l‘)

Check for
updates

Protecting IP of Deep Neural Networks
with Watermarking: A New Label Helps

Qi Zhong!, Leo Yu Zhang' ™) Jun Zhang?, Longxiang Gao', and Yong Xiang'

! Deakin University, Melbourne, VIC 3125, Australia
{zhongq,leo.zhang,longxiang.gao,yong.xiang}@deakin.edu.au
2 Swinburne University, Melbourne, VIC 3122, Australia
junzhang@swin.edu.au

Abstract. Deep neural network (DNN) models have shown great suc-
cess in almost every artificial area. It is a non-trivial task to build a
good DNN model. Nowadays, various MLaaS providers have launched
their cloud services, which trains DNN models for users. Once they are
released, driven by potential monetary profit, the models may be dupli-
cated, resold, or redistributed by adversaries, including greedy service
providers themselves. To mitigate this threat, in this paper, we pro-
pose an innovative framework to protect the intellectual property of deep
learning models, that is, watermarking the model by adding a new label
to crafted key samples during training. The intuition comes from the
fact that, compared with existing DNN watermarking methods, adding
a new label will not twist the original decision boundary but can help
the model learn the features of key samples better. We implement a
prototype of our framework and evaluate the performance under three
different benchmark datasets, and investigate the relationship between
model accuracy, perturbation strength, and key samples’ length. Exten-
sive experimental results show that, compared with the existing schemes,
the proposed method performs better under small perturbation strength
or short key samples’ length in terms of classification accuracy and own-
ership verification efficiency.

Keywords: DNN - Intellectual property protection - Machine learning
as a service - Watermarking

1 Introduction

As deep learning models are more widely deployed and become more valuable,
many companies, such as Google, Microsoft, BigML, and Amazon, have launched
cloud services to help users train models from user-supplied data sets. Although
appealing simplicity, this process poses essential security and legal issues. The
customer can be concerned that the provider who trains the model for him might
resell the model to other parties. Say, for example, an inside attacker can repli-
cate the model with little cost and build a similar pay-per-query API service
with a lower charge. Once that happens, the market share of the model holder

© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12085, pp. 462-474, 2020.
https://doi.org/10.1007/978-3-030-47436-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47436-2_35&domain=pdf
https://doi.org/10.1007/978-3-030-47436-2_35

Watermarking Deep Neural Networks: A New Label Helps 463

may decrease. In another scenario, a service provider may be concerned that
customers who purchase a deep learning network model may distribute or even
sell the model to other parties with a lower fee by violating the terms of the
license agreement. Undoubtedly, these can threaten the provider’s business. As
a result, endowing the capability of tracing illegal deep neural network redistri-
bution is imperative to secure a deep learning market and provides fundamental
incentives to the innovation and creative endeavours of deep learning.

In the traditional literature, watermarking [2] is mainly used for copyright
protection [11,15] of multimedia data. Applying the idea of watermarking to pro-
tect the Intellectual Property (IP) of Deep neural network (DNN) models is first
introduced by Uchida et al. [13] in 2017. After that, researchers have proposed
several DNN watermarking schemes, which can be mainly categorized into two
types according to their watermark extraction/verification method: white-box
and black-box watermarking. The works in [13] and [3] are the typical exam-
ples of white-box watermarking, which are built on the assumption that the
internal details of the suspicious model are known to the model owner and the
entire watermark needs to be extracted. The authorship verification is done by
comparing the bit error between the extracted watermark and the embedded
one. However, their range of application has been restricted by the inherent con-
straint, i.e., the internal details is known to the owner, and recent works are
more focused on the black-box setting.

