
the color image online for better viewing).

dropout, normalization and pooling are attached to improve
the stability of the deep networks.

In summary, we configure both stacks of our parallel deep
CNN identically. Each stack of the network accepts images
of size 128 × 128 with 3-channels, where the upper stack
accepts the upper face and the lower stack accepts the lower
face, as illustrated in Figure 8. The first two convolution
layers are implemented with a kernel of size 7 × 7, a stride
of size 2 and a padding of size 1. The kernel size and the
stride size are set to 5 × 5 and 1 for the third and the fourth
convolution layers. For the last two layers, the kernel size is
further reduced to 3 × 3 with the stride size of 1. For the
last four layers, the padding is set to 0. One ReLU layer is
always attached immediately after each convolution layer of
our primary network. There are two dropout layers placed
after the third and fifth convolution layers. Additionally, other
than the first convolution layer, a pooling layer is placed
after every other convolution layer in our architecture. After
fusing the feature maps, we stack 3 fully connected layers
with sizes 4096, 4096 and 512, respectively. The first two
fully connected layers are followed by two dropout layers in
the network.

As indicated earlier, a residual block is placed between
the third and fourth convolution layers of the main network,
which comprised of 3 skip connections. The first and last of
the six convolutional networks implemented in the residual
block are with the kernel size of 5×5 and stride size of 2. The
kernel size and the stride size of the rest of the convolutional
networks are set to 3× 3 and 1. The padding size is 0 for all
the convolution layers in the residual block.

Finally, a softmax layer is utilized to perform the complex
emotion classification.

IV. EXPERIMENTS AND RESULTS
In this section, we present the results and analysis of
the extended experiment carried out on publicly available
complex emotion benchmark datasets, to demonstrate the

TABLE 1. A summary of the complex emotion datasets used to evaluate
the proposed approach.

cost-effectiveness of our proposed active incremental learn-
ing approach. We report the results separately for three dif-
ferent types of complex emotions, namely compound, micro-
expressions and pain, which are discussed before.

A. EXPERIMENTAL SETTING
1) COMPLEX EMOTION DATASETS
Here, we evaluate the proposed deep active learning-
based approach and report the results on various com-
plex emotion datasets, such as the compound emotion
dataset [4], micro expression datasets CASME [43],
CASME II [23], CAS(ME)2 [62] and SAMM [22], and the
pain dataset UNBC-McMaster Shoulder Pain Expression
Archive (UNBC) [44]. Table 1 illustrates the summary of
complex emotion datasets used in our experiments. The
compound emotion dataset was collected from 230 sub-
jects, which provides annotation of 21 emotion categories,
which includes 6 basic and 15 compound emotions. The
CASME [43] is claimed to be the first spontaneous micro
emotion dataset that provides annotations for 8 micro
emotions, such as amusement, sadness, disgust, surprise,
contempt, fear, repression and tense. The authors further
extended the dataset to CASME II [23], which provides
much more sophisticated annotations for 5 micro-expression
(i.e., happiness, disgust, surprise, repression and others).
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The CAS(ME)2 [62] is another spontaneous dataset
that offers 303 expression samples, including 53 micro-
expression sequences of four classes, such as positive,
negative, surprise and other. Meanwhile, Davison et al.
recently dispensed another spontaneous micro-expression
dataset, namely SAMM [22], that contains annotated samples
for 7 emotion classes, including 6 basic emotions. Lastly,
the UNBC pain dataset is dedicated for the emotion pain
and its intensity levels. The UNBC pain dataset consists
of 200 video sequences with frame-level pain intensity
annotations.

In order to perform a fair evaluation with existing complex
emotion recognition methods, we use 10-fold and leave-one-
subject-out (LOSO) cross-validation techniques to report our
results. In both cross-validation techniques, labeled, unla-
beled and test sets are manually sliced and consistently
swapped across the whole dataset samples. For the 10-fold
cross-validation, in each iteration, 10% samples of the whole
dataset are reserved as the test set to report the performance
of our model. Additionally, in each complex emotion dataset,
we reserve 30% of the annotated samples as the labeled
portion for themodel optimization purpose, and the rest as the
unlabeled portion for the active learning process. In contrast,
for the LOSO protocol, we reserve one subject for testing
purposes in each iteration and present the average results.
We followed the similar protocol that we used for the 10-fold
cross-validation to generate the labeled and unlabeled sets for
optimization and active learning purposes.

