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Fast Community Detection with Graph Sparsification

Jesse Laeuchli1[0000−0001−9970−9105]

Cyber Security Research and Innovation Centre, Deakin University, Geelong Australia
j.laeuchli@deakin.edu.au

Abstract. A popular model for detecting community structure in large graphs
is the Stochastic Block Model (SBM). The exact parameters to recover the com-
munity structure of a SBM has been well studied, and many methods have been
proposed to recover a nodes’ community membership. A popular approach is to
use spectral methods where the Graph Laplacian L of the given graph is created,
and the Fiedler vector of the graph is found. This vector is then used to cluster
nodes in the same community. While a robust method, it can be expensive to com-
pute the Fiedler vector exactly. In this paper we examine the types of errors that
can be tolerated using spectral methods while still recovering the communities.
The two sources of error considered are: (i) dropping edges using different sparsi-
fication strategies; and (ii) inaccurately computing the eigenvectors. In this way,
spectral clustering algorithms can be tuned to be far more efficient at detecting
community structure for these community models.

Keywords: Clustering · Graph Sparsification · Stopping Criteria.

1 Background and Motivation

Stochastic Block Models Detecting communities through clustering is an important
problem in a wide variety of network applications characterized by graphs [1, 3]. How-
ever, it can be difficult to study the accuracy of clustering on arbitrary graphs. To aid
network analysis, generative models are frequently introduced. One popular model is the
Stochastic Block Model (SBM) [2]. In this model a number of nodes n with community
memberships are given, and the connectivity of vertices p and q within (and between)
the communities are also specified. For a given graph with parameters G(n, p, q), we
define a = pn, b = qn. It has been shown that the community structure can only be
recovered when (a − b)2 > 2(a + b) [14]. While models of more than two communities
are sometimes studied, in this paper we restrict our attention to the case where the
number of communities is fixed at two. There are two reasons for this. The first is that
there is more theory available to work with. The second is that in practice it is often the
custom when seeking communities in a graph to recursively cluster the nodes into two
groups and then continue recursively, since this approach lends itself to high performance
computing [4]. A two community model is therefore relevant to real-world approaches
and worthy of study. Our goal in this paper is to discuss the question of how we can
recover the communities of a SBM faster, by applying graph sparsification and inaccu-
rate eigenvector computation, without harming the accuracy of our recovery methods.
Additionally, we show how we can leverage recent research on nearly linear-time solvers
to capitalize on the sparser graphs we obtain.
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Spectral Sparsification A popular approach to clustering is to find the Fiedler vector
of the graph Laplacian L [4]. This is faster the sparser L is. Given a matrix L, we say
that matrix L̃ is similar iff for all x,

x′Lx(1− ε) ≤ x′L̃x ≤ x′Lx(1 + ε). (1)

Matrices that are similar to each other by the criteria of eqn. (1) share similar eigenvec-
tors and eigenvalues [5]. While fast methods exist for computing such similar matrices
through sparsification [5], it is unclear how errors in eigenvector approximation translate
into errors in the communities recovered. Answering this question is a key contribution
of this paper.

Spectrum of SBM Matrices Since we will make extensive use of the spectrum of
the different matrix representations of a Stochastic Block Model (SBM), we review the
known results here, and provide some new ones.

First we consider the spectrum of a two community adjacency matrix. Define a = np,
b = nq, where p is the probability of a connection between nodes inside the community,
and q is the probability of a connection between nodes in different communities. Then
the average instance of a SBM model with these parameters can be represented in the
form,

< A >=
1

2
(a+ b)11T +

1

2
(a− b)uuT (2)

where 1 = (1, 1, 1, . . . , 1)/
√
n and u = (1, 1 . . . ,−1,−1, . . . )/

√
n. Any particular instance

A of a SBM drawn from this distribution of matrices can be represented as A =< A >
+X, where X is a random Wigner matrix. Because the eigenvalues of X follow the
famous semicircle law, the spectrum of A also follows such a distribution [14], with the
exception of the two largest eigenvalues. The distribution of the bulk of the eigenvalues
follows the equation,

ρ(z) =
n

π

√
2(a+ b)− z2

a+ b
. (3)

The radius of the bulk of the spectrum of A is given as below, with the center of the
semi-circle being at 0.

rA =
√

(2(a+ b)) (4)

Finally we also have the two largest eigenvalues of A given as below.