The black-box setting only assumes access to the remote DNN API but not its
internal details. The frameworks of white-box and black-box DNN watermarking
schemes are the same, i.e., they both consist of a watermark embedding stage and
an extraction/verification stage. Typical examples of black-box watermarking
are the works in [1,14], where the authors utilized the back-door property of
neural network models [1,6] to embed ownership information when building the
model. More specifically, in these works, the watermark embedding is achieved
by training with, besides normal samples, some extra crafted samples, or the
so-called trigger set (both are referred to as key samples in this work). In the
verification stage, the watermarked model will return the predefined labels upon
receiving the key samples (compared to the watermark-free model who returns
random labels) while performing as normal on non-key samples. According to
the key samples they used, these methods can be further categorized into two
main classes as follows.

The first category is to use crafted key samples, that is, key samples are
obtained by superimposing perturbation to training samples. Taking image clas-
sification as an example, one can embed a readable logo or noise pattern into
the normal training images. Then these key images are assigned to a specific
wrong label [14]. In Merrer et al’s work [9], some normal images that close to
the decision frontier are modified imperceptibly, and part of them are assigned
to wrong labels, while others inherit their original correct ones. Different from
[9,14], the authors in [10] employed an autoencoder to embed an exclusive logo
into ordinary samples and get the key samples.

464 Q. Zhong et al.

The second category is to use clean key samples. For instance, in [14], one
kind of key images are chosen from unrelated classes and marked to a specific
wrong label. In [5], the key samples are sampled from the ordinary images,
which can be correctly recognized by the watermarked model but misclassified
by the corresponding watermark-free model. Another typical example is the
work proposed by Adi et al. in [1], in which they chose some abstract images
that are uncorrelated to each other to serve as key samples, and these abstract
images are randomly labeled (so the probability that this random label equals
the output label of an watermark-free model is low). The underlying rationale
is, once again, that only the protected model can correctly recognize the key
samples with overwhelming probability since they contribute to the training
process.

To summarize and to the best of our knowledge, all the existing black-
box DNN watermarking schemes are back-door based, and they are key sample
dependent since assigning key samples with wrong labels will inevitably, more
or less, twist the original decision boundary. From this sense, the functional-
ity (i.e., classification accuracy) and robustness of the watermarked model are
directly related to the characteristics of the used key samples. Say for example,
if crafted key samples are used for watermarking a DNN model, and a fixed
perturbation is superimposed to certain key sample and this very crafted key
sample is far away from the original classification frontier (of the watermark-free
DNN model), then the decision boundary will be twisted heavily (e.g., become a
fractal-like structure) to meet the accuracy criteria, while the robustness or the
generality will decrease correspondingly.

Our key observation to mitigate this problem is simple but effective: adding
a new label’s to the key samples will minimize, if not eliminate, the effect of
boundary twisting. The rationale lies in the fact that, instead of treating key
samples are drawn from the marginal distribution of the sample space, we con-
sider the superimposed perturbation to the samples or unrelated natural samples
as a new feature that dominates the classification of a new class. Theoretically,
after adding a new label, the boundary will not be twisted, and all the merits of
the corresponding watermark-free model will be preserved. From another point
of view, the required number of key samples for watermark embedding, owner-
ship verification, and the false-positive rate will be minimized when compared
with boundary-twisted kind DNN watermarking schemes [14]. In a nutshell, we
regard the contributions of this work are as follows:

— We propose a novel black-box DNN watermarking framework that has high
fidelity, high watermark detection rate, and zero false-positive rate, and robust
to pruning attack and fine-tuning attack.

— We evaluate the proposed framework on three benchmark datasets, i.e.,
MNIST, CIFAR10 and CIFAR100, to quantify the relationship among classi-
fication accuracy, perturbation strength, and length of the key samples used
during training.

The rest of this paper is structured as follows. In Sect. 2, we briefly intro-
duce some background knowledge of deep neural networks, watermarking and

Watermarking Deep Neural Networks: A New Label Helps 465

DNN watermarking. Section 3 presents the formal problem formulation and algo-
rithmic details of the proposed DNN watermarking approach. The experimental
results and analyses are presented in Sect. 4, and some further security consid-
erations are discussed in Sect. 5. We make a conclusion in Sect. 6.

