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ABSTRACT Developing type 2 diabetes (T2D) can increase patient risk of developing other common dis-
eases and exacerbate their severity, including diseases that affect bone and joints. Such comorbidity
interactions are hard to study in detail by traditional endocrinological methods. Thus, we developed tissue
transcript analytical approaches to identify common pathways through which these diseases can interact.
We examined RNAseq and microarray transcript datasets from studies of T2D and chronic bone and
joint diseases, namely rheumatoid arthritis (RA), osteoarthritis (OA), juvenile idiopathic arthritis (JIA)
and low peak bone density, a key osteoporosis (OP) determinant. These datasets contained data from
affected individuals and matched controls. Differentially expressed genes (DEGs) for each condition were
compared with T2D DEG. Overlapping DEGs (i.e., those common to T2D and a bone or joint condition)
were subjected to gene enrichment by pathway analyses and by gene ontology methods, and the results
were evaluated by using SNP-disease linkage (dbGaP) and gene-disease association (OMIM) databases
that indicate gene involvement in pathologies. By examining gene targets of transcription factors (TFs) and
microRNA (miRNAs), we also constructed DEG-TF and DEG-miRNA interactions networks for analysis.
We identified strong candidate genes in common pathways, notably including SYK, UCP3, ROR1, PPARG,
BUB1, AKT2, ADCY2 and CCR5. The DEG-TF network and DEG-miRNA interactions network analyses
revealed a number of TFs (GATA2, FOXC1, USF2, YY1, E2F1, JUN, RELA, CREB1, TFAP2A, NFB1) and
miRNAs (mir-335-5p, mir-16-5p, mir-26b-5p, mir-124-3p, mir-218-5p, mir-98-5p, mir-29b-3p, mir-3135b,
mir-29c-3p, mir-1-1) that can regulate the identified DEGs at the transcriptional and post-transcriptional
levels. Thus this data-driven approach has enabled identification and validation of regulatory factors and cell
pathways by which T2D may influence bone and joint conditions, which may suggest new ways to interfere
with the pathogenic processes involved.

INDEX TERMS T2 diabetes, network-based approach, joint diseases, bone diseases.

I. INTRODUCTION
Type 2 diabetes (T2D) affects hundreds of millions of people
and has become an enormous clinical problem with serious
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attendant vascular disease issues, including heart disease,
strokes, retinopathy and peripheral ischemia. The high inci-
dence of T2D and its tendency to affect the function of many
organs makes it important to determine how T2D interacts
with co-morbidities, i.e., other diseases suffered by the same
individual at the same time [1]. This is an important issue
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for the management of the co-morbidities and in determining
whether a T2D therapy may affect those co-existing condi-
tions. T2D-associated features of particular concern include
increased body weight and fat composition, chronic secretion
of inflammatory hormones and high circulating levels of
glucose and glycated proteins that cause vascular damage
[1], [2]. In addition there are the local cellular effects
of insulin resistance itself. These affect diseases of bone
and joints, the commonest of which include osteoporosis,
osteoarthritis and inflammatory types of arthritis such as
rheumatoid arthritis (RA) [3]. It is not well understood how
the development and progression of these diseases are influ-
enced by T2D. Disease interactions are typically studied by
endocrinological approaches, such as methods that focus on
T2D-associated cell secretions, of high serum glucose and of
glycation product. Here, we employed a computation-based
approach that utilized gene expression data, seeking to iden-
tify any gene pathways that are common to T2D and these
bone and joint diseases. While not all processes occur at the
same time (e.g., T2D may influence the early stage of devel-
opment of a bone disease but not later stages), nevertheless
gene expression is profoundly affected by the pathological
processes and reveals information about pathways shared by
the diseases. We therefore identified pathways that overlap in
T2D and bone/joint diseases and so may have clinical utility.
This approach may also identify important pathways that are
relevant to a range of other diseases.

Osteoporosis (OP) is a disorder that weakens the bone and
makes it vulnerable to low trauma fracture. The hallmark
of OP is low bone mineral density (BMD), identified by
X-ray absorptiometry [4]. After early adulthood, BMD of
individuals decline (as in other mammalian species), and
many factors aggravate this over time, such as diminishing
sex hormone levels as well as circulating inflammatory hor-
mones. An important determinant of OP in old age is peak
the BMD level attained during early adulthood, a high point
from which BMD declines. T2D also greatly increases risk of
fracture, even though it does not always affect BMD, which
may reflect bone incorporation o T2D glycation products that
affect bone material strength [5], [6]. Bone health can also
be impaired by T2D medications such as rosiglitazone. Thus,
new approaches to identify such overlapping problems due
to shared common pathways will greatly inform treatment.
A similar approach may be useful in considering how T2D
interacts with joint diseases.