λn =
1

2
(a+ b) + 1, λn−1 =

1

2
(a− b) +

a+ b

a− b
(5)

We note that the eigenvectors of A are randomly distributed vectors on the unit
sphere except for the top two eigenvectors. The top two eigenvectors are perturbed
versions of the vectors of < A > [14].

We will also be interested in the spectrum and the eigenvectors of the scaled Laplacian
L of instances of our SBM. The bulk of the spectrum of L is also known to follow a
semi-circle distribution [11]. If we denote the average degree of the SBM as d̄, then the
distribution of the bulk of the eigenvalues follows the equation,

ρ(z) =
2n

π

√
2(a+b)

d̄2
− z2

2(a+b)

d̄2

. (6)
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The radius of the bulk of the spectrum are as below, with the center of the semi-circle
being at 1.

rL =

√
(2(a+ b))

d̄
(7)

Avrachenkov et. al [11] states that the other non-trivial eigenvalue of L remains to
be characterized, so we briefly show that the eigenvalues outside the semi-circle are as
below and bound their deviation from this mean, since our algorithms will make use of
this information.

λ1 = 0, λ2 = 1−
1
2 (a− b) + a+b

a−b
d̄

(8)

We have λ1 = 0, since L is a Laplacian. If A is a regular graph, then the value for
λ2 is directly computable from the eigenvalues of A, as above. Since SMBs are close
to regular, with each node having the same average degree of a + b, we need to show
that the deviation from the mean is small and with high probability will not change the
result. From Lutzeyer and Walden [16] we have that the error of applying this linear
transform of the eigenvalues of A, in order to obtain the eigenvalues of L, is 3dmax−dmin

dmax+dmin
.

We can then use the Chernoff concentration bounds to show that this error goes to zero
with high probability.

The elements of the rows of A are drawn from a binomial distribution, with n/2 of
them with probability p, and n/2 of them with probability q. For each diagonal element
of L, we then have,

Pr(|Lii − d̄| >
√
n
√

log(n2)) < 2e−log(n
2) =

2

n2
. (9)

Since we have n diagonal elements, the probability that none exceed this bound can
be computed as,

lim
n→∞

(1− 1

n2
)n = 1 (10)

The error in our approximation for λ2 is then

3
dmax − dmin
dmax + dmin

= 3
d̄+
√
n
√

log(n2)− (d̄−
√
n
√

log(n2))

d̄+
√
n
√

log(n2) + d̄−
√
n
√

log(n2)
=

3
2
√
n
√

log(n2)

2d̄
= 3

2
√
n
√

log(n2)

n(p+ q)

(11)

Taking the limit as n increases we then have,

lim
n→∞

3
2
√
n
√

log(n2)

n(p+ q)
= 0. (12)

Finally, we state two properties of L that we will make use of later. We can write
L = D−1/2AD−1/2 = D−1/2XD−1/2+D−1/2 < A > D−1/2. Recall that the eigenvectors
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of X are randomly distributed on the unit sphere. Then for any ei, ej ∈ I

E[eiD
−1/2XD−1/2ei] = E[eiD

−1/2
n∑
j=1

λjxjx
′
jD
−1/2ei]

E[eiD
−1/2

n∑
j=1

λjxjx
′
jD
−1/2ei] = E[

n∑
j=1

1

di
λixix

′
i =

n∑
j=1

1

di
λi

1

n
]

(13)

Alternatively, we have

E[eiD
−1/2XD−1/2ej ] = E[eiD

−1/2
n∑
j=1

λjxjx
′
jD
−1/2ej ]

E[eiD
−1/2

n∑
j=1

λjxjx
′
jD
−1/2ej ] = E[

n∑
j=1

1

di
λixix

′
j ] = 0

(14)

Overall Approach We now outline our overall problem. We would like to accelerate
spectral algorithms for Stochastic Block Models (SBMs) while still recovering the com-
munities accurately. Our main approach is to analyze the impact of two different types
of error on SBM algorithms. The first is ‘edge dropping’. We investigate two strategies
for dropping edges which allow us to recover the communities despite, in some cases,
having significantly fewer edges than the original problem. While the idea of sparsifying
graphs in order to more efficiently recover communities is not new, our contribution is
to determine the level of sparsification that can take place while still recovering commu-
nities.