2) IMPLEMENTATION
In the training phase, stochastic gradient descent with
momentum (SGDM) method is used as the optimizer. Other
parameters, such as learning rate, momentum, weight decay
and Gaussian standard deviation are set to 10−6, 0.9,
5 × 10−5 and 10−2 respectively. The same CNN param-
eter values are used without any changes in the experi-
ments carried out on all complex emotions datasets. For
the active learning environment, we set the initial thresh-
old δ0 and decay rate dr as shown below in pairs, for
least-confidence, margin-sampling and entropy-based meth-
ods respectively: [(8 × 10−1, 0.2 × 10−6), (8 × 10−1,
0.2×10−6) and (0.2×10−6,−0.1×10−6)]. These parameters
are updated throughout the training process.

3) METRICS
The metrics used in complex emotion analysis are accuracy,
mean squared error (MSE) and Pearson’s product-moment
correlation coefficient (PCC). The accuracy is used to present
majority of the results in our experiments, which is defined
in Eq. 7.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(7)

where, TP, FP, TN and FN are true positive, false positive,
true negative and false negative, respectively.

Additionally, for the pain intensity estimation experiment,
MSE and PCC are gradually used to report the performance
of our proposed approach, which are defined in Eq. 8.

MSE =
1
n

n∑
i=1

(ŷi − yi)

PCC =

∑n
i=1(ŷi − ¯̂yi)(yi − ȳ)√∑n

i=1(ŷi − ¯̂yi)2
√∑n

i=1(yi − ȳ)2
(8)

where, n is the number of samples in the test set. yi and ȳ are
the ground-truth of the ith frame and the mean of {y1, . . . , yn}.
ŷi and ¯̂y are the predicted pain intensity level of the ith frame
and mean of {ŷ1, . . . , ŷn}, respectively. A higher value for
PCC is better while a lower value for MSE is better.

B. EVALUATION FOR COMPOUND EMOTIONS
First, in this experiment, we evaluate the performance of
our proposed framework on classifying the neutral face and
21 compound emotions defined in the compound emotion
dataset [4]. Figure 9 illustrates the improvement of average
classification accuracies of our approach over the five other
state-of-the-art deep networks, considering the percentage
of training data utilized in both optimization (left image)
and active learning (right image) units. It can be seen that
our approach performs favorably in both optimization and
active learning steps against the compared deep networks.
Our proposed framework has utilized 78% of the labeled
training data for the model optimization to reach a stable
average accuracy of 73.9%. It shows that the presented model
is feasible, and can be optimized with a small labeled dataset.
Other deep networks except for AlexNet [45], compared in
this experiment, consumed more training labeled data for
the model optimization. The proposed model also achieved
a better accuracy in the optimization stage compared to the
other state-of-the-art deep networks.

After the optimization, in the incremental active learning
phase, the average classification accuracy of our approach
has improved significantly and reached the peak average
accuracy of 85.02%onlywith 50.5%of the unlabeled training
data. It is clear that the incremental active learning phase has
significantly improved the average classification accuracy of
compound emotions. In addition, our model has recorded
consistent accuracies (≥ 72%) for each emotion as summa-
rized in Table 2. As can be seen in the table, we compared the
accuracies for each compound emotion with Du et al. [4] and
five other state-of-the-art deep networks. For some emotional
states, such as neutral, sadly fearful, fearfully angry, angrily
surprised, angrily disgusted and hate, the best accuracy rates
were not recorded by our model due to the fact that these
emotion classes contain a considerable amount of intra-class
variations that can easily be confused with other classes.
However, the overall comparison results show that our model
showed better classification ability for most of the compound
emotions.
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TABLE 2. Comparison of the average classification accuracy rates obtained for 22 emotion categories that includes neutral, six basic and 15 compound
emotions using 10-fold cross-validation.

FIGURE 10. Comparison between state-of-the-art deep networks and our approach for optimization and active learning stages on UNBC dataset (use
the color image online for better viewing).

TABLE 3. Comparison of the overall accuracy and F1-score achieved on
Compound dataset [4] using both 10-fold and LOSO cross-validations.

Further, the comparison of the overall results achieved on
the Compound emotion dataset is shown in Table 3. It can be
seen that our proposed model achieved better overall results
on the Compound emotion dataset. Notably, our model shows
a way better F1-score compared to other existing models,

which shows that our model is effective with imbalanced
datasets as well.