RA is an inflammatory joint condition with painful joint
swelling, synovial membrane hyperplasia and local bone
damage, destroying the local bone and joint architecture to
cause severe pain and impaired mobility. An important treat-
ment option is the use of anti-inflammatory drugs. T2D is a
risk factor for inflammatory arthritis and, conversely, RA is
a risk factor for T2D, with disease modifying anti-rheumatic
drugs ameliorating T2D [7], [8]. Other inflammatory forms
of arthritis such as juvenile idiopathic arthritis (JIA) are
also major clinical challenges [9]. Osteoarthritis (OA)
is the most common joint disease but is not typically

inflammation-associated at presentation (although inflamma-
tion is a significant influence in early stages of OA devel-
opment), rather it involves progressive damage and erosion
of joint cartilage [10], [11]. This can be induced by joint
damage or instability and high mechanical load. Surpris-
ingly, meta-analysis studies clearly implicate T2D as an inde-
pendent risk factor for OA and in rodent models of OA
untreated T2D results in much more severe OA joint that
non-diabetic controls [12]. As with OP, while T2D interac-
tions with OA, JIA and RA have been studied, we lack any
description of cell pathways common to their presentation
and pathophysiologies.

To address these issues we studied transcript datasets to
identify pathways in cells and tissues that are commonly
affected by both T2D and diseases of bone and joints. Utiliz-
ing computational analysis of global transcriptomes, we iden-
tified and characterized the gene expression profiles seen in
T2D and in RA, OA, OP and JIA from their common gene
expression patterns. We cross-compared this data with path-
ways previously identified and validated in publicly available
resources such as dbGaP and Online Mendelian Inheritance
in Man (OMIM), as well as protein-protein interaction (PPI)
datasets [13], [14]. Our network-based approach thus enabled
us to identify common pathways with pathological potential
that may influence the progression of bone and joint diseases.

II. MATERIALS AND METHODS
A. OVERVIEW OF ANALYTICAL APPROACH
The schematic diagram in Fig. 1 summarises our method-
ology which constitutes a quantitative systematic approach
that can be used to evaluate comorbidity interaction using
a variety of gene expression datasets. This methodology
comes in gene expression analytics that are validated using

FIGURE 1. The schematic diagram of the network-based methodology
employed in this study. The high-throughput transcriptomics datasets
(RNA-Seq and/or microarray) of T2D, RA, OA, OP, JIA were obtained from
Gene Expression Omnibus and EBI ArrayExpress databases. The
differential expression analysis was performed on the transcriptomics
analysis. The DEseq2 package was utilized to identify differentially
expressed genes (DEGs) from RNA-Seq and Limma package was used to
identify DEGs from microarray genes expression datasets. Then,
we screened those DEGs which were mutually expressed in T2D and RA,
OA, OP, JIA. These identified DEGs were further subjected to clarify the
biological significance using gene ontology, pathways analysis. The
protein-protein interactions analysis around the proteins encoded by the
common/mutual DEGs were studied to identify the key signaling
molecules termed ‘‘hub protein’’ by topological measures. The regulatory
biomolecules consisting of transcription factors (TFs) and
microRNAs (miRNAs) were identified from the DEGs-TFs and
DEGs-miRNAs network analysis.
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signal pathway information, Gene Ontology (GO) data,
disease-gene associations as well as protein-protein interac-
tion data. These allow not only the identification of pos-
sible pathways components common to comorbidities but
information as to any known pathogenic potential of these
pathways.