2 Preliminaries

2.1 Deep Neural Network

Conceptually, the basic premise of a DNN model is to find a function F : X — Y
that can predict an output value y € Y upon receiving a specific input data
z € X. A DNN model generally consists of three parts: an input layer, one or
more hidden layers, and an output layer. Each layer has several nodes that are
customarily called neurons that connect to the next layer. Generally speaking,
the more hidden layers, the better the performance of the model.

However, it is not an easy task to train and learn a good model F that
predicts well on unseen samples. Typically, the training requires a vast number of
labeled dataset D = {xm ,y@IN | while the labeling requires expert knowledge
in most applications. With the data available, the real training, which involves
minimizing a loss function L that is dependent on millions of parameters in
the case of DNN, also relies on powerful computing resources. This observation
motivates us to design mechanisms to protect the intellectual property of DNN.

2.2 'Watermarking vs DNN Watermarking

Digital multimedia watermarking, which makes use of the redundancy among
the data of multimedia to hide information, is a long-studied research area.
One popular application of it is to provide ownership verification of digital con-
tent, including audio, video, images, etc. The ownership verification process can
be achieved in two different ways depending on the embedding methods: 1)
extracting data from a suspicious copy and comparing the similarity between
the extracted data and the embedded watermarks; 2) confirming the existence
of an ownership-related watermark does exist in a suspicious copy. Typically, the
verification is executed by a trusted third party, for example, a judge.

For DNN watermarking, the watermark extraction/verification process can
be executed in either a white-box or black-box way. The white-box setting
assumes that the verifier has full access to all of the parameters of the suspicious
model, which is similar to the first kind of digital watermarking verification.
While in the black-box setting, it assumes that the verifier can only access the
API of the remote suspicious model, i.e., sending queries through the API of
the suspicious model who will output a class tag. Most recent DNN watermark-
ing schemes focused on the black-box verification as it is more practical than a
white-box one. This work also lies in the domain of the black-box setting.

466 Q. Zhong et al.

3 DNN Watermarking with a New Label

Similar to the current literature and for easy presentation, we only focus on
image classification DNN model TP protection. Without loss of generality, we
only consider the first category of black-box DNN watermarking, i.e., crafting
image samples by superimposing perturbation to them. But it is noteworthy to
mention that the proposed model can also be applied for classification models of
other data formats, and it is also compatible with the second category of DNN
watermarking. There is no essential distinction between these two kinds of key
samples in terms of classification tasks since both of them can be viewed as the
perturbed version of the original images.

3.1 Problem Formulation

We consider the scenario in which three parties are involved: a service provider,
who helps the customer to train a watermarked model Fyy; a customer Alice, who
is the model owner that provides the training data; and an adversary Bob, who
is the business competitor of Alice that has obtained a copy of Alice’s model Fyy.
After receiving the model of Alice, Bob has the incentive to modify the model
from Fyw slightly to get F{y, say for example, by model compression, to avoid
IP tracing under the condition that the model accuracy does not decrease. We
study the problem of how to prove the model Fi{y from Bob is an illegal copy
of Alice’s model Fyw via black-box accessing F{. The overall workflow of the
service is depicted in Fig. 1.

Key Sample Generation DNN Watermark Embedding DNN Watermark Verification

Training

—

Clean Data
“airplane”

mm) “airplane”

o

Cmmkin

XX
\
r‘ Nalg”>
Suspicious Model
w!!.

Disturbance

DNN Model
Training

()

A

Alice

Key Samples
“deakin”

MLaa$S

Key Samples 1

Judge

Fig. 1. The workflow of our DNN watermarking.

Ideally, a good watermarked DNN model needs to have the following desirable
properties:

— Fidelity: the classification accuracy of the watermarked model Fy for normal
test data should be close to that of the original model F;

Watermarking Deep Neural Networks: A New Label Helps 467

— Effectiveness and efficiency: the false positive rate for key samples should be
minimized, and a reliable ownership verification result needs to be obtained
with few queries to the remote DNN API;

— Robustness: the watermarked model can resist several known attacks, for
example, pruning attack and fine-tuning attack.