Our second approach is to stop convergence of the eigensolver early. We analyze
‘power iteration’, and show that for many SBM instances the solver does not need to
be run to convergence. We choose power iteration both because the analysis is simple,
and because in conjunction with nearly linear-time solvers, and the dropping strategy
previously mentioned, we can design extremely efficient algorithms. This is because power
iteration based on these solvers are O(m) complexity. In some cases we can reduce the
number of edges by orders of magnitude, making these solvers very attractive.

The foundation of both these methods is a careful use of the model parameters and
the known results for the spectra of SBM models.

2 Methods and Technical Solutions

Sampling with Effective Resistance The main idea is that for a given Stochastic
Block Model (SBM) we know when we can recover the communities based on the param-
eters a, b of the model. While it is sometimes assumed that these parameters are known,
Mossel et al. [7] gives eqn. (15) for recovering the parameters of an unknown SBM, where
|E| is the number of edges in the graph, kn = blog1/4(n)c, and Xkn is the number of
cycles of length kn in the graph. While Xkn is difficult to compute, Mossel et al. shows
that this can be well approximated by counting the number of non-backtracking walks
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in the graph that can be made in O(n) time. They then obtain a linear-time algorithm

for estimating a, b by showing that a ≈ d̂n + f̂n, and b ≈ d̂n − f̂n where,

d̂n =
2|E|
n

f̂n = (2knXkn − d̂kn)1/kn .

(15)

Once we obtain an estimate for a, b then we can estimate how much we should
sparsify the graph to ensure that (a − b)2 > 2(a + b), while still dropping edges to
obtain a much sparser matrix, for which we can obtain the Fiedler Vector much faster.
We can also estimate the percentage of the nodes we will recover using the equation

α2 = (a−b)2−2(a−b)
(a−b)2 , 1

2 [1+erf(
√
α2/2(1− α2)) [14] .

In order to understand the percentage of the edges of the graph that we should sample
we need to consider what the odds are they we will sample an edge connecting two nodes
inside a community, against the odds that they will sample an inter-community edge.
Ideally we would only sample edges inside the communities, since this would make the
communities trivial to detect. Unfortunately, it has been shown by Luxburg et al. [10]
that for SBM as n→∞, the effective resistance of a given edge (i, j) in the graph tends
toward 1

di
+ 1

dj
. Since the degrees of the nodes in this model are O(n), the variation

between effective resistances will be small, and will in any case not reflect the commu-
nity structure of the graph. At this point our spectral sparsifier will be selecting edges
essentially at random. While Luxburg et al. state that theoretical results suggest that
the effective resistances could degenerate only for very large graphs, their experimental
results show that this behaviour arises even for small communities of 1, 000 vertices.

E(E) = 2q(
n

2
)2 + 2p(

n

2
)2 (16)

pintra =
(2p(n2 )2)

E(E)
qinter =

(2q(n2 )2)

E(E)
(17)

p̂ =
Spintra
2(n2 )2

q̂ =
Spinter
2(n2 )2 (18)

While in some sense this is a drawback, since this result is telling us we may as well
sample randomly, our algorithm can still function, and we can save the cost of computing
the effective resistances. For (a− b)2 > 2(a+ b) to hold true, there must be significantly
more intra-community edges than inter-community ones. If we are sampling randomly
with spectral sparsification, we should still sample more of the desired edge type, since
more of this type exist and we are sampling each edge with roughly the same probability.
If we have probabilities p, q, and number of nodes n, then the expected value for the
number of edges is shown in eqn. (16). We can then compute the probability of sampling
an intra-community or inter-community edge as in eqn. (17). If we take S samples, eqn.