B. DATASETS EMPLOYED IN THIS STUDY
To investigate molecular pathways common to T2D and
RA, OA, OP, and JIA, we first analyzed global transcrip-
tome analyses (RNAseq) and gene expression microarray
datasets. We, therefore, collected raw data from the Gene
Expression Omnibus of the National Center for Biotechnol-
ogy Information (NCBI) (http://www.ncbi.nlm.nih.gov/geo/)
and EBI array express (https://www.ebi.ac.uk/arrayexpress/).
We selected 5 large human gene expression datasets to
use in this study; these datasets had accession num-
bers E-MTAB-5060, GSE114007, GSE55457, GSE7158,
and E-GEOD-71595. E-MTAB-5060 is an RNAseq dataset
obtained from pancreatic islet cell studies of healthy and T2D
individuals. GSE114007 is an RNAseq dataset derived from
OA and normal human knee articular cartilage. GSE55457 is
an Affymetrix DNA array dataset from a study of normal,
OA and RA synovial tissues; the OA data in this set was
not employed as OA primarily affects articular cartilage.
GSE7158 is an Affymetrix DNA array-based study of blood
cells from outlier high and low peak bone mass females
aged 20-45; while these were not OP sufferers at the time of
transcript analysis the latter individuals are at greater risk of
OP as they age compared to the former group. It should be
noted that the original study (and dataset generation) focused
on individuals at the key age period as they undergo bone
changes that later affect their bone health. E-GEOD-71595
was from an RNAseq study of CD4+ cells obtained from
auto-immune/inflammatory type JIA patients and healthy
controls.

C. ANALYSIS METHODS
Employing RNAseq and DNA microarrays technologies to
perform global transcriptome analyses, gene expression pro-
files of T2D with that in our RA, OA, OP and JIA datasets
were compared. These datasets were derived from studies
that compared pathological and normal tissue s to identify
DEGs that are associatedwith the respective disease. Our ana-
lytical pipeline employed the original unprocessed datasets
with DESeq2 [15] and Limma [16] R Bioconductor pack-
ages which were designed for RNAseq and microarray data,
respectively. In order to avoid issues inherent in compari-
son of gene expression data that is derived from different
platforms and experimental systems, we normalized and cal-
ibrated data from all the samples (diseased or control) by
Z-score transformation (Zij) for each disease-gene expression
matrix using:

Zij =
gij −mean(gi)

SD(gi)
(1)

where SD is a standard deviation, gij is the expression value
of gene i in sample j. Such a transformation enables com-
parisons of gene expression across tissue samples and across
disease categories. We thus used a Studentised t-test statistic
to identify those genes that with altered expression associ-
ated with the individual disease states. Thus, the data were
log2-transformed to determine differential expression, then
unpaired t-tests performed used to reveal statistical differ-
ences in expression of those genes expressed in patients vs
control (normal) tissue samples. Genes showing significant
differences were then selected then further filtered using
their observed log-fold change. Thus, genes of interest were
those showing 1 log2 change, with a p-value in the t-tests
of< 5×10−2 adjusted for multiple testing using the estimate
of false discovery rate.

To investigate associations between gene expression
and disease state, we used a neighborhood-based bench-
marking and topological approaches [17]. We constructed
gene-disease networks (GDNs) in which network nodes are
either diseases or genes, forming a network that can be viewed
as a bipartite graph. In this schema, two diseases are consid-
ered to have a connection when sharing at least one signif-
icantly dysregulated gene. Taking a particular set of human
diseases D and a set of genes G, we attempt to determine
whether gene g ∈ G is associated with disease d ∈ D. If Gi
andGj, the sets containing genes that are significantly altered
in their expression (both up- and down-regulated) and are
respectively associated with diseases i and j, then the number
of shared expression-altered genes (ngij] associated with both
diseases i and j is as follows:

ngij = N (Gi ∩ Gj] (2)

Co-occurrence is a parameter that refers to how many
shared dysregulated genes (i.e., DEGs) are in the GDN. Com-
mon neighbors are identified using the Jaccard Coefficient
method [18], [19], where edge prediction scores for the node
pair is:

E(i, j) =
N (Gi ∩ Gj]
N (Gi ∪ Gj]

(3)

where E refers to the set of all edges. We then estimate
the disease comorbidity associations for these datasets by
employing two of our R software packages ‘‘comoR’’ [20]
which can computes and predicts novel estimators of the dis-
ease comorbidity associations and ‘‘POGO’’ [21] which com-
putes the association disease comorbidity risks and patient
stratification.

Thus, in order to reveal the pathways active in T2D that
are also found in the OA, RA, OP-related and JIA condi-
tions, we employed pathway and gene ontology analysis with
DAVID bioinformatics (https : //david − d .ncifcrf .gov/)
and the KEGG pathway database [22]. In addition, we con-
structed protein-protein interaction (PPI) networks for the
disease-pair datasets by means of information derived from
the STRING resource [string-db.org]. We then incorpo-
rated two gold-benchmark curated disease datasets, OMIM
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(www.omim.org) and dbGaP (www.ncbi.nlm.nih.gov/gap),
in order to provide proof of principle for the network-based
approach described here.