C. EVALUATION FOR PAIN INTENSITY ESTIMATION
Second, as described earlier, we evaluate the presented
framework on UNBC pain dataset [44] for pain intensity
estimation. In this experiment, we perform 16-level pain
intensity estimation using the presented model, where the
pain intensity levels are as defined in the PSPI metric.
Figure 10 presents the comparison of average accuracy
change against the percentage of the labeled data during
optimization (left) and incremental active learning (right)
stages by our model and other deep networks on the pain
dataset. The results demonstrate that our proposed framework
achieved 82.5% and 98.8% accuracies after optimization and
incremental active phases, respectively, which is better than
the state-of-the-art deep networks compared here. In addition,
our approach used 66% and 65% of the labeled samples in the
respective stages, which is much lower compared to the other
deep networks, except for AlexNet [45].
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TABLE 4. Comparison of pain intensity estimation results between the
proposed approach and the other state-of-the-art methods along with
the deep networks in the literature using UNBC pain [44] dataset.

Further, we compare our proposed frameworkwith existing
pain intensity estimation methods and the state-of-the-art
deep networks in Table 4. The comparison shows that our
approach outperforms the existing pain intensity estimation
benchmarkmethods and the state-of-the-art deep networks by
a comprehensive margin. Our method achieved the highest
overall accuracy of 98.8%, MSE of 1.21 and PCC of 0.79
with 10-fold cross-validation. The low MSE reported for our
method demonstrates that the majority of the misclassified
samples are confused with nearby pain intensity classes.
Some of the very recent pain intensity estimation methods,
such as [51], are not compared with our approach as they use
minimized pain intensity classes.

D. EVALUATION FOR MICRO EXPRESSIONS
Third, to demonstrate the model feasibility and effectiveness
for the recognition of subtle micro-expressions, we further
evaluated our presented framework on four benchmark micro
expression datasets, namely CASME [43], CASME II [23],
CAS(ME)2 [62] and SAMM [22]. From the observation,
the accuracy changes for our approach and other existing
deep networks show a similar behavior as that are achieved
in compound emotion [4] and UNBC pain [44] datasets.
Compared to the state-of-the-art deep networks, our approach
obtained the best accuracies in both optimization and incre-
mental active learning stages on all three micro expression
datasets.

Table 5 and 6 present the comparison of recent existing
benchmark micro-expression recognition methods with our
proposed approach. It can be observed that our approach
outperformed all the state-of-the-art deep networks with
10-fold cross-validation. For the LOSO cross-validation, our
approach outperformed all the benchmark micro-expression
recognition approaches on CASME [43], CASME II [23]
and CAS(ME)2 [62] comprehensively. In addition, our

TABLE 5. Benchmarking against existing micro-expression recognition
approaches and the state-of-the-art deep networks on CASME [43],
CASMEII [43] and SAMM [43] datasets with 10-fold cross-validation.

TABLE 6. Benchmarking against existing micro-expression recognition
approaches and state-of-the-art deep networks on CASME [43],
CASMEII [43] and SAMM [43] datasets with LOSO cross-validation.

approach has shown a competitive performance for themicro-
expression recognition on SAMM [22] dataset. Yet, from
the comparison, Thuseethan et al. [35] achieved a better
performance on SAMM [22] dataset. However, in particular,
our approach has utilized less amount of labeled samples for
training compared to [35]. In comparison with our proposed
approach, we can also see that the classification accuracy
recorded for [35] is much lower on other two micro expres-
sion datasets.

In order to evaluate the generalization ability of our pro-
posed framework for micro-expression recognition, a cross-
database evaluation has been carried out on selected
micro expression categories, which are commonly available
(e.g., disgust) in all three datasets. To perform this,
we trained our framework on one dataset and tested on other
two. The corresponding results are presented in Table 7.
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TABLE 7. Cross database evaluation.

The cross-database evaluation reveals that CASME [43]
and CASMEII [23] are best generalized on each other,
and demonstrated a less generalization on the SAMM [22]
dataset. This is due to the fact that CASMEII [23] dataset is an
extension of CASME [43], and both contain a part of the same
samples. Moreover, this may follow an additional rationale
that both CASME [43] and CASMEII [23] datasets were
collected under the same environment, unlike SAMM [22]
dataset, which was constructed under a completely different
environment. The CAS(ME)2 [62] dataset also achieved bet-
ter accuracies on CASME [43] and CASMEII [23] datasets
in comparison to SAMM [22] dataset. However, in summary,
the classification accuracies obtained for the cross-database
evaluation are satisfactory, and affirms that our model is
readily generalizable.

FIGURE 11. Comparison of the classification accuracies obtained in the
ablative study.

E. ABLATIVE STUDY
Our proposed framework combines an image pre-processing
unit, as described in Section 3.1. To justify that the inte-
grated pre-processing technique improves the performance
of the presented framework, we have carried out an ablative
study. To perform this, we compare the classification accu-
racies after eliminating all or a few significant stages of our
pre-processing phase (a) no pre-processing and (b) no ROI
selection and spatial domain normalization with our (c) final
framework, which includes all the pre-processing stages. The
obtained accuracies of these variants on all complex emotion
datasets are shown in Figure 11. The results clearly indicate
that the integrated pre-processing unit considerably enhances

the performance of our proposed complex emotion recogni-
tion framework. In particular, the classification accuracy has
improved by 34.35% (i.e., from 51.67% to 85.97%) for the
framework without the processing unit of the final frame-
work on CASMEII [23] dataset. This substantial performance
improvement confirms the significance of our pre-processing
unit in our framework.

F. COMPUTATIONAL COMPLEXITY ANALYSIS
We further present a comprehensive comparison of the com-
putation complexity between our approach and other state-
of-the-art deep networks. The computing environment used
to obtain the computation complexity results is Intel(R)
Xeon(R) 2.20 GHz processor accelerated using NVIDIA
GPU with GeForce GTX 1080 Titan. Figure 12 presents the
training and the testing time consumed on each for the com-
plex emotion datasets. To simplify the comparison, we first
set the computational cost of our model to 1. Then, we rep-
resent the computational costs of other state-of-the-art deep
networks as the number of times opposed to the computa-
tional cost of our method. As can be seen, our method is
computationally efficient compared to existing state-of-the-
art deep networks in recognizing complex emotions. In the
training phase, our approach is 33.6% and 185.4% time
efficient compared to AlexNet and Inception-3, respectively.
In particular, compared to existing state-of-the-art deep net-
works, our approach is more effective in the testing process,
as it shows 47.4% and 216.8% better time complexity against
AlexNet and Inception-3.

G. DISCUSSION
In general, our extensive experiments on all three complex
emotion scenarios show that our presented framework is
promising compared to existing benchmark complex emotion
methods and state-of-the-art deep networks. As a common
pattern, it can be seen that the AlexNet [45] progressed better
in the optimization stage, and achieved a competitive accu-
racy to our approach with a small amount of labeled samples.
However, AlexNet [45] failed to converge in the incremen-
tal active phase to outperform our method. In contrast to
AlexNet [45], more deeper networks such as ResNet-152 [20]
and Inception-3 [47] showed slow progression in the opti-
mization stage and converged to competitive classification
accuracies in the incremental active phase. Yet, such deeper
networks utilized more labeled and unlabeled samples in both
stages to reach the maximum classification accuracy rates,
in contrast to our proposed approach.

Due to the fact that our proposed approach requires
limited labeled samples to train the model, it has the poten-
tial applications in recognizing emerging emotions sponta-
neously. In addition, our approach substantially reduces the
inaccurate human annotation for complex emotion recog-
nition. This helps in obtaining more accurate recognition
of complex emotions in systems, such as emotional robots
and human behavior analysis. For example, recognizing
complex emotional cues helps emotion sentient robots to
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FIGURE 12. Comparison of the computational complexity: (left) training time (right) testing time.

respond effectively to human behaviors, and hence enhances
the social interaction between the human and machines.
Further, intelligent personal assistants, such as Apple’s Siri,
Google Assistant, Amazon’s Alexa and Microsoft’s Cortana
can be improved to recognize the complex emotions, using
our technique. In the future, they can provide personalized
assistance to individuals, such as elderly people, which might
help improve loneliness problems faced by the elderly. Our
approach can also be improved to profile the complex emo-
tions using videos along with audios to provide personalize
assistance.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel incremental active
learning-based end-to-end deep CNN framework to per-
form complex emotion recognition using facial expressions
effectively. To the best of our knowledge, the proposed
approach is the first one that exploits the use of an auto-
matic incremental and active learning technique, to predict
the complex emotions using a sparse training data accurately.
Besides the key contributions of our approach, an additional
advantage of our method is that there is no requirement for
manual annotations during the active learning-based training
process. The extensive experiments on benchmark complex
emotion datasets shown that our proposed framework out-
performed existing state-of-the-art deep networks and current
benchmark complex emotion recognition methods. In the
future, we aim to incrementally learn new complex emotions
using active learning based approaches in in-the-wild envi-
ronments. In addition, temporal, voice and textual features
may also be considered to predict the complex emotions
accurately.
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