(18) shows the estimated p̂, q̂ for our sparsified graph. We then have â = p̂n, b̂ = q̂n,
which can be used to decide if the communities can be recovered.
Correcting Effective Resistance While Luxburg et al. [10] show that as n→∞ the
effective resistance effa,b for a SBM degenerates to (1/di+1/dj) for two nodes i, j, there
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are various methods known for correcting this. One of these is to multiply by the sum
of the degrees. While this does not correct the issue in and of itself, since the effective
resistance between every pair of nodes converges to two, the variance around two may be
meaningful. Using these “scaled” effective resistances captures the community structure
of a SBM, and sparsifying by these resistances can cause us to find the community
structure of an SBM very quickly. These scaled effective resistances can be obtained by
taking the scaled Laplacian L of our SBM, and applying the same algorithm that is used
to estimate the effective resistance of L.

Given the constants a, b, we can calculate the average difference in scaled effective
resistance between edges both inside the communities and outside. This is useful because
it allows us to predict on average how much we should sample to ensure (a−b)2 > 2(a+b),
given the increased chance of sampling inter-community edges.

Recall that effa,b = eaL†ea + ebL†eb− 2eaLeb. Using our knowledge of the spectrum
of L, we can compute the average values of these terms.

E[L†aa] = E[L†bb] = E[eaD
−1/2X−1D−1/2ea] + E[eaD

−1/2A−1D−1/2ea]

E[eaD
−1/2X−1D−1/2ea] =

1

n

∑
λ by eqn. (13)

E[L†aa] =
1

n

∫ 1+rL

1−rL

1

z
ρ(z)dz = 1

E[L†ab] = E[eaD
1/2X−1D1/2eb] + E[eaD

1/2A−1D1/2eb]

E[eaD
1/2X−1D1/2eb] = 0 by eqn. (14) so

E[L†ab] = E[eaD
1/2A−1D1/2eb] = ea

1

λ2
uuT eb

ea
1

λ2
uuT eb =

1

λ2
(−1)x, x = 0 if a, b ∈ G and x = 1 if a, b 6∈ G.

(19)

We see that the effective resistance inside the group on average is eaL†ea + ebL†eb−
2eaLeb = 1 + 1−2 1

λ2
and eaL†ea+ ebL†eb−2eaLeb = 1 + 1 + 2 1

λ2
otherwise. This allows

us to amend our estimates for â and b̂. If we let r′ be the ratio between the effective
resistance of the two links, then eqn. (21) gives the scaled p̂′, q̂′.

p′intra =
pintra

pintra + r′qintra

q′inter = 1− p′intra;
(20)

p̂′ =
Sp′intra
2(n2 )2

q̂′ =
Sp′inter
2(n2 )2 (21)

We note that our method above does have a potential drawback for very small graphs.
This is because we need to sample Θ(n log(n)) edges to avoid the graph being dis-
connected [12]. As graphs become large this should be a non-issue because we have

limn→∞
(pn−qn)2−2(pn+qn)

nlogn = ∞, which indicates that our sampling criteria will require
more edges than needed to ensure connectivity.
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Computing the Eigenvector Using Inverse Power Iteration One of the challenges
of spectral methods is computing the eigenvectors needed for clustering, since this can
be expensive. Given a nearly linear-time solver, one can compute the eigenvectors of a
scaled graph Lapalcian in nearly time in the order of the number of elements of L [6],
by using Inverse Power Iteration. This is attractive given our edge dropping strategy,
where we may reduce the number of edges by several orders of magnitude for favourable
graphs.

An additional feature is that it is possible to calculate a stopping criteria for the
eigensolver that will allow us to recover the communities, even though the eigenvector
has not fully converged. This is a desirable property, since full convergence can be slow.
While the bound for our stopping criteria is not tight, it nevertheless is significantly
faster than would otherwise be the case for full convergence.

Recall that for the power iteration we have an initial state c1λ1v1 + . . . cnλnvn.
On average the ci terms will be of approximately the same size. We are attempting to
compute the eigenvector u = (1, 1 . . . ,−1,−1, . . . )/

√
n. After each iteration of the power

method we have a resultant vector which consists of the desired eigenvector u, and some
sum of the other eigenvectors. We need to compute the likely contribution from the other
eigenvectors. Once these contributions are smaller than O( 1√

n
) with high probability, we

can stop the iteration, because the signal from the desired eigenvector will dominate the
calculation, and allow for the correct community assignment.