D. DEG-TF INTERACTION NETWORK ANALYSIS:
REGULATORY TRANSCRIPTION FACTORS
To determine whether common transcriptional regulatory
elements of these DEGs exist, we investigated the tran-
scription factors (TFs)-DEGs interactions network utilizing
publicly available JASPAR database [23]. The network was
subjected to topological analysis via using NetworkAna-
lyst [24]. We selected 10 TFs with the highest topological
matrix (degree) as the regulatory TFs.

E. DEG-MIRNA INTERACTION NETWORK ANALYSIS:
REGULATORY MICRORNAS
We also analyzed the DEGs-miRNAs interactions network
utilizing experimentally verified miRNAs-target gene inter-
actions from TarBase [25] and miRTarBase [26] database
respectively to identify miRNAs that regulate the DEGs as
the post-transcriptional level. The interactions were retrieved
via NetworkAnalyst [23]. The top miRNAs with highest
topological matrix degree were selected as the regulator of
the identified DEGs.

III. RESULTS
A. DEG ANALYSIS OF DATASETS
DEGs were analyzed in the human RNAseq and microarray
datasets selected, performing comparisons between disease
T2D, RA, OP/low peak bone mass, OA and JIA tissue; these
were performed using DESeq2 and Limma (Bioconductor
packages). For each dataset DEG thus identified were sta-
tistically analyzed by the R Bioconductor packages noted
below. DEGs were defined as genes with false discovery
rate (FDR) under 0.05 and more than log 2-fold increase or
decrease in gene expression The numbers of unfiltered DEG
that were identified were, respectively, 1290 for T2D, 393 for
OP, 2013 for OA, 833 for RA and 1003 for the JIA datasets.

We also performed comparison analysis to identify the
common significant genes across T2D and bone and the
different joint diseases. We observed T2D shares 5, 16, 4 and
19 significantly up-regulated genes and 34, 40, 4 and 9 sig-
nificantly down-regulated genes with RA, OA, OP and JIA
conditions respectively. To identify statistically significant
associations between T2D and the other conditions, we con-
structed an up- and down-regulation diseasome relationship
network that was centerd on T2D where two diseases are
comorbid when one or more DEGs associated with both
diseases are found (see Figure 1a and 1b). 2 particular sig-
nificant genes, PLAU and GJA1 (which were, respectively,
a serine protease and plasminogen activator, and a gap junc-
tion connector protein), are commonly up-regulated in T2D,
OA and JIA, while 2 significant genes (BIRC3 and MX1,
respectively an anti-apoptosis factor and a poorly understood
interferon induced gene) are commonly up-regulated in T2D,

RA and JIA tissues, and 1 significant gene (GAP43, a growth
cell plasticity associated factor) is commonly up-regulated in
T2D, RA and OA tissues. It was interesting to note that, only
1 gene (ELL2, an RNA polymerase gene) was commonly
down-regulated among T2D, RA and OA.

DEG common to T2D and the bone and joint condition
datasets (OA, RA, JIA and OP-related) were identified, and
these are summarised graphically in Figs 2A and B, which
shows genes with, respectively elevated and reduced expres-
sion. Note that some genes (e.g., PLAU and GAP43) are

FIGURE 2. Identification of DEG in comparisons of T2D tissue with OP,
OA, RA and JIA. A) DEG with increased transcript levels and B) decreased
transcript levels in T2D tissues compared to the bone and joint diseases.
In the connection diagrams T2D forms the center of a connection web
with the bone and joint diseases placed on the periphery and significant
DEG indicated (green circles), with connecting lines linking the datasets
undergoing comparison. In these figures the green circles are used to
represent genes and red hexagons are used to represent diseases. The
size of the hexagons is the proportion of the number of the associated
genes.

VOLUME 8, 2020 1489



M. A. Moni et al.: Network-Based Computational Approach to Identify Delineating Common Cell Pathways

found in more than one common dataset and are drawn with
more than one edge.

B. FUNCTIONAL ENRICHMENT OF DEG SETS COMMON
TO T2D AND BONE/JOINT DISEASES
We performed pathway and gene ontology analyses with
the DEG sets with the DAVID online bioinformatics portal.
For pathways we used KEGG data enrichment for T2D vs
RA, T2D vs OA, T2D vs JIA and T2D vs OP. To combine
transcriptome and proteome analyses, we went on to per-
form a regulation analysis to gain more insight into path-
ways associated with these common DEGs. In addition,
we could use this approach to predict links to pathologi-
cally dysregulated pathways. These pathway analyses were
performed using the KEGG pathway database (http://www.
genome.j/kegg/pathway.html) and functional annotation anal-
ysis tool DAVID-v-6.8 (http://niaid.abcc.ncifcrf.gov) to iden-
tify over-represented pathway groups among the DEGs,
as well as to put them into functional categories. Pathways
that were identified as significantly enriched among the
common DEGs (FDR <0.05) were filtered using a manual
approach to include only genes with known relevance to the
diseases concerned. These outcomes, summarised in Table 1,
included a number of relevant and significant pathways.
For example in OA we found hormonal response pathway
genes that included TNF, NF-κB, PPAR-gamma and TGF-β
pathways, many of which were shared with JIA.

To obtain better insights into the pathways that we identi-
fied, the enriched common DEG sets were processed using
a gene ontology approach employing EnrichR (http://amp.
pharm.mssm.edu/Enrichr/) which identifies biological pro-
cesses that are related. The list of processes identified in this
way were curated to reveal those with a known involvement
in bone and joint diseases and T2D. These processes and
the associated genes are summarised in Table 2. We found
a variety of pathways that notably included mineralization,
glucose metabolism and BMP functions that are relevant to
bone physiology.

C. PROTEIN-PROTEIN INTERACTION (PPI) ANAYSIS TO
IDENTIFY COMMON SUB-NETWORKS
Altered expression of proteins in a sub-network may identify
such sub-networks as dysfunctional, at least in the context
of these diseases. Indeed, multiple diseases may arise from
the malfunction of a protein complex. Thus, two diseases
may be related if sharing one or more protein sub-network.
After identifying DEGs that are involved in pathways and
processes common to T2D and bone/joint diseases of interest
to our study, we looked for any evidence for previously iden-
tified sub-networks, based on previously reported PPI. With
these enriched common disease-gene sets, we made PPI net-
works by the web-based visualization package STRING [27].
Sub-networks seen in T2D vs the bone/joint diseases are
summarised in Fig. 3. Gene clusters were determined from
the Markov cluster algorithm (MCL); we noted that many

TABLE 1. KEGG pathway analyses to identify pathways common to T2D
and the bone and joint conditions revealed by the commonly expressed
genes. These include significant pathways common to T2D and A) RA B)
OA C) OP and D) JIA.
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TABLE 2. GO identification of biological processes that are common to
T2D and the bone and joint diseases. KEGG pathway-enriched genesets
were used for GO studies to identify processes that are in common
between these pathologies. GO terms were curated to identify those
relevant to the bone and joint function and pathology. Example pathways
genes and pathway adjusted p-values are indicated.

FIGURE 3. Protein-protein interaction (PPI) network of the five diseases
that share protein sub-networks. These include significant pathways
common to T2D and OP, RA, JIA and OA as indicated. Genes were
identified by STRING software tools. Color indicates MCL analysis clusters
of genes.

PPI sub-networks contained genes within one cluster, which
is indicated in Fig. 3in red. This analysis suggests PPI
sub-networks do exist in our enriched genesets, confirming
the existence of relevant functional pathways.

D. CO-MORBIDITY ANALYSIS AND IDENTIFICATION OF
SIGNIFICANT PATHWAY MARKER GENES
Significant pathways relevant to the common disease gene
datasets are displayed in Fig. 4A with gene pathway
links shown; here we have considered genes identified in
T2D DEG and their connections with bone/joint disease
DEG sets. Considering both the dysregulated gene expres-
sion seen in T2D and gene-disease associations, we set
up gene-disease associations networks (GDN) in order to
explore the pathology-shared genes and comorbidity net-
works (see Fig. 4B). Beginning with from a bipartite graph
we constructed biologically relevant network projections and
multi-relational gene-disease networks where the nodes are
either diseases or genes and edges indicate gene-disease asso-
ciation. This type of bipartite graph contains two disjointed
sets of nodes; one of these relates to known genetic disorders
and the other to genes identified as significant for T2D. Infor-
mation related to disorders, disease genes (and their associa-
tions) that we employed were obtained from the OMIM and
dbGaP. The GDN, nodes represent disease or genes such that
two diseases are connected to each other where they share a
gene with variants (usually single nucleotide polymorphisms)
that have previously been demonstrated to be associated with
both diseases (see Fig. 4B). The number of such interlinked
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FIGURE 4. Genes significant in T2D that are potential markers of bone
and joint diseases. A) Enriched datasets from our analyses with links to
processes and pathways revealed by our analysis. Gene names are in
small circles; color indicates membership of clusters evident from MCL
analysis B) Genes identified from OMIM and dbGaP databases using
single nucleotide polymorphism association with diseases. The graphic
summarises these genes that are also found in our analysis of T2D and
the bone/joint conditions. In these figures the blue circles are used to
represent genes and red hexagons are used to represent diseases. The
size of the hexagons is the proportion of the number of the associated
genes.