From a high-level point of view, a DNN watermarking scheme [consists of
three algorithms: KsGen, TrEmb, and Ver. KsGen takes as input a subset of the
original dataset D and a secret S, and outputs a key sample dataset. TrEmb
takes as input the original dataset D and the result from KsGen, and outputs
a watermarked model Fyw. And Ver takes as input a suspicious copy Fiy and
the result from KsGen, and conclude whether F{y is pirate or not. The DNN
watermarking scheme [is superior (to the literature works) if it achieves better
trade-off among the above mentioned three properties.

3.2 The Details of Our Proposed Method

Before diving into the details of the method, we present a motive example first.
For illustration, we extract the output layer to form a toy network (the left part
of Fig.2(a)). Then we add a new label to the extracted network to observe the
boundary twist of the expanded network (the right part of Fig. 2(a)). As is clear
from Fig. 2(a), the change caused by adding a new label is quite small. We run
more experiments on this toy network and the expanded network and depict the
results in Fig. 2(b) for clear comparison.

Softmax Layer + a new label
0
025 /‘-\‘\ 025 O
@ -

i -
i
y - %»=0016 | ' > 3120015
.0/7} I
1 | /
| ‘ -+ y,=0116 °
. - y=0117
I
I
[
i
I
I
i
i

- 3=0859
- y3=0867

2o * 74=0010

(a) The toy network. (b) Boundary of the toy network.

Fig. 2. A toy example of decision boundary twist when adding a new label.

For ease of presentation and without loss of generality, assume the original
goal is to predict (A — 1) classes by training a model F from the dataset D =
{xm YN - After adding a new label, we alternatively train a model Fy from
D and some crafted samples (by running KsGen) to predict A different classes.
With these notations, the details of the three algorithms KsGen, TrEmb, and Ver
are given as follows.

Key Samples Generation KsGen: For a given subset of D, say Dq, the algo-
rithm crafts samples by calculating

B = 2@ 4 B -¢e, for all @ e Dy,

468 Q. Zhong et al.

where € is the perturbation pattern determined by the secret .S, and o = % and
0B, the perturbation strength, are system parameters that will be studied later
in Sect. 4. Assigning all the crafted samples to the A-th label, KsGen outputs
the key sample dataset K = {£(*), A}Lﬂill‘.

DNN Training and Watermark Embedding TrEmb: With the datasets
K = {k®), A}Lﬂill‘ and D = {x(l),y(i)}ij\él available, the service provider trains
a DNN model Fy. Different from the watermark-free model F that classifies
(A —1) classes, the watermarked model Fy learns from the crafted dataset K
to classify one more class, i.e., the class A. Aligning with the literature works
[1,5,9,10,14], we also employ the softmax function for the output layer.

DNN Watermark Verification Ver: Upon detecting a suspicious DNN service
Fi of Bob, Alice will ask the judge to verify whether a secret watermark can be
identified from Bob’s model. The judge will choose a subset of D, say it is Do,
and produce K’ = KsGen(S,Ds) and send query image k € K’ to F{y to check
the output label is A or not.

Remarks: It is easy to understand that, after adding a new label, a watermark-
free model cannot output a nonexistent class label A, that is, the probability

Prob[F(z) = A] = 0.

It holds no matter x € D or z € K, which implies zero false-positive rate and it
is desirable as discussed in Sect. 3.1.
Correlating with more properties from Sect. 3.1, fidelity essentially requires

[Prob[F(2)) = y] — Prob[Fw(2?) = y]| < negl

for all non-key (both training and testing) samples, i.e., the performance differ-
ence for the classification of normal images between F and Fy is negligible. In
terms of watermarking effectiveness and efficiency, it means that the judge can
confirm ownership with few API calls of F{, this requires

Prob[Fw (k) = A] > negl,

for k € K'. Theoretically, say Prob[Fw(k) = A] = p, when the judge submit ¢
key samples to the APT of the suspicious DNN, the overall watermark detection

accuracy is
(g—1)
Acclg) =)~ (1-p)p

where 6 is the number of appearance of the label that is not A. Then the mean
value of ¢ is determined by

(|x'|-1)

Elq] = Zi:o (i+1)-(1-p)'-p
= [1 — (K |p+1)(1 —p)|K'q /p < 1/p,

which is bounded by the reciprocal of the accuracy on key samples. For example,
if p = 0.8, we have E[g] = 2, which is small enough for verification purpose.

Watermarking Deep Neural Networks: A New Label Helps 469

4 Experiments and Analyses

In this section, we evaluate the performance of our proposed DNN watermarking
method using three datasets: MNIST, CIFAR10 and CIFAR100. The back-door
based DNN watermarking scheme proposed by Zhang et al. [14] serves as the
main test-bed to evaluate our proposal.

4.1 Experimental Settings

We train and test all models using the Tensorflow package on a machine equipped
with 2xTesla V100 GPUs. To eliminate the impact of randomness, every exper-
iments are executed by 50 times, and the mean is calculated.

Datasets: Three different benchmark datasets are used for the evaluation of our
proposal, which are MNIST, CIFAR10, and CIFAR100, respectively. According
to our definition of key samples, they can be viewed as the modified version of
the ordinary samples, and the differences lie in the location and strength of the
perturbation. In [14], the authors validated that the key samples generated by
adding noise to normal images are the best choice in terms of different assessment
metrics. For this reason, and also to facilitate experiments and comparisons, we
use Gaussian noise mode, which can be easily obtained from a secret random
number generator under S. In [14], the key samples are labeled as one of the
existing classes, say, for example, class “airplane”. So the key samples should be
generated from normal samples that do not belong to the class “airplane”.

Models: Two models with different architectures are employed in our exper-
iments. The configuration of DNN-1 is: conv.ReLU32(3 x 3), MaxPooling
(2 x 2), Dense.ReLU100, Dens.Softmax; The configuration of DNN-2 is:
conv.ReLU64(3 x 3), conv.ReLU64(3 x 3), MaxPooling(2 x 2), conv.ReLU128(3 x
3), conv.ReLU128(3 x 3), MaxPooling(2 x 2), conv.ReLU256(3 x 3), conv.ReLU
256(3 x 3), MaxPooling(2 x 2), Dens.Softmax.

It is worth mentioning that the aim of this work is not to achieve superior
classification accuracy, but to compare the performances between watermarked
networks trained with key samples that predefined with a new label or not.
These DNNs are relatively shallow but have a fast training speed, which meets
our requirements. We using the normal dataset, without key samples to train
the watermark-free models F, and the their accuracy for the three benchmark
datasets are 98%, 87%, and 60%, respectively.

4.2 Evaluation of the Desired Properties

Fidelity: The main purpose of fidelity is to test whether the classification accu-
racy of the watermarked model Fy, when testing on non-key images, is deterio-
rated or not after embedding.

To assess this property, we test the classification accuracy of the watermarked
model Fy on original test dataset (the original functionality of F) and newly
generated key sample dataset (the judge will need to use it at the Ver stage).

470 Q. Zhong et al.

In addition, we, by comparing with the work in [14], experimentally investigate
the relationship among performance, the ratio of the perturbed samples for train-
ing a, and the perturbation strength 3, as shown in Fig. 3. From the dotted line
in Fig. 3, it is easy to come to the conclusion that both of the proposed method
and Zhang et al.’s method achieve high classification accuracy on normal sam-
ples. In fact, they are similar to the ground truth of the original watermark-free
model F.

Effectiveness and Efficiency: The goal of effectiveness is to measure the cred-
ibility of watermark existence provided by the output results of the verification
process, while efficiency is to test how many queries are needed to get a credible
watermark existence result under the pay-per-query API service. Obviously, the
fewer queries the better, as it can not only save time & money for verification,
but also prevent arousing Bob’s suspicion.

Accuracy(%)

Accuracy (%)

Our method

~——Zhang et al.'s method +—2ha

24 25 26 27 28 29 3 31 32 33 34 35 12 9 10 1

B(x1079) T a0y

Blx107)

(a) MNIST: o = 0.001 (b) CIFARIO: a = 0.001 (c) CIFAR100: @ = 0.001

120 120 120

80

Accuracy (%)
Accuracy (%)

oL
——1h

12 1

9 10

4 5 6 7 4 5 6 7
a(x1073%) a(x107%)

(d) MNIST: 8 =25x10"% (e) CIFAR10: 3 =0.001 (f) CIFAR100: 8 = 0.001

3 a4 5 6 7
a(x1073)

Fig. 3. Model accuracy of the proposed method and Zhang et al’s method [14] for
normal test samples and untrained key samples under different o and . The solid line
represents the testing result for untrained key samples and the dotted line represents
the test result for normal test samples.

From Fig. 3(a)-(c), we can see that the model accuracy of both methods is
increasing with the perturbation strength of key samples. As shown in Fig. 3(e),
when perturbation strength 4 = 0.001, our method achieves the testing accuracy
higher than 80% with only 0.6% of key samples for training. For comparison, in
Zhang et al.’s method, to get the same accuracy, more than 0.9% of key samples
are needed. To conclude, our method performs better under small o or 3 for all
datasets. Once again, we regard this improvement is due to adding a new label.
When « and 3 are small, number of crafted key samples is small and they are
very similar to normal samples. Under this circumstance, if the key samples are

Watermarking Deep Neural Networks: A New Label Helps 471

predefined to wrong classes, the learned weights that contribute to the outputs of
key samples cannot change too much due to the fidelity constraint. Conversely,
if a new label is added, the weights associated with this exact new class can be
modified without breaking the fidelity constraint.

For efficiency, as discussed in Sect. 3.2, in our method, only 2 queries are
needed on average to determine the existence of a watermark in a suspicious
DNN model with p = 0.8, which is just the case for most choices of « and (as
shown in Fig. 3. For Zhang et al.’s approach, since it is not false-positive free, so
query a watermark-free model with key samples may still trigger the predefined
label (of key samples) as the output of the API. To mitigate this bias, a larger
number of queries should be used and Ver should be re-defined as

by L0/ (K) <
Ver(Fiw, K') = { 0, otherwise,
where 7 is a pre-defined threshold and 6 is the number of appearance of the label
that is not equal to the predefined label (of key samples). Then the accuracy,
after submitting the whole set K’ to the API as a batch, of Ver is

~ () (K| |-
n — _ V0 (K-
ace(ie) = 3270 (1) et
For example, with p = 0.8, Acc = 90% and 7 = 0.3, |K'| = 40 queries should be
used for Ver. Clearly, it is not as efficient as the proposed method.

Robustness: The goal of robustness is to check if the proposed model can resist
to attacks, and following the literature, we mainly consider pruning attack (or
compression attack in the literature) and fine-tuning attack here. As discussed in
Sect. 3.1, the adversary has incentive to modify the model to prevent ownership
verification. Obviously, the adversary does not want to affect the model’s classi-
fication accuracy with such modification. And pruning and fine-tuning attacks
exactly fit this requirement.

Accuracy (%)
Accuracy (%)

Our method

o |——Zhang et al's method

0 0.2 0.4 0.6 0.8 [0.2 0.4 0.6 0.8 1
Pruning rate Pruning rate

(a) MNIST (b) CIFAR10 (c) CIFAR100

4 06 08 1

o
Pruning rate

Fig. 4. Robustness for pruning attack. The solid line represents the testing result for
newly generated key samples and the dotted line represents the testing result for normal
test samples.

By saying robust in the scenario of IP protection of DNN using watermarking,
essentially, we expect the classification accuracy of key samples is insensitive
after such attacks. In the experiments, we test the classification accuracy of the

472 Q. Zhong et al.

watermarked model for ordinary samples and key samples, separately, under
different pruning rates, and the results are shown in Fig.4. It can be observed
from this figure that the model accuracy for classifying newly generated key
samples under both this proposal and Zhang et al.’s design does not decrease too
much with the increasing of pruning rate. But in general, our method performs
slightly better than the one in [14], especially the pruning rate is relatively high.

It is reported from [8] that deep neural networks, besides their incremental
learning capability, are also prone to forget previous tasks. The fine-tuning is
a useful method that utilises the catastrophy forgetting of DNNs to retrain a
watermarked model to invalidate the ownership verification. To measure the
testing accuracy of clean samples and key samples of our method under fine-
tuning, we employ the same experimental settings as used in [14].

The results of the fine-tuning attack are tabulated in Table 1. For fair com-
parison, the parameters used in the three datasets are: (a = 0.01, 3 = 3.5x1073)
for MNIST, and (o« = 0.01, 8 = 0.01) for CIFAR10 and CIFAR100. Under these
settings, both our method and the one in [14] can achieve the ground-truth
accuracy on each dataset, as shown from the values in parenthesis of Table 1.

From this table, it is easy to see that after fine-tuning, both our method and
the method in [14] still preserve good classification accuracy on normal samples.
This is due the generalization property of DNN and it is well accepted in the
machine learning field. For the classification of key samples after fine-tuning, we
expect accuracy loss. For sure the generalization property still holds in this case,
but the watermarked label is learnt from insufficient data and weak features. It is
observed from this table, for the MNIST dataset, the accuracy of both methods
is still as high as the ground truth. It may be due to the reason that the MNIST
dataset is relatively simple, so the weak features (from the key samples) are learnt
perfectly during the training process, and the generalization property dominates
classification accuracy. For the other two datasets, the acccracy decreases as
expected. To conclude, although our method cannot fully prevent the fine-tuning
attack, compared with the literature work [14], it mitigate the attack to large
extent.

Table 1. Robustness for pruning attack: accuracy (%) of normal samples and newly
generated key samples. The values inside the parentheses represent the testing result
before fine-tuning.

Method | MNIST CIFAR10 CIFAR100
Normal samples | Key samples | Normal samples | Key samples | Normal samples | Key samples

Proposed | 99.09 99.92 91.92 99.09 77.14 98.08
(97.94) (99.89) (87.46) (99.78) (59.32) (100)

[14] 99.07 99.88 92.36 68.28 77.80 87.04
(97.88) (99.61) (86.62) (99.95) (59.09) (100)

Watermarking Deep Neural Networks: A New Label Helps 473

5 Discussions

Apart from the pruning attack and fine-tuning attack we mentioned above,
recently, several new attacks [4,7,12] are proposed against black-box DNN water-
marking techniques. We discuss the most related type of attacks in brief in this
section.

Query Rejection Attack: This attack considers the scenario that, given a
query, Bob first judges whether or not the query issued by someone works as a
key sample for verification. In this way, the verification Ver will be invalidated by
rejecting service [7]. In [12], the authors adopted an autoencoder to serve as the
key sample detector. As discussed in Sect. 4.2, our method works with a smaller
number of training key samples and weaker perturbation strength, which makes
the detection harder.

6 Conclusion

In this paper, we proposed a novel black-box DNN watermarking method: assign-
ing a new label to key samples to minimize the distortion of the decision bound-
ary. Compared with the existing DNN framework, it achieves zero false-positive
rates and performs better when the number of training key samples are small
and the perturbation is weak. For security, it is validated that the new pro-
posal is more robust than existing schemes, and we leave the investigation of its
resistance to query rejection attack for further study.

Acknowledgements. This work was supported in part by the Australian Research
Council under grant LP170100458, in part by the National Natural Science Foundation
of China under grant 61702221, and in prat by the NVIDIA Corporation.

References

1. Adi, Y., Baum, C., Cisse, M., Pinkas, B., Keshet, J.: Turning your weakness into
a strength: watermarking deep neural networks by backdooring. In: 27th USENIX
Security Symposium (USENIX Security), pp. 1615-1631 (2018)

2. Asikuzzaman, M., Pickering, M.R.: An overview of digital video watermarking.
IEEE Trans. Circuits Syst. Video Technol. 28(9), 2131-2153 (2017)

3. Chen, H., Rohani, B.D., Koushanfar, F.: DeepMarks: a digital fingerprinting frame-
work for deep neural networks. arXiv preprint arXiv:1804.03648 (2018)

4. Chen, X., et al.: Leveraging unlabeled data for watermark removal of deep neural
networks. In: ICML Workshop on Security and Privacy of Machine Learning (2019)

5. Darvish Rouhani, B., Chen, H., Koushanfar, F.: DeepSigns: an end-to-end water-
marking framework for ownership protection of deep neural networks. In: Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 485-497 (2019)

6. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)

http://arxiv.org/abs/1804.03648
http://arxiv.org/abs/1708.06733

474

10.

11.

12.

13.

14.

15.

Q. Zhong et al.

Hitaj, D., Mancini, L..V.: Have you stolen my model? Evasion attacks against deep
neural network watermarking techniques. arXiv preprint arXiv:1809.00615 (2018)
Kemker, R., McClure, M., Abitino, A., Hayes, T.L., Kanan, C.: Measuring catas-
trophic forgetting in neural networks. In: Thirty-Second AAAT Conference on Arti-
ficial Intelligence (2018)

. Le Merrer, E., Pérez, P., Trédan, G.: Adversarial frontier stitching for remote

neural network watermarking. Neural Comput. Appl. 1-12 (2019). https://doi.
org/10.1007/s00521-019-04434-z

Li, Z., Hu, C., Zhang, Y., Guo, S.: How to prove your model belongs to you:
a blind-watermark based framework to protect intellectual property of DNN. In:
Proceedings of the 35th Annual Computer Security Applications Conference, pp.
126-137 (2019)

Liu, Y., Tang, S., Liu, R., Zhang, L., Ma, Z.: Secure and robust digital image
watermarking scheme using logistic and RSA encryption. Expert Syst. Appl. 97,
95-105 (2018)

Namba, R., Sakuma, J.: Robust watermarking of neural network with exponential
weighting. In: Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, pp. 228-240 (2019)

Uchida, Y., Nagai, Y., Sakazawa, S., Satoh, S.: Embedding watermarks into deep
neural networks. In: Proceedings of the 2017 ACM on International Conference on
Multimedia Retrieval, pp. 269-277 (2017)

Zhang, J., et al.: Protecting intellectual property of deep neural networks with
watermarking. In: Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, pp. 159-172 (2018)

Zhang, 1.Y., Zheng, Y., Weng, J., Wang, C., Shan, Z., Ren, K.: You can access but
you cannot leak: defending against illegal content redistribution in encrypted cloud
media center. IEEE Trans. Dependable Secure Comput. (2018, in press). https://
doi.org/10.1109/TDSC.2018.2864748

http://arxiv.org/abs/1809.00615
https://doi.org/10.1007/s00521-019-04434-z
https://doi.org/10.1007/s00521-019-04434-z
https://doi.org/10.1109/TDSC.2018.2864748
https://doi.org/10.1109/TDSC.2018.2864748

	Protecting IP of Deep Neural Networks with Watermarking: A New Label Helps
	1 Introduction
	2 Preliminaries
	2.1 Deep Neural Network
	2.2 Watermarking vs DNN Watermarking

	3 DNN Watermarking with a New Label
	3.1 Problem Formulation
	3.2 The Details of Our Proposed Method

	4 Experiments and Analyses
	4.1 Experimental Settings
	4.2 Evaluation of the Desired Properties

	5 Discussions
	6 Conclusion
	References