We need to compute the average contribution from the remaining eigenvectors at
each iteration. We begin by computing the average size for each component of the other

eigenvectors. Assuming all the ci are equal, we have λ2(u +
∑ λi

λ2

k
v). The eigenvectors

v are randomly distributed around the unit sphere, as in Wigner matrices. We know
from O’Rourke and Wang [17], that the elements of these eigenvectors are normally
distributed variables, N(0, 1

n ).

Multiplying N(0, 1
n ) by λi

λ2

k
we have N(0, (λn

λ2
)2k 1

n ) after k iterations. We then have

that each component of the sum of the eigenvectors v are normal variablesN(0, Σ(λn

λ2
)2k 1

n ).

We can now use Chebyshev’s inequality to compute the probability that a component
of the sum of the eigenvectors v is greater than 1√

n
, the size of the components of the

dominant eigenvector u as follows,

Pr(|X − E[X]| ≥ a) ≤ V ar[X]

a2

Pr(|X| ≥ 1√
n

) ≤ V ar[X]

( 1√
n

)2

Pr(|X| ≥ 1√
n

) ≤
Σ λn

λ2

2k 1
n

( 1√
n

)2

Pr(|X| ≥ 1√
n

) ≤ Σ(
λn
λ2

)2k.

(22)
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Using our knowledge of the density of the spectrum of L, we can compute the prob-
ability in eqn. (22), for L† as follows,

Σ(
λn
λ2

)2k =

∫ 1+rL

1−rL
(

1
z

λ2
)2kρ(z)dz. (23)

Once we know the probability of a single component of the eigenvector being greater
than the 1√

n
, we can use this in a binomial distribution to calculate how many elements

we are likely to incorrectly classify. We can, either stop when k is large enough to imply
this is close to zero, or when the number is the same order as the error introduced by
the perturbation of the main eigenvector from the addition of the random eigenvectors
to < A >, as given in [13].

Regularized Spectral Clustering While spectral clustering is robust for matrices
with high average degrees (cf. Saade et al. [8]), for very sparse matrices that have low
degree entries the technique may struggle to recover the communities when the graph
approaches the theoretical limits of community detection. This issue is exacerbated by
the fact that we are dropping edges, and thus may create such problematic cases. To
combat this we use the method of regularized spectral clustering method given in Saade
et al. [8]. Given a regularization parameter τ , and the matrix J with constant entries 1

n ,
the authors first define the regularized adjacency matrix Aτ as,

Aτ = A + τJ (24)

Similarly they define the regularized diagonal as Dτ as,

Dτ = D + Iτ (25)

Then the regularized scaled Laplacian is given as,

Lτ = D−1/2
τ A + τJD−1/2

τ (26)

We note that the Fiedler vector of this matrix can be computed using the power method

using nearly linear-time sparse solvers. D
−1/2
τ AD

−1/2
τ is symmetric and diagonally dom-

inate so we can make use of nearly linear-time solvers to compute (D
−1/2
τ AD

−1/2
τ )−1x.

Then, since D
−1/2
τ τJD

−1/2
τ is a rank one matrix τD

−1/2
τ jD

−1/2
τ jT = D

−1/2
τ τJD

−1/2
τ ,

we can compute L−1
τ using the Sherman-Morrison formula which allows us to solve L−1

τ

in terms of D
−1/2
τ AD

−1/2
τ .

(D−1/2
τ AD−1/2

τ )−1 = A−1,S =
A−1D

−1/2
τ jD

−1/2
τ jTA−1

1 + D
−1/2
τ jTA−1D

−1/2
τ j

→

L−1
τ = (D−1/2

τ AD−1/2
τ + D−1/2

τ jD−1/2
τ jT )−1 = (D−1/2

τ AD−1/2
τ )−1 − S

(27)

Using eqn. (27) we can then proceed to compute the Fielder vector using power iteration.
In order to determine when to stop the power iteration we proceed in the same way as in
Computing the Eigenvector Using Inverse Power Iteration by determining the

spectrum Lτ . We begin by noting that Lτ has the same spectrum as D
1/2
τ AD

1/2
τ , except
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that the top eigenvalue is increased by the rank one update D
−1/2
τ τJD

−1/2
τ , as discussed

in Ding and Zhou [15]. Since we will project out this eigenvector when performing power

iteration, we then only need to consider the density function of D
−1/2
τ τAD

−1/2
τ . By the

same argument that we used eqn. (12), we can show that as n increases, whp this density
function is given by,

ρ(z) =
2n

π

√
2(a+b)

(d̄+τ)2
− z2

2(a+b)

(d̄+τ)2

(28)

Our Algorithm We now present our algorithm. We first obtain (or the user provides)
an estimate for the Stochastic Block Model (SBM) parameters. We then obtain the scaled
effective resistances eff of the elements of the scaled Laplacian L, which we then use to
create a probability density function. We note that we modify the probability density
function to sample the edges that have a low effective resistance over those that have a
high resistance, since these are the edges that make up our community. This approach
is slightly different from the standard algorithm of Spielman and Srivastava [5], which
seeks to sample the highest resistance edges.

Next we compute the estimated p, q we will obtain after sparsification, using either
eqn. (18) or (21), depending on our sampling strategy, and based on this we decide
how much sparsification we can safely apply. After creating our new matrix, we then
obtain the relevant eigenvector, depending on whether we are using the Laplacian or the
Regularized Laplacian from eqn. (26).

A Comment On Complexity While the best performance we obtained was by using
the scaled effective resistance, depending on what solver is available, this may not always
be the most effective strategy. This is because obtaining the scaled effective resistances
using the method of Spielman and Srivastava [5], requires us to solve a number of linear
systems. If a nearly linear time solver is available, this will take O(m) time, where m
is the number of edges before our dropping strategy. This will dominate the cost of the
computation, and we will not get significant speed-up from using power iteration, which
is of order O(m′), where m′ again is the number of sparsified edges. In the case of our
examples this is clearly sub-optimal, since we can reduce m several orders of magnitude
and still recover the communities, even when we are dropping edges randomly. In this
case it makes sense not to use the scaled effective resistance. On the other hand, in
practice, we may wish to use a different eigensolver, since the code for these may be
more mature. In this case, the cost of the eigensolver may dominate, especially since the
cost of applicable solvers (such as Lanczos-based solvers), does not entirely depend on
m. In this case the use of scaled effective resistance sampling may be more effective.

3 Empirical Evaluation

We now present some experimental results. We first examine the difference between
effective-resistance and scaled-effective resistance, and how closely they follow the pre-
dicted percentage of recovery. Additionally, we investigate the time needed to compute
the eigenvectors of the sparsified versus the unsparsifed matrix, and our convergence
criteria for the Fiedler Vector.
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Algorithm 1 RecursivePartition

INPUT: adj matrix A, boolean S for using scaled effective resistance (eff), regularization pa-
rameter τ
RETURN: partition p
[p,q]=EstParam(A) { Est param using eqn. (15)}
if S == True then
L = CreateScaledLap(A);
eff = EstResistance(L) { Est resistance using Spielman and Srivastava [5]}
pdf = (eff−min(eff))∑

((eff−min(eff)))
{Normalize distribution}

pdf = 1− pdf {Sample the low resistance nodes}
S=0 {Init. number of samples}
while (â′ − b̂′)2 − 2(â′ + b̂′) ≤ 0 do

Increase S
[â′ b̂′]= EstSparseAB(p,q,S) {est â′ b̂′ using eqn. (21)}

end while
[i j]= find(A)
[ni nj]= randsample(S,pdf); {Sample S with pdf}

else
[i j]= find(A)
[ni nj]= randsample(S); {Sample S with uniform distribution}

end if
A=sparse(i(ni), j(nj),1, size(A,1), size(A,2)) {Create the Sparsified Adjacency Matrix}
Dτ = CreateDiag(A)+τ {Create Degree Matrix }
Lτ = D

−1/2
τ AD

−1/2
τ

[v e]=powermethod(Lτ ); {Get eigenvector}
[i p]= sort(v) {Get permutation}
return p

Recovery of communities We now examine the success of our method in recover-
ing the communities with the given sparsification. In Figures 1a we see that using the
Regularized Laplacian we can quickly recover almost all the nodes correctly, at around
the sparsification level, predicted by eqns. (18) and (21). This also highlights the impact
of using the scaled effective resistance for sampling, with the method converging faster,
and following the prediction of eqn. (21) more closely. We note that for both sampling
methods the percent of edges we preserve is very small, of the order of 10−3 of the
original graph for the Scaled Effective Resistance method.

In Figure 1b, we try the real-world example of Saade et al. [8], where the authors
attempt to partition two blogging communities by their political alignment. This is an
interesting example because the communities are difficult to recover, requiring the use
of regularization techniques, and because the graph structure is not exactly captured
by the SBM model. Further this graph is quite small with only 1, 222 nodes, meaning
that the graph may be disconnected, as discussed earlier in Section 2. Despite these
difficulties, we are still able to recover the communities even after a significant amount
of sparsification is applied, at the point that our criteria indicate we should be successful.
Time saved in eigenvector calculation One of the main motivations of this work
is to obtain the correct community labels while spending less time computing the re-
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(a) Results of recovering the communi-
ties using regularization after sparsification
SBM(10000, 0.5, 0.3). Shows the results for Ef-
fective resistance and Scaled Effective Resis-
tance as well as predicted recovery.

0.05 0.1 0.15 0.2 0.25 0.3

Percent Sparsification

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
e

rc
e

n
t 

o
f 

N
o

d
e

s
 L

a
b

e
le

d
 C

o
rr

e
c
tl
y

Scaled Effective Resistance

Predicted Sucessful Recovery Point

Predicted Connected Graph

Predicted Recovery

(b) Results of recovering the communities using
regularization after sparsification for the politi-
cal blog example. This example shows the effect
of sparsification on a small graph, where there
is an interval between the sparsification criteria,
and the point at which the graph is connected.

SMB.5,.3 Sparse SMB.5,.2 Sparse
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(a) Speed-up in eigensolver from sparsifi-
cation for the Regularized Laplacian for
SBMs(10000,0.5,0.3) and (10000,0.5,0.2)
respectively, using an off the shelf solver.
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(b) Number of iterations of the inverse
power method required to reach the stop-
ping criteria vs number of iterations to
reach 10−8 accuracy using the Scaled
Laplacian for the SMB(10000,0.5,.03).

quire eigenvectors. Since we are able to recover the communities, despite applying large
amounts of sparsification, we would expect our eigensolver to converge faster. Exactly
how fast depends on the solver. For the eigensolver shown in Spielman and Teng [6], built
on top of their nearly linear-time solver and constructed solely to find the Fiedler vector
of the Laplacian, our time to compute the eigenvector would depend on the number of
elements of our graph. Since we have reduced the number of elements by multiple orders
of magnitude when sampling with scaled effective-resistance we would get a multiple
order of magnitude speed-up. Unfortunately, these solvers are not available for use in
production code, so we do not benchmark them here.

When using the off-the-shelf solver available in Matlab to find the desired eigenvector,
with our best method we achieve essentially an order of magnitude speed-up. This is
because the solvers used by this method are not optimized for graphs in the way that
the solver of Spielman and Teng is. The observed speed-up can be seen in Table 1b.

While we do not have a nearly linear-time solver to fairly benchmark our Inverse
Power method, we are able to test the number of iterations required to obtain 10−8

accuracy vs the number of iterations recommended by our stopping criteria, seen in
Table 1a. In all four cases all the community nodes were recovered, even though the
sparsification was of the order of O(10−3).
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4 Conclusion and Future Work

In this paper we explored the use of sparsifying by effective resistance and scaled effective
resistances in order to recover sparsify SBMs, as well as effective stopping criteria for
eigensolvers used for community detection. The main goal is to obtain faster solutions
while still being confident in our ability to recover the communities. We have provided
a method that determines the number of samples needed, depending on the type of
sampling used. We found that the community structure can be recovered even when the
matrix becomes very sparse. Since SBMs are a commonly studied model for clustering,
this method is widely applicable. We leave several areas open for future work. While
SBMs are widely studied, the model has certain intrinsic limits which prevent it from
modeling certain real-world networks well. We would like to provide a similar analysis
for more complex community models, in particular models which have a non-constant
average degree. We could then apply our model to a larger variety of real-world graphs.
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