genes between T2D were typically between 2 and 25, with
several being linked to more than one bone/joint disease,
notably SYK, UCP3, ROR1 and PPARG (OA and JIA),
BUB1 (OA and RA), AKT2, ADCY2 and CCR5 (RA and
OP), ADCY2 and CCR5 (OA and OP) and CCR5 and
ADCY2 (RA and JIA). These overlapping-set genes may be
of particular priority for further study although their functions
do not currently appear to overlap.

E. IDENTIFICATION OF TRANSCRIPTIONAL AND/OR
POST-TRANSCRIPTIONAL REGULATORS
We studied the TFs-DEGs and miRNAs-DEGs networks
to identify regulators of the DEGs at transcriptional and
post-transcriptional levels (see Figure 5 and 6). The statistical
analysis of the topological parameters revealed TFs (GATA2,
FOXC1, USF2, YY1, E2F1, JUN, RELA, CREB1, TFAP2A,
NFB1) and miRNAs (mir-335-5p, mir-16-5p, mir-26b-5p,
mir-124-3p, mir-218-5p, mir-98-5p, mir-29b-3p, mir-3135b,
mir-29c-3p, mir-1-1) as the principal regulators of the DEGs
which were identified as shared by T2D and bone and joint
conditions.

FIGURE 5. Differentially expressed genes-transcription factors interaction
network analysis. The experimentally verified interaction data were
obtained from JASPAR database. The blue squares represent transcription
factors and circles represent genes. The area of the squares and circles
are proportional to topological measures degree. The larger squares
(higher degree) representing the strong interactions with differentially
expressed genes.

IV. DISCUSSION
Our study helps to fill a significant gap in our knowledge
about how T2D may be influencing the development of OA,
RA, OP and JIA. Rather than using a directly mechanis-
tic or endocrinological approach we looked for genes that
appeared dysregulated in T2D and in one or more of the bone
and joint diseases, using this information to give clues to
identify aberrantly acting pathways and control mechanisms
that might otherwise not be suspected to play a role in these
diseases. This line of inquiry starts with an agnostic approach
that employs a sequence of bioinformatics steps to analyze
widely available resources and data and can easily be applied
to a range of possible co-morbidities. The power and qual-
ity of the analysis can over time be further improved and
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FIGURE 6. Differentially expressed genes-microRNA interaction network analysis. The experimentally verified interaction
data were retrieved from TarBase and miRTarBase database. The blue squares represent microRNAs and circles represent
genes. The areas of the squares and circles are proportional to topological measures degree. The larger squares (higher
degree) representing the strong interactions with differentially expressed genes.

augmented as more large disease-relevant gene expression
datasets become available.

Using the combined analysis of transcriptomic, genetic,
PPI, pathway and GO data, our disease network revealed a
number of new putative disease relationships that has not been
identified from earlier studies and analyses, These have the
potential to inform and direct further clinical and biochemical
studies of these co-morbidities. Our approach, in effect, takes
advantage of the complexity that is usually such a barrier to
conventional co-morbidity studies. Our underlying hypothe-
sis is that oncewe construct a list of a reasonably large propor-
tion of disease-related genes and pathways, we will be able to
predict the susceptibility of individuals to other diseases using
molecular biomarkers found using this approach. Combined
with genetic data (e.g., SNP data) such information will be
needed as a key element in developing accurate prognostic
medicine. Our results here indicate that combining molecu-
lar and population-level data can provides insights that can
lead to the generation of new hypotheses about the mech-
anisms that underlie disease development and comorbidity
interactions. In addition, this approach can provide impor-
tant information relevant to overlaps in medication that may
have implications for patient care, and provide suggestions
as to why these diseases are seen commonly as interacting
comorbidities. This is known problem in particular for T2D,
whose development is associated with worