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Abstract 

In this paper, a model is proposed of the pathophysiological processes of COVID-19 starting 

from the infection of human type II alveolar epithelial cells (pneumocytes) by SARS-CoV-2 

and culminating in the development of ARDS. The innate immune response to infection of 

type II alveolar epithelial cells leads both to their death by apoptosis and pyroptosis and to 

alveolar macrophage activation. Activated macrophages secrete proinflammatory cytokines 

and chemokines and tend to polarise into the inflammatory M1 phenotype. These changes 

are associated with activation of vascular endothelial cells and thence the recruitment of 

highly toxic neutrophils and inflammatory activated platelets into the alveolar space. 

Activated vascular endothelial cells become a source of proinflammatory cytokines and 

reactive oxygen species (ROS) and contribute to the development of coagulopathy, systemic 

sepsis, a cytokine storm and ARDS. Pulmonary activated platelets are also an important 

source of proinflammatory cytokines and ROS, as well as exacerbating pulmonary 

neutrophil-mediated inflammatory responses and contributing to systemic sepsis by binding 

to neutrophils to form platelet-neutrophil complexes (PNCs). PNC formation increases 

neutrophil recruitment, activation priming and extraversion of these immune cells into 

inflamed pulmonary tissue, thereby contributing to ARDS. Sequestered PNCs cause the 

development of a procoagulant and proinflammatory environment. The contribution to 

ARDS of increased extracellular histone levels, circulating mitochondrial DNA, the chromatin 

protein HMGB1, decreased neutrophil apoptosis, impaired macrophage efferocytosis, the 

cytokine storm, the toll-like receptor radical cycle, pyroptosis, necroinflammation, 

lymphopenia and a high Th17 to regulatory T lymphocyte ratio are detailed. 
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COVID-19, SARS-CoV-2, respiratory infection, treatment 

List of abbreviations 

ACE - angiotensin converting enzyme 

AM - alveolar macrophages 

AP - activated platelets 

ARDS - acute respiratory distress syndrome 

AZM - azithromycin 

BALF - bronchoalveolar lavage fluids 

CFR - case fatality rates 

COX1 - cyclooxygenase 1 

CXCL10 - C-X-C motif chemokine 10 

DAMPS - damage-associated molecular patterns 

DIC - disseminated intravascular coagulation 

EC - endothelial cell 

GM-CSF - Granulocyte-macrophage colony-stimulating factor 

HAART - highly active antiretroviral therapy 

HMBG1 - high mobility group box 1 

HMG-1 - high-mobility group protein 1 

IL - interleukin 

LPS - Lipopolysaccharide 

MAC-1 - macrophage-1 antigen 

MAPKs - mitogen-activated protein kinases 

MCP-1 - monocyte chemoattractant protein-1 
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MDSC - CD11b+ Gr-1+ myeloid-derived suppressor cells 

MERS - middle east respiratory syndrome 

Mg - magnesium 

MMP-9 - Matrix metallopeptidase 9 

MPO – myeloperoxidase 

NAC - N-acetylcysteine 

NETs - neutrophil extracellular traps 

NF-kB - Nuclear Factor kappa-light-chain-enhancer of activated B cells 

NK - natural killer 

NLRs - NOD-like receptors 

NO - nitric oxide 

NOS2 - inducible nitric oxide synthase 2 

PF4 - platelet factor 4 

PFA - polyenoic fatty acids  

PGE2 - Prostaglandin E2 

PI3K - phosphoinositide 3-kinase 

PICs - proinflammatory cytokines 

PNC - platelet neutrophil complexes 

PSGL-1 - P-selectin glycoprotein ligand-1 

RAGE - receptor for advanced glycation endproducts 

RCT - randomised controlled trial 

RdRp - RNA dependent RNA polymerase 

ROS - reactive oxygen species 

RSV - respiratory syncytial virus 
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SARS-CoV-2 - severe acute respiratory syndrome CoronaVirus 2 

SIRS - systemic inflammatory response syndrome 

T reg - regulatory T cell  

TF – tissue factor 

TGF - transforming growth factor 

TLR - Toll-like receptor 9 

TMPRSS2 - transmembrane protease, serine 2  

TNF - tumor necrosis factor 

URT - upper respiratory tract 

VAP - ventilator associated pneumonia 

WHO - World Health Organisation 

Zn - zinc 

 

Background 

The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is a zoonotic β-

coronavirus that is closely related to SARS-CoV, which also entered the human population 

from an animal host (de Wit et al. , 2016, Liu et al. , 2020b). SARS-CoV-2 is the cause of 

COVID-19. This is an illness that appears to lead to mild symptoms in the majority of people 

and indeed, many infected individuals remain asymptomatic throughout the course of the 

infection (He et al. , 2020). However, the illness often develops to severe pneumonia and 

acute respiratory distress syndrome (ARDS), leading to considerable morbidity and 

mortality. Case fatality rates (CFR) may be as high as 6.6% (Li et al. , 2020a, Wang et al. , 

2020e, Zhu et al. , 2020). While the CFR attributed to SARS-CoV induced SARS was 

considerably higher and according to the World Health Organisation (WHO) may have 
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exceeded 15% (Donnelly et al. , 2003). However, the absolute number of people killed 

by/with SARS-CoV-2, to date, is greater than both SARS and middle east respiratory 

syndrome (MERS) combined (Mahase, 2020). This is largely owing to a much higher rate of 

transmission, different tissue tropism and due to significant changes in its genome and 

protein structure compared to the other viruses (reviewed by (Petrosillo et al. , 2020)). 

SARS-CoV-2 enters permissive cells as a result of S spike protein high affinity engagement 

with angiotensin converting enzyme (ACE)-2 receptors and subsequent cleavage by the 

adjacent protease TMPRSS2 in a similar manner to SARS-CoV (Vaduganathan et al. , 2020, 

Verdecchia et al. , 2020). However, SARS-CoV-2 initially enters and replicates in epithelial 

cells of the upper respiratory tract (Sungnak et al. , 2020, Zou et al. , 2020). This 

phenomenon is not observed in SARS-CoV to any significant extent (Mason, 2020, Wu and 

McGoogan, 2020). This process likely explains the relatively high viral load in the upper 

respiratory tract (To et al. , 2020), increased levels of viral shedding (Zou et al., 2020) and 

significantly higher transmissibility (Liu et al. , 2020d).  

This difference in tropism may be explained in part by an increased affinity towards ACE-2 

receptors, which appears to be between 10 and twenty times higher than that displayed by 

SARS-CoV (Tai et al. , 2020, Wrapp et al. , 2020). This allows SARS-CoV-2 to readily replicate 

in the upper respiratory tract despite a relative paucity of ACE-2 bearing cells in that region 

(Bertram et al. , 2012, Hamming et al. , 2004). 

In addition, the SARS-CoV-2 spike protein contains a Furin cleavage site in the spike protein 

that does not exist in SARS-CoV (Coutard et al. , 2020, Ou et al. , 2020, Walls et al. , 2020), 

allowing cleavage by cellular polyprotein convertases, such as furin and capthesin and 

potentially enhancing the efficiency of entry by endocytosis (Hoffmann et al. , 2020, 

Sungnak et al., 2020). In this context, it is noteworthy that the Furin cleavage site is also 
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seen in spike proteins of pandemic strains of influenza, including the strain responsible for 

the so called “Spanish flu” of the early 20th century (Coutard et al., 2020, Kido et al. , 2012). 

The benefit to those viruses in possession of the cleavage site is increased tropism, it is 

conceivable that SARS-CoV-2 might be able to infect and replicate in otherwise non-

permissive cells in the upper respiratory tract. There is also some evidence to suggest that 

cathepsin may be an alternative spike cleavage protease in cells expressing ACE-2 receptors 

but lacking Transmembrane protease, serine 2  (TMPRSS2 ) which normally plays an 

indispensable role in the cleavage of the spike protein thereby enabling the fusion of the 

viral and host membrane (Hoffmann et al., 2020).  

While changes in tissue tropism and increased cell internalisation play a role in the high 

transmissibility of the virus, another factor is the initially muted immune response following 

infection (O'Brien et al. , 2020). Mechanistically, this is due to significant changes in the 

structure of the orf3a protein in SARS-CoV-2 compared to SARS-CoV, which allows a greater 

capacity to inhibit the production of interferons I, II and III (Blanco-Melo et al. , 2020, Konno 

et al. , 2020, Sallard et al. , 2020). A schematic of the proposed pathways involved is 

presented in Figure 1. The inhibition of the interferon response in infected cells in the upper 

respiratory tract allows for relatively unhindered replication of the virus, which in 

combination, makes an additional contribution to a high viral load in the upper respiratory 

tract (URT). Importantly, these factors also explain the high levels of the virus in the URT and 

goes some way to explaining the high transmission rates by pre and asymptomatic people 

which according to some studies may account for as many as half of all transmissions) (Liu et 

al., 2020e). This may further explain why the spread of this virus has been so difficult to 

control (He et al., 2020, Rothe et al. , 2020, To et al., 2020, Zou et al., 2020). 
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Evidence accrued from the initial epidemic of COVID-19 in the Wuhan province of China 

suggests that approximately 20% of patients infected with COVID-19 develop severe disease 

that require hospitalisation. In addition, 20% of admitted patients develop pneumonia and 

ARDS thereafter, requiring protracted ventilation (Shi et al. , 2020a, Wu et al. , 2020). In 

almost 50% of cases death occurred from respiratory failure (Shi et al., 2020a, Wu et al., 

2020).  

 

Figure 1. Pattern Recognition receptors involved in detecting RNA viruses 

The presence of invading RNA viruses is detected by a family of Toll like receptors (TLRs) RIG 
like receptors and NOD-like receptors. From the perspective of coronavirus recognition, the 
important TLRs are TLR-7 and 3 which recognise single stranded RN and the dimers of 
positive and negative sense RNA formed during coronavirus replication. TLR 3 and 7 are 
located in late endosomes which maximises viral interaction while denying the pathogen’s 
access to the cytoplasm and nucleus. Activation of these pattern recognition receptors 
results in the transcription of NF-κB and INF5 leading to the production of PICs inducible 
nitric oxide prostaglandins and a large number of chemokines. The presence of coronavirus 
RNA is also recognised by the retinoic acid-inducible gene I (RIG-)-like receptors RIG-1 and 
MDA5 which are located in the cytoplasm. The activation of either PPR results in the 
assembly of a protein complex known as MAVS which acts as a signal relay to trigger the 
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activation of INF3 and INF-7 leading to the production of type 1 II and III interferons. There 
is also evidence to suggest that coronavirus activate nucleotide-binding oligomerization 
domain (NOD)-like receptors (NLRs) leading to the assembly of the NLRP3 inflammasome 
and the resultant production of IL-18 and IL-1.There is evidence that SARSCoV-2 inhibits 
interferon via the production of the non-structural proteins ORF3a and nsp-3 leading to a 
muted immune response and enhanced viral replication. 

 

COVID-19 ARDS is typified by the presence of diffuse alveolar damage, fibrin-rich hyaline 

membranes, increased epithelial and endothelial cell permeability, fluid leakage into the 

pulmonary interstitium, gross disruption of gas exchange, hypoxia and respiratory failure 

(Carsana et al. , 2020, Fox et al. , 2020, Shi et al., 2020a, Tian et al. , 2020) reviewed in 

(Ranucci et al. , 2020). These features are characteristic of ARDS secondary to sepsis, viral 

infections or many other triggers and in this respect, COVID-19 ARDS is unremarkable 

(Gonzales et al. , 2015). 

However, in another respect COVID-19 ARDS appears to be distinct from the ARDS 

associated with other respiratory viruses (e.g. H1N1 influenza Virus) due to evidence of 

hypercoagulation and an exhausted fibrinolytic system (Gattinoni et al. , 2020a, Gattinoni et 

al. , 2020b, Ranucci et al., 2020, Tang et al. , 2020). The importance of hypercoagulation in 

the pathogenesis of severe COVID-19 is further emphasised by an analysis which revealed 

that 70% of fatal cases satisfied a diagnosis for disseminated intravascular coagulation (DIC), 

while that was true in only 1% of survivors (Wang et al. , 2020c) . 

Several research teams have reported the presence of gross immune dysregulation in the 

lungs of patients with severe disease. For example, there is extensive evidence of activated 

alveolar macrophages (Carsana et al., 2020, Liao et al. , 2020, Mason, 2020, Wang et al., 

2020e) and a depletion in the absolute numbers of these immune cells due to excessive 

levels of pyroptosis (Liao et al., 2020, Salomé and Magen, 2020, Yang, 2020). Excessive 

infiltration of activated neutrophils into alveoli and lung interstitial tissue is another 
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common finding in severe COVID-19 (Fox et al., 2020, Yao et al. , 2020b) review (Qin et al. , 

2020). Importantly, evidence suggests that these neutrophils are a source of highly toxic 

neutrophil extracellular traps (NETs) (Fox et al., 2020, Zuo et al. , 2020). Influx of interleukin 

(IL)-1 and tumor necrosis factor (TNF) secreting bone marrow derived monocytes is also a 

finding in such individuals (Wen et al. , 2020). Interestingly, these monocytes also secrete 

lactate dehydrogenase indicating that these immune cells are also undergoing cell death via 

pyroptosis (Wen et al., 2020). The presence of excessive levels of inflammation in patients 

with COVID-19 ARDS is further reinforced by evidence of hypercytokinemia (Liao et al., 

2020, Mehta et al. , 2020, Zhang et al. , 2020b). 

There is also an accumulating body of evidence suggesting excessive systemic immune 

activation and inflammation in patients suffering from COVID-19, with increased levels of 

TNF-alpha, IL-1 beta, IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-1) and C-X-C 

motif chemokine 10 (CXCL10), being commonly reported in patients with severe symptoms 

and pneumonia (Liao et al., 2020, Liu et al. , 2020a, Qin et al., 2020, Shi et al. , 2020b, Wang 

et al. , 2020a, Zhang et al. , 2020c). Furthermore, the extent of immune activation and 

inflammation increases with severity of disease and is some cases ten-fold higher in critically 

ill patients compared to those with mild disease (Chen et al. , 2020b). 

The importance of peripheral immune activation in the pathogenesis of severe COVID-19 is 

further emphasised by replicated data demonstrating that the plasma neutrophil: 

lymphocyte ratio is predictive of both disease severity (Yang et al. , 2020) and mortality (Liu 

et al. , 2020c). This concept is further supported by data suggesting that levels of IL-6 in the 

bloodstream correlate with symptom severity and morbidity, as well as being predictive of 

mortality (Chen et al., 2020b, Guo et al. , 2020, Mehta et al., 2020, Ruan et al. , 2020). 
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In addition, lymphopenia is common in an environment of severe inflammation (Cavaillon 

and Adib-Conquy, 2010, Girardot et al. , 2017). It is commonly observed in patients suffering 

severe disease (Diao et al. , 2020, Huang et al. , 2020, Qin et al., 2020, Shi et al., 2020b, Xu et 

al. , 2020). The weight of evidence suggests that drastically reduced numbers of CD4+ T cells, 

CD8+ T cells, B cells and natural killer (NK) cells are characteristic of COVID-19 (Diao et al., 

2020, Huang et al., 2020, Qin et al., 2020, Shi et al., 2020b, Xu et al., 2020). In addition, the 

degree of lymphopenia correlates with symptom severity (Cao, 2020, Li et al., 2020a) and 

inversely with inflammatory markers such as TNF-alpha and IL-6,(Wen et al., 2020). 

Furthermore, remaining CD4 and CD8 T lymphocytes display signs of exhaustion and 

dysfunction as evidenced by increased expression of PD-1, Tim-3 and NKG2A receptors (Diao 

et al., 2020, Moon, 2020, Zheng et al. , 2020a, Zheng et al. , 2020b). It should be noted that 

the extent of T cell exhaustion is predictive of greater disease severity (Zheng et al., 2020a). 

Several research teams have also reported the presence of TH17 polarised CD4 T cells in the 

lungs and periphery of COVID-19 patients with severe ARDS (Giamarellos-Bourboulis et al. , 

2020, Pedersen and Ho, 2020, Xu et al., 2020). Moreover, these T cells secrete relatively 

large amounts of the highly cytotoxic cytokine IL-17 (Giamarellos-Bourboulis et al., 2020, 

Pedersen and Ho, 2020, Xu et al., 2020). 

The patterns and extent of immune disturbance seen in the lungs and periphery of patients 

suffering from severe COVID-19 are characteristic of a cytokine storm and are commonly 

observed in cytokine release syndromes (Liu et al., 2020a, Mehta et al., 2020, Moore and 

June, 2020, Qin et al., 2020, Ye et al. , 2020, Zhang et al. , 2020a). In addition, many patients 

with severe disease qualify for a diagnosis of “Sepsis” under the Sepsis 3 guidelines and 

many authors have proposed that severe COVID-19 is a virally induced sepsis (Poston et al. , 

2020, Wujtewicz et al. , 2020). 
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Thus far there are no published models of the pathophysiology of the condition from the 

point of viral entry and how the disease might progress. This paper aims to propose such a 

model We will initially focus on the engagement of the virus with type 2 alveolar cells and 

subsequent activation of alveolar macrophages. 

Activation of alveolar epithelial cells and macrophages 

There is ample evidence that SARS infects type 2 alveolar epithelial cells leading to their 

death by apoptosis and pyroptosis via the activation of NLP-3 through mechanisms 

described above (Mossel et al. , 2008, Qian et al. , 2013) reviewed (Liu et al. , 2016). This is 

also clearly true of SARS-CoV-2 (Fox et al., 2020, Mason, 2020, Tian et al., 2020, Wang et al. , 

2020b, Yang, 2020, Yao et al. , 2020a, Yao et al., 2020b). Furthermore, the weight of 

evidence suggests that SARS-COV (La Gruta et al. , 2007, Shinya et al. , 2012) and SARS-CoV-

2 (Carsana et al., 2020, Liao et al., 2020, Mason, 2020, Wang et al., 2020e) result in the 

activation of alveolar macrophages (AM). This is unsurprising, given the close proximity of 

these immune cells to type II pneumocytes and their expression of ACE-2 receptors (Fan and 

Fan, 2018, Huang et al. , 2018, Verdecchia et al., 2020). 

The loss of type II alveolar cells and AM activation has considerable pathophysiological 

importance resulting in the loss of immune homeostasis in the lung (Chakraborty et al. , 

2017, Gonzales et al., 2015, Han and Mallampalli, 2015, Huang et al., 2018). This 

dyshomeostasis in turn is an essential element in the development of severe pneumonia 

and the acute respiratory distress syndrome, which occurs as a consequence of virally 

induced sepsis or indeed, several other inflammatory insults (Chakraborty et al., 2017, 

Gonzales et al., 2015, Han and Mallampalli, 2015, Huang et al., 2018).  

Pyroptosis and necroptosis of alveolar epithelial and endothelial cells are major elements in 

development and progression of ARDS in part by releasing high mobility group box 1 
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(HMBG1) and other inflammatory damage-associated molecular patterns (DAMPS) (Faust 

and Mangalmurti, 2020, Sauler et al. , 2019, Ueno et al. , 2004). Hence, the pyroptotic death 

of type 2 alveolar cells following SARS-Cov2 infection may also be of pathophysiological 

significance in the development of COVID-19 and a major source of inflammation (Fan and 

Fan, 2018, Huang et al., 2018). 

Activated macrophages (AMs) play a major role in maintaining immune homeostasis in the 

lung in the face of pathogen invasion and a myriad of inflammatory insults. The main 

mechanisms involved phagocytosis of dying cells, secretion of anti-inflammatory mediators 

such as transforming growth factor (TGF) beta, Prostaglandin E2 (PGE2) and polyenoic fatty 

acids (PFA), and inhibiting the activation of circulating T cells (reviewed in (Fan and Fan, 

2018, Huang et al., 2018)). However, once activated, these AMs secrete a range of 

proinflammatory cytokines (PICs) and chemokines such as TNF-alpha IL-1 beta, IL-6, and IL-8 

(Aberdein et al. , 2013, Losa García et al. , 1999, Yang et al. , 2018) (Aberdein et al., 2013, 

Losa García et al., 1999, Yang et al., 2018). In addition, AM’s also secrete microvesicles, 

containing massive levels of TNF-alpha (Soni et al. , 2016). This increase in the secretion of 

inflammatory mediators is also accompanied by an increase in the number of AMs polarised 

into a highly inflammatory or M1 phenotype rather than the anti-inflammatory tolerogenic 

M2 phenotype prevalent in physiological conditions (Morrell et al. , 2019, Song et al. , 2019). 

This is of considerable pathophysiological importance as a progressively increased 

population of M1 polarised alveolar macrophages over time results in excessive secretion of 

PICs and chemokines, and is highly predictive of mortality in ARDS patients, while an 

increased population of M2 polarised cells is predictive of survival (Morrell et al., 2019, Song 

et al., 2019). Importantly, the subsequent release of these cytokines and chemokines into 

the pulmonary vasculature plays an important role in the development of ARDS by initiating 
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a series of events which results in the activation of vascular endothelial cells (EC) 

(Frantzeskaki et al. , 2017, Han and Mallampalli, 2015, Huang et al., 2018) .This in turn leads 

to the recruitment of highly cytotoxic neutrophils and inflammatory activated platelets into 

the alveolar space, resulting in a host of pathogenic consequences, as discussed below 

(Frantzeskaki et al., 2017, Han and Mallampalli, 2015, Huang et al., 2018). 

Activation of vascular endothelial cells, platelets and neutrophils 

Endothelial cell activation   

Increased levels of PICs such as TNF-alpha and IL-1 induce endothelial cell activation via the 

upregulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) (Pober 

and Sessa, 2007, Szmitko et al. , 2003), leading to a significant increase in the permeability 

of the pulmonary vascular endothelium (Sukriti et al. , 2014). The activation of pulmonary 

vascular endothelial cell (ECs) also promotes the recruitment of circulating neutrophils via 

the upregulation of surface membrane chemokines, most notably CCL5, CXCL1, MCP-1 and 

IL-8, the surface adherence proteins P-selectin, VCAM-1, ICAM-1 and an array of 

glycosaminoglycans, which play an essential role in neutrophil tethering and migration 

(Cejkova et al. , 2016, Mitroulis et al. , 2015, Ramji and Davies, 2015). 

Once activated, vascular ECs behave in a similar manner to immune cells and become a 

source of PICs and reactive oxygen species (ROS) and also stimulate the activity of immune 

cells in the vascular environment, reviewed (Mai et al. , 2013). Activated ECs also contribute 

to the development of coagulopathy via several mechanisms including the recruitment of 

platelets, independently secreting tissue factor and VWF, decreasing the activity of 

thrombomodulin and protein C while stimulating the activity of PAR-1, (reviewed by (Yau et 

al. , 2015) and (van Hinsbergh, 2012)). The development of endotheliopathy is a major 

factor in the pathogenesis of systemic sepsis and a major player in the development and 
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exacerbation of the underlying cytokine storm (Chang, 2019, Nedeva et al. , 2019). Crucially, 

the development of endotheliopathy is also a pivotal factor in the pathogenesis of ARDS 

(Hendrickson and Matthay, 2018, Millar et al. , 2016) as we discuss below.  

In addition, as the mechanics of the coagulation cascade play a large part in the forthcoming 

discussion, a diagram of the processes involved is provided in Figure 2. 

 

Figure 2. The development of immunothrombosis  

Platelets activated by thrombin and or PICs initiate (PAR)–mediated signalling further 
increasing levels of PICs VWF and TF coupled with suppression of suppression of 
thrombomodulin. Platelet activation also results in increased expression of P-selectin, CD40 
PF4 and a range of surface adhesion receptors ultimately recruiting neutrophils to form 
platelet neutrophil complexes. NET secretion by neutrophils contributes to an increased 
coagulation stimulate increased levels of platelet activation, aggregation and TF mediated 
activation of thrombin. In addition, histones play an important role in promoting thrombin 
generation and inhibiting protein C-mediated anticoagulant responses. PICs also play a role 
in the development of coagulopathy by inhibiting the protein C-protein S-thrombomodulin 
pathway and increasing the production of PAI-1. The combination of a hyperactivated 
coagulation cascade and the inhibition of anti-coagulant pathways, such as the protein C-
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protein S-thrombomodulin pathway and inhibition of the fibrinolytic system is characteristic 
of DIC. This state is also the source of micro emboli and excessive alveolar fibrin deposition 
in ARDS. 

Activation of platelets  

Platelets in the pulmonary vasculature are also targets for activation by the high levels of 

PICs and ROS secreted by alveolar macrophages and activated type II epithelial cells 

(Pignatelli et al. , 2005); (reviewed by (Qiao et al. , 2018)). Activated platelets (AP) also 

become a significant source of PICs and ROS (El Haouari, 2019, Freedman, 2008, Violi et al. , 

2010) reviewed in (Hamilos et al. , 2018). Importantly, APs also secrete several chemokines, 

most notably RANTES, and CCL4, also known as platelet factor 4 (PF4), which increase 

neutrophil activation, survival, recruitment to the endothelium and subsequent tethering to 

EC (Øynebråten et al. , 2015, Sonmez and Sonmez, 2017). Finally, AP also play a crucial role 

in mediating and exacerbating neutrophil mediated inflammatory responses in acute lung 

injury and systemic sepsis by binding directly to neutrophils, resulting in the formation of 

platelet neutrophil complexes (PNC) (Finsterbusch et al. , 2018, Sreeramkumar et al. , 2014, 

Stark, 2019). 

Formation of platelet neutrophil complexes   

The formation of PNCs complexes in inflammatory conditions is initiated by the binding of P-

selectin expressed on the surface of APs and P-selectin glycoprotein ligand-1 (PSGL-1) 

expressed on neutrophils followed by the binding between platelet glycoprotein Ibα and the 

neutrophil beta integrin, macrophage-1 antigen (MAC-1) (Sreeramkumar et al., 2014, Wang 

et al. , 2017b) (reviewed by (Zucoloto and Jenne, 2019)). P-selectin also plays an important 

role in increasing neutrophil binding to ECs, thereby increasing neutrophil rolling while 

increasing expression of MAC-1 in PNCs, which increases neutrophil tethering and 

subsequent crawling (Etulain et al. , 2015, Kornerup et al. , 2010). There are other receptors 
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involved in the process and readers interested in a more detailed consideration of this topic 

are referred to excellent reviews by (Rayes et al. , 2020) and (Iba et al. , 2019).  

Consequences of platelet neutrophil complex formation 

Evidence suggests that the formation of PNCs increases neutrophil recruitment, activation 

priming and the ultimate extraversion of these immune cells in an activated and primed 

state into inflamed lung tissue (Duerschmied et al. , 2013, Ghasemzadeh and Hosseini, 2015, 

Kornerup et al., 2010, Maugeri et al. , 2012, Page and Pitchford, 2013). As previously 

discussed, this is a crucial element in the pathophysiology of ARDS (Frantzeskaki et al., 2017, 

Han and Mallampalli, 2015, Huang et al., 2018)., and  understanding the mechanisms 

involved may identify therapeutic opportunities. 

Briefly, PNCs have a reduced velocity compared to platelets and neutrophils alone and this 

property combined with increased endothelial adhesion increases the sequestration of 

neutrophils and platelets in the microvascular beds of the lung (Graham et al. , 2019, 

Middleton et al. , 2016, Ortiz-Muñoz et al. , 2014). In addition, activated platelets and 

neutrophils engage in mutual amplification of PIC and ROS production, leading to an 

increased level of inflammation than would be achieved by either alone (Duerschmied et al., 

2013, Ghasemzadeh and Hosseini, 2015, Kornerup et al., 2010, Maugeri et al., 2012, Page 

and Pitchford, 2013). Sequestrated PNCs become a source of excessive PIC, ROS and 

chemokine production in the pulmonary vasculature in addition to the PICs, ROS and 

chemokines secreted by alveolar macrophages and type II epithelial cells and vascular ECs as 

discussed above. This facilitates neutrophil priming. 

Priming may be induced by a range of cytokines, chemokines and growth factors such as 

TNF-alpha, IL-1 beta, IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF), 

or engagement with activated endothelial cells (Yao et al. , 2015). The mechanisms involved 
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include major changes in phosphoinositide 3-kinase (PI3K) mitogen-activated protein 

kinases (MAPKs), phospholipase D and calcium level instigated signalling pathways (Hao et 

al. , 2012, Vogt et al. , 2018). Priming results in profound cytoskeletal reorganisation and a 

significant reduction in deformability and increased retention in pulmonary capillary beds 

(Summers et al. , 2014, Zemans and Matthay, 2017). These are resistant to apoptosis and 

secrete massive levels of cytotoxic products including PICs, chemokines, proteases and NETs 

(Juss et al. , 2016, Summers et al., 2014). The association of platelets and neutrophils has 

pathological consequences other than increased sequestration of neutrophils into the lung. 

In particular, there is ample evidence to confirm that increased sequestration of platelets 

and neutrophils in lung microvascular beds leads to the development of a pro-coagulant and 

proinflammatory environment (Graham et al., 2019, Middleton et al., 2016, Ortiz-Muñoz et 

al., 2014). The mechanisms involved are discussed below. 

Platelet neutrophil complexes and the development of hypercoagulability. 

Platelets complexed with neutrophils enhance their phagocytic capacity and their release of 

ROS and other cytotoxic molecules such as myeloperoxidase (MPO) (Assinger et al. , 2011, 

Gros et al. , 2014). Platelets also stimulate neutrophil production of NETs (Clark et al. , 2007, 

Katz et al. , 2011) via a mechanism which involves inducing NETosis (Carestia et al. , 2015, 

Etulain et al., 2015, Maugeri et al. , 2014). Mechanistically, this involves the secretion of 

high mobility group box 1 (HGMB1), which stimulates NET production via increasing 

receptor for advanced glycation endproducts (RAGE) mediated autophagy (Kim et al. , 2019, 

Maugeri et al., 2014, Ramirez et al. , 2019). This DAMP also plays a major role in increasing 

NET production by increasing platelet activation via engagement with Toll-like receptor 

(TLR)-4, resulting in the formation of a positive feedback loop (Huebener et al. , 2015, Stark, 

2019). HMBG1 also enhances neutrophil survival, neutrophil mediated tissue damage, and 
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contributes to the creation of a self-amplifying pattern of platelet activation and NET 

production (Huebener et al., 2015, Ramirez et al., 2019, Stark, 2019). 

In turn, NETs stimulate increased levels of platelet activation, aggregation and tissue factor 

(TF) mediated activation of thrombin, resulting in enhanced intravascular coagulation 

(Elaskalani et al. , 2018, Fuchs et al. , 2010, Zucoloto and Jenne, 2019). Several mechanisms 

appear to underpin the contribution of NETs to thrombus formation including TF- and FXII-

mediated initiation of the coagulation cascade, increasing the recruitment and adhesion of 

additional platelets, inhibition of fibrinolysis and recruitment of VWF and other platelet 

adhesion proteins (Gould et al. , 2015, Martinod and Wagner, 2014). In addition, histones 

play a major role in driving thrombin generation and inhibiting protein C-mediated 

anticoagulant responses (Ammollo et al. , 2011). The importance of NETS in the 

development of coagulopathy is emphasised by their involvement in the pathophysiology of 

sepsis in numerous thrombotic diseases (Jiménez-Alcázar et al. , 2017, van Montfoort et al. , 

2013). 

Over time, the combined effects of activated ECs, neutrophils and platelets, NETs and 

activated endothelial cells in the pulmonary alveo-capillary vasculature lead to the 

development of a highly inflammatory and pro-coagulant state typified by hyperactivation 

of the coagulation cascade and relative exhaustion of the fibrinolytic system with excessive 

production of PICs, DAMPS and fibrin deposition. This is described as immuno-thrombosis 

(Engelmann and Massberg, 2013, Frantzeskaki et al., 2017, Kimball et al. , 2016). This state 

has a major pathophysiological role in the development and exacerbation of systemic sepsis 

as it generates the formation of vascular microthrombi, the development of DIC and 

subsequent multi-organ damage or failure (Assinger et al. , 2019, Dewitte et al. , 2017, 

Nedeva et al., 2019). 
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The sequestration of PNCs in the pulmonary vasculature and the subsequent development 

of immunothrombosis is also the ultimate cause of micro-thrombi and micro-emboli in the 

alveocapillary circulation (Lim et al. , 2013, Pfeiler et al. , 2014) and intra alveolar fibrin 

deposits (Frantzeskaki et al., 2017, Prabhakaran et al. , 2003, Sapru et al. , 2010, Xue et al. , 

2015, Yadav and Kor, 2015). This subsequently increases both dead-space ventilation and 

intra-pulmonary shunting, both characteristic features of ARDS (Brun-Buisson et al. , 2004) 

(Doorduin et al. , 2016, Ozolina et al. , 2016, Sarkar et al. , 2017). The development of 

exaggerated immunothrombosis and the failure of mechanisms required to anchor thrombi 

in the local environment also drive the development of DIC and readers interested in further 

details are referred to (Gando and Otomo, 2015, Ito, 2014). 

The activity of PNCs and the high levels of NET producing neutrophils resulting in 

immunothrombosis appears to be a plausible mechanism underpinning the development of 

grossly enhanced coagulation seen in COVID-19 ARDS. We now turn our attention to the 

development of hypercytokinemia and high rates of AM death and inflammatory lung tissue 

damage seen in such patients. We begin with the pathological consequences stemming 

from a high population of NET secreting neutrophils. These processes are depicted in Figure 

3. 
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Figure 3. The physical and immunological landscape of the lung tissue in ARDS  

Initial infection and activation of type 2 alveolar cells and alveolar macrophages results in 
the secretion of IL-6, PICs and a wide range of chemokines which activate vascular 
endothelial cells and recruit peripheral activated NET producing neutrophils. Mechanistically 
this is achieved via the formation of platelet neutrophil complexes which become 
sequestrated in the lung microcapillaries creating a hyper coagulant and highly 
inflammatory environment within these blood vessels and the wider pulmonary circulation. 
The entry of neutrophils into the lung coupled with their prolonged survival results in the 
development of a cytokine storm with extreme tissue damage and lung dysfunction fuelled 
by an interplay between PICS DAMPS ROS, NLRPS activation, macrophage pyroptosis, influx 
of inflammatory monocytes and necroptosis. 

The recruitment of activated neutrophils into alveolae and interstitial tissue  

NETS and ARDS severity  

As previously discussed, NETS are highly toxic to epithelial and endothelial cells and high 

levels in the alveolar space in patients suffering from ARDS correlate with the severity of the 

condition (Bendib et al. , 2019). In addition, NET activity, as determined by levels of double 

stranded DNA, citrullinated histones, HMBG1 and MPO, is associated with almost four times 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

22 
 

the level of mortality in patients with severe pneumonia (Ebrahimi et al. , 2018). There are 

very high levels of NETS and neutrophils in the alveolar space of ventilated ARDS patients, 

with the latter secreting excessive levels of IL-6 ,IL-8 and CCL2, each playing a major role in 

increasing tissue damage either directly or via the recruitment of more neutrophils from the 

periphery (Mikacenic et al. , 2018). It is, however, important to note that while the release 

of PICs and enzymes such as elastase and MPO from activated neutrophils makes a 

significant contribution to increasing inflammation and lung damage, the dominant players 

in this regard are the contents of NETs, most notably mtDNA, HGMB1 and histones (Brostjan 

and Oehler, 2020, Peng et al. , 2017). Given their importance, the role of each in the 

pathophysiology of ARDS is briefly considered below. 

Role of histones in the pathophysiology of ARDS: Increased levels of histones  

Levels of extracellular histones are substantially higher in the bronchoalveolar lavage fluids 

(BALF) and plasma of ARDS patients, correlate with symptom severity and are predictive of 

mortality (Jin et al. , 2019, Lv et al. , 2017, Zhang et al. , 2013). Histones function as a DAMP 

capable of activating membrane bound and cytosolic PPRs leading to the release of 

inflammatory mediators such as TNF-alpha, IL-1 and iNOS (Allam et al. , 2012, Szatmary et 

al. , 2018). These molecules are also efficient activators of the NLP3 inflammasome and 

inducers of immune and epithelial cell pyroptosis (Allam et al. , 2013). This latter point is 

important as one mechanism underpinning the effects of histones in the development and 

exacerbation of ARDS involves NLRP3 activation and subsequent pyroptosis of peripheral 

macrophages resulting in significant increases in peripheral inflammation (Jin et al., 2019, Lv 

et al., 2017). Unsurprisingly, high levels of histones in the alveoli and the interstitial tissue of 

the lung also increases the activation of resident immune cells, epithelial cells and 

endothelial cells, and induces their death by pyroptosis and necrosis. This results in further 
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damage to the alveolar epithelium, vascular endothelium and enhances barrier dysfunction 

(Xu et al. , 2015). Histones released from NETs or activated but otherwise viable immune 

cells also contribute to the pathophysiology of ARDS other than by directly inducing severe 

pulmonary tissue damage and increasing levels of peripheral inflammation such as 

activation of the complement and coagulation cascades (Standiford and Ward, 2016, Xu et 

al., 2015). 

Role of mitochondrial DNA in the pathophysiology of ARDS  

The presence of mtDNA in the circulation is a marker of mortality in sepsis patients in the 

intensive care unit (Nakahira et al. , 2013, Yan et al. , 2018). In addition, levels of plasma 

mtDNA is predictive of the transition to ARDS (Faust et al. , 2020) and need for ventilation in 

this population (Simmons et al. , 2017). Mechanistically, the role of mtDNA in the 

pathophysiology of sepsis and ARDS also stems from its activity as a DAMP capable of 

activating cytosolic TLR-9 receptors, stimulating the activation of the NLRP 3 inflammasome 

following release from mitochondria within stressed cells or when released into the 

extracellular environment by apoptosis, necrosis, pyroptosis and NETosis (reviewed by 

(Grazioli and Pugin, 2018)). 

Role of HGMB1 in the pathophysiology of ARDS 

High-mobility group protein 1 (HMBG-1) is another major player in the pathogenesis and 

pathophysiology of ARDS, and levels of this molecule in the blood are predictive of mortality 

in virally induced ARDS and severe pneumonia (Andersson and Tracey, 2011, Tseng et al. , 

2014, Wang et al. , 2014a, Zhu et al. , 2010). This heat shock protein also functions as a 

DAMP and plays a major role in the propagation  and exacerbation of sterile inflammation 

and in the development of sepsis (Pisetsky, 2014). In addition, HMBG1 appears to be the 

dominant driver of inflammation resulting from cell necrosis and proptosis, and there is 
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evidence to suggest that its role in the development of ARDS may be multidimensional. The 

association between increased HGMB1 levels and accelerated NET production by 

neutrophils has been discussed. This cytokine also exerts a pathological effect in the 

development of ARDS by aiding in delayed NET clearance, which is a distinctive element 

driving the development and acceleration of the condition (Grégoire et al. , 2018, Scott and 

Kubes, 2018). Ultimately, the decreased clearance of NETs is a consequence of delayed 

neutrophil apoptosis (Grégoire et al., 2018, Scott and Kubes, 2018) which is discussed 

below. 

The role of decreased neutrophil apoptosis in the pathophysiology of ARDS 

Several research teams have reported delayed neutrophil apoptosis and clearance of NETS 

in patients with sepsis related ARDS (Duffin et al. , 2010, Fialkow et al. , 2006, Galluzzi et al. , 

2018, Matute-Bello et al. , 2000). In addition, the percentage of the neutrophil population 

displaying markers of delayed apoptosis correlates with the severity of symptoms and 

several objective measures of tissue damage (Duffin et al., 2010, Fialkow et al., 2006, 

Galluzzi et al., 2018, Matute-Bello et al., 2000) and survival (Sauler et al., 2019). Delayed 

apoptosis is also accompanied by serious pathological consequences as the phenomenon 

may lead to neutrophil pyroptosis (Liu and Sun, 2019, Ryu et al. , 2017) or, in some 

instances, necroptosis (Germic et al. , 2019, Wang et al. , 2016) with increases in highly 

oxidised mtDNA, histones, HMBG1, PICs and a swathe of other inflammatory molecules 

(Germic et al., 2019, Wang et al. , 2015, Yousefi et al. , 2009). Importantly, delayed 

neutrophil apoptosis acts as an additional source of increasing inflammation further 

exacerbating cell death and tissue damage (Grecian et al. , 2018); review (Brostjan and 

Oehler, 2020). 

Causes of delayed neutrophil apoptosis 
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Spirally increasing levels of HMBG1 may contribute to decreased neutrophil clearance in 

ARDS patients by inhibiting neutrophil apoptosis (Friggeri et al. , 2010, Liu et al. , 2008, 

Schaper et al. , 2016). In addition, increased levels of HMGB1 produced by the activity of 

NETS stimulates the release of NETS by other neutrophils increasing the population of 

neutrophils resistant to apoptosis in the lung. This results in a significant increase in 

inflammation and tissue damage, creating one of many feedforward loops involved in the 

progression of ARDS (Huebener et al., 2015, Kim et al., 2019). 

Another, and perhaps predominant cause of prolonged neutrophil survival and sub-optimal 

NET clearance in many patients suffering from ARDS would appear to be impaired alveolar 

macrophage phagocytic clearance of dying cells or efferocytosis (Grégoire et al., 2018, 

Huang et al., 2018, Mahida and Thickett, 2018a, Mahida and Thickett, 2018b, Potey et al. , 

2019). This phenomenon has serious pathological consequences since in physiological 

conditions, alveolar macrophages play an indispensable role in the immunologically silent 

removal of neutrophils and the adoption of an anti-inflammatory profile by macrophages 

(Elliott et al. , 2017, Greenlee-Wacker, 2016, Silva, 2011). In addition, macrophage 

efferocytosis plays a major role in the clearance of NETs (Boe et al. , 2015, Farrera and 

Fadeel, 2013). 

Causes of impaired macrophage efferocytosis 

The weight of evidence suggests that high levels of HGMB1 is an important if not 

predominant driver of impaired alveolar macrophage efferocytosis seen in several lung 

disease including ARDS (Friggeri et al., 2010, Liu et al., 2008, Schaper et al., 2016). Clearly, 

increased NET generation is a major source of HGMB1, but it should be noted that there are 

also other sources of this molecule in ARDS patients which is relevant in the COVID-19 

model proposed here. Such sources include alveolar macrophages, dendritic cells, alveolar 
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epithelial cells and alveolar endothelial cells activated in response to viral activation or high 

levels of TNF-alpha (Ding et al. , 2017, Kim et al. , 2015, Ma et al. , 2016, Smit et al. , 2014). 

High levels of TNF-alpha may also contribute to delayed neutrophil apoptosis and impaired 

alveolar macrophage efferocytosis in ARDS patients. Excessive levels of environmental TNF-

alpha is a well-documented cause of compromised phagocytosis in these immune cells 

(McPhillips et al. , 2007, Michlewska et al. , 2009). In addition, high levels of HMBG1 may 

increase the population of M1 polarised macrophages via a mechanism involving TLR-4 and 

RAGE activation (Li et al. , 2020b, Schaper et al., 2016, Su et al. , 2016, Wang et al. , 2020d). 

This is of importance from the perspective of impaired efferocytosis, as macrophages 

polarised in such a manner display inhibited phagocytosis compared to their M2 polarised 

counterparts (Yao et al. , 2019). Increased polarisation of M1 polarisation is also driven by 

increased levels of TNF-alpha (Ait-Lounis and Laraba-Djebari, 2015, Degboé et al. , 2019) and 

IL-6 (Braune et al. , 2017, Luckett-Chastain et al. , 2016). 

Clearly an increasing interplay between DAMPS, cytokines and ROS secreted by epithelial 

cells, neutrophils and alveolar macrophages can explain high levels of inflammation and lung 

tissue damage seen in ARDS secondary to sepsis and COVID-19. This theme will continue to 

be explored in the following section which focuses on the interplay between DAMPS, TLRs, 

NOD-like receptors (NLRs), PIC and ROS and various forms of necrotic cell death in the 

development of a cytokine storm. The interplay between DAMPS and pattern recognition 

receptors plays a pivotal role in this process. 

The development of the cytokine storm and irreversible tissue damage  

HMGM1, often described as the prototypical DAMP, may contribute to the development of 

acute or chronic lung injury by activating TLR-4, TLR-2 and RAGE receptors resulting in the 

activation of MAP Kinases and ERK, and culminating in the nuclear translocation of NF-kB 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

27 
 

resulting in increased production of PICs and ROS (Guijarro-Muñoz et al. , 2013, He et al. , 

2013, Mulrennan et al. , 2015, Pusterla et al. , 2013). Increased levels of PICs in turn induce 

the release of HMBG1 from immune and epithelial cells and directly cause a self-amplifying 

cascade of inflammation, oxidative stress and lung tissue damage (Entezari et al. , 2014, Lee 

et al. , 2018, Luan et al. , 2018); (reviewed by (Qu et al. , 2019)). This process is likely central 

to the development of chronic, escalating inflammation and tissue damage in many illnesses 

such as multiple sclerosis, rheumatoid arthritis and major depression and has been 

described as the Toll-like Receptor Radical Cycle (Lucas et al. , 2015). 

In the context of ARDS, the weight of evidence suggests that excessive PIC and ROS damage 

to cellular proteins and DNA also results in massively increased intracellular mtROS 

production and the subsequent activation of the NLPR 3 inflammasome (Long et al. , 2020, 

Wang et al. , 2019). This is an important point as inflammasome activation and the release 

of IL-1 and IL-18 appear to make a significant contribution to the development and 

progression of ARDS in the later stages of disease and high levels of the latter cytokine is 

associated with an extremely poor prognosis (Dolinay et al. , 2012, Grailer et al. , 2014, 

Makabe et al. , 2012). This is perhaps unsurprising given data highlighting the indispensable 

role of NLRP-3 activation in the progression of ARDS (Grailer et al., 2014) and sepsis (Kumar, 

2018). In addition information gleaned from animal studies suggests that the inhibition of 

this inflammasome is associated with increased rates of survival (Jin et al. , 2017, Kim et al. , 

2016) (reviewed by (Danielski et al. , 2020)). There would appear to be many elements 

underpinning the association between increased inflammasome activity and mortality in 

ARDS patients. Perhaps the most important is spirally increasing cell death by pyroptosis 

and necrosis, most notably in macrophages and epithelial cells (Long et al., 2020, Wang et 

al., 2019). 
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The role of pyroptosis in the pathophysiology of ARDS 

As previously discussed, pyroptosis and necroptosis of alveolar epithelial and endothelial 

cells are major elements in the development and progression of ARDS (Faust and 

Mangalmurti, 2020, Sauler et al., 2019, Ueno et al., 2004). There is also evidence to suggest 

that the pyroptotic death of neutrophils makes an independent contribution to the 

exacerbation of inflammation in more advanced stages of the condition (Liu and Sun, 2019). 

However, from the perspective of ARDS related mortality, perhaps the most important 

element is the pyroptosis of alveolar macrophages (Fan and Fan, 2018, Hou et al. , 2018, 

Traeger et al. , 2009, Wu et al. , 2015). Indeed, high levels of AM pyroptosis is another 

marker of mortality in patients with ARDS (Zhang and Coopersmith, 2018). 

There is ample evidence to suggest that excessive loss of AMs as result of death via 

pyroptosis, or necrosis, plays an important role in the development and acceleration of lung 

damage by contribution to auto-inflammatory pathways (Li et al. , 2016, Linkermann et al. , 

2014, Xu et al. , 2014, Yang et al. , 2016). The mechanisms underpinning these observations 

would appear to be twofold. Firstly, the loss of resident AMs results in a repopulation of 

AMs derived from highly inflammatory peripheral monocytes which display grossly reduced 

phagocytic capacity, increased production of inflammatory mediators and susceptibility to 

pyroptosis and other forms of cell death (McQuattie-Pimentel et al. , 2018, Schulz et al. , 

2019) (reviewed by (Hu and Christman, 2019)). Secondly, accelerated pyroptosis of the AM 

population, results in ever increasing levels of DAMPS, PIC and ROS in turn resulting in 

spirally increasing tissue damage (Wang et al. , 2001, Xu et al., 2014, Yang et al. , 2005); 

(reviewed by (Fan and Fan, 2018)). The weight of evidence suggests that HMBG1 may well 

be the dominant driver of the inflammatory responses following pyroptotic cell death, as 

inhibition of this molecule significantly decreases such responses (Vande Walle et al. , 2011). 
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Given this and the other information discussed above, it seems reasonable to conclude that 

interventions capable of decreasing the activity and or production of this heat shock protein 

may well have importance in the prevention and potentially the resolution of ARDS. 

The advent of necroinflammation in the pathophysiology of ARDS 

There is now accumulating evidence to suggest that the escalating increases in levels of IL-6, 

TNF-alpha, nitric oxide (NO) and ROS secreted by macrophages (Aberdein et al., 2013, Losa 

García et al., 1999, Yang et al., 2018) also make a significant contributions to mortality by 

stimulating widespread cellular RIPK mediated necroptosis (Faust and Mangalmurti, 2020, 

Yang et al., 2018). This form of cell death is associated with massive increases in levels of 

HGMB1, mtDNA, PICs, chemokines and ROS with ever amplifying levels of tissue damage, 

described as necroinflammation (Newton and Manning, 2016, Zhu et al. , 2018), leading to 

irreversible lung failure (Wang et al. , 2017a). Necroptosis is predictive of non-resolving 

ARDS and mortality in patients on mechanical ventilation (Faust and Mangalmurti, 2020, 

Yang et al., 2018). The pathological consequences of programmed cell death are difficult to 

overstate as studies have reported a causative association between the advent of 

widespread RIP Kinase-dependent necroptosis and the development of multiple organ 

failure and death in systemic inflammatory response syndrome and sepsis (Reilly et al. , 

2016). Elevated levels of RIP-3 in the blood is an almost invariant marker of a cytokine storm 

and is predictive of multiple organ failure and death. (Duprez et al. , 2011, Ma et al. , 2018, 

Schenck et al. , 2019). The mechanisms underpinning the development of necroptosis are 

relatively complex and readers interested in the biochemistry involved are referred to 

comprehensive reviews by (Morris et al. , 2018c) and (Sarhan et al. , 2018) and the matter 

will not be considered further here. However of note a recent study has revealed the 

existence of a positive feedback loop between pyroptosis and necroptosis which leads to 
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even higher levels of tissue damage and dysfunction (Chen et al. , 2020a). This data further 

emphasises the importance of NLRP3 activation in the pathophysiology of ARDS and 

highlights the widespread inhibition of this inflammasome as a highly desirable therapeutic 

target. 

The role of T cells in the pathophysiology of ARDS 

An environment of severe chronic inflammation and oxidative stress seen in patients in 

advanced ARDS can lead to lymphopenia, compromised leucocyte function and a high 

Th17:regulatory T cell (T reg) ratio (Maj et al. , 2017, Moro-García et al. , 2018, Morris et al. , 

2013b, Morris et al. , 2014, Morris et al. , 2018a, Saeidi et al. , 2018) contributing to the 

pathophysiology of the condition. 

T regs play an important role in the prevention and resolution of ARDS via several routes 

such as promoting neutrophil clearance, inhibiting the effects of IL-6 and promoting the M2 

polarisation of alveolar macrophages (Lin et al. , 2018). T regs also act as a cytokine sink and 

ameliorates otherwise uncontrolled inflammation via the secretion of IL-10 and TGF beta 

with a resultant downregulation in the production of TNF-alpha and IL-1 beta by resident 

and infiltrating macrophages (Lin et al., 2018, Wong et al. , 2019). 

TH17 polarised T cells also play a pathological role in the development and exacerbation of 

ARDS (Wong et al., 2019). The main mechanism underpinning this association is increased 

production of IL-17 (Giamarellos-Bourboulis et al., 2020, Pedersen and Ho, 2020, Xu et al., 

2020). This is a highly cytotoxic molecule capable of causing significant levels of tissue 

damage and plays a major role in the recruitment of neutrophils from the periphery 

(Mikacenic et al. , 2016). High levels of IL-17 is a marker for a poor prognosis in patients with 

ARDS (Mikacenic et al., 2016). The importance of Th17 and T regs in the pathophysiology of 
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ARDS is emphasised by data suggesting that the TH17:T reg ratio is predictive of 28 day 

mortality in ventilated ARDS patients (Mikacenic et al., 2016) 

A suggested therapeutic approach to treatment  

Many of the elements involved in the pathophysiology of ARDS are dependent on the 

chronic or long-term activation of NF-κB. For example there is copious evidence that 

activated NF-κB plays an important if not indispensable role in the initiation of platelet 

activation and maintaining such platelets in that state (Chang et al. , 2011, Lu et al. , 2011, 

Lu et al. , 2012, Malaver et al. , 2009, Spinelli et al. , 2010). Activated NF-κB plays an 

indispensable role in the production, survival, and activation of neutrophils (von Vietinghoff 

et al. , 2010, Wang et al. , 2009) and their release of NETs (Lapponi et al. , 2013, Mohammed 

et al. , 2013). Chronically upregulated NF-κB is also an essential element enabling the 

activation of alveolar macrophages (Moine et al. , 2000, Schwartz et al. , 1996). This is also 

true of monocyte activation and their subsequent differentiation into macrophages (Liu et 

al. , 2017a, Takashiba et al. , 1999). Inflammasome activation is also dependent on the 

upregulation of NF-κB (He et al. , 2016, Liu et al., 2017a). Importantly there is an 

accumulating body of evidence implicating elevated NF-κB in the pathogenesis and 

progression of ARDS (Gao et al. , 2017, Mishra et al. , 2016, Pooladanda et al. , 2019, 

Umberto Meduri et al. , 2011).  

In addition there is a wealth of evidence to suggest that  the maintenance and progression 

of ARDS also requires the presence of systemic sepsis or at the least excessive levels of 

systemic inflammation (Fan and Fan, 2018, Han and Mallampalli, 2015, Meduri et al. , 2009). 

This is important as there is considerable evidence of sepsis in patients with severe COVID-

19 and that chronic activation of NF-κB in the development and progression of systemic 

sepsis (reviewed by (Liu and Malik, 2006)). Hence the  localised suppression of NF-κB would 
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seem to be an attractive option and (Steinhagen et al. , 2020) (reviewed by (Nedeva et al., 

2019)).  

Suggestions for therapeutic intervention 

The weight of evidence suggests that Zinc (Zn) is a highly effective NF-κB inhibitor in vivo 

(Bao et al. , 2010, Knoell and Liu, 2010, Liu et al. , 2014). This is of particular interest as 

several authors have reported grossly depleted Zn levels in patients with severe infections, 

sepsis and ARDS hence there is a case for Zn supplementation in COVID-19 (Besecker et al. , 

2011, Cirino Ruocco et al. , 2018, Shanley et al. , 2007, Wong et al. , 2007). It is also 

noteworthy that vitamin C levels are also commonly depleted in patients with sepsis and 

ARDS (Ang et al. , 2018, Kuhn et al. , 2018) and several authors have reported 

downregulation of NF-κB following its administration (Cárcamo et al. , 2002, Ichim et al. , 

2011). Vitamin D is also severely depleted in many patients with sepsis and ARDS (Kempker 

et al. , 2012, Nair et al. , 2018) and dietary supplementation with this molecule  also results 

in significant inhibition of NF-κB (Bergholm et al. , 2002, Csiszar et al. , 2008, Goncalves-

Mendes et al. , 2019, Ishii et al. , 2000, Ni et al. , 2014). There is also growing interest in 

vitamin D supplementation in treating COVID-19 following the publication of a paper 

reporting severely depleted levels of this vitamin in patients with COVID-19 pneumonia and 

COVID-19 ARDS(Ilie et al. , 2020). 

There are several other molecules with a proven pedigree as NF-κB inhibitors such as 

azithromycin (AZM) (Aghai et al. , 2007, Stellari et al. , 2014), curcumin, melatonin and 

coenzyme Q10 (Morris et al. , 2013a, Morris et al. , 2019, Morris et al. , 2018b).This is also 

true of N-acetyl-cysteine (Farid et al. , 2005, Paterson et al. , 2003, Wu et al. , 2014). There is 

also evidence that aspirin is an effective NF-κB inhibitor (Liu et al. , 2017b, Sham et al. , 
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2018, Wang et al. , 2014b) although it should be emphasised that doses in excess of 

300mg/day are needed to exert this effect in vivo (Liao et al. , 2015, Ornelas et al. , 2017). 

Conclusion  

A detailed and highly plausible model has been put forward in this paper demonstrating the 

pathophysiological steps of COVID-19 from the initial infection of type II alveolar epithelial 

cells by SARS-CoV-2 to the development of ARDS. There are various control points in this 

model at which interventions might be of therapeutic value. These include inhibition of EC 

platelet and neutrophil activation, inhibition of neutrophil migration and NET production, 

stimulation of AM phagocytosis, and inhibition of the NLRP3 inflammasome. These 

objectives might all be achieved via the concomitant use of one or more NF-κB inhibitors. A 

trial investigating the combined use of Zinc, vitamin C and vitamin D would seem to be a 

rational option given their depleted levels in patients with sepsis and ARDS and their 

potential as inhibitors of NF-κB. In addition, one or more of the NF-κB inhibitors discussed 

above might also be considered given their benign side effect profile and the difficulty of 

treating ARDS once the condition has arisen. 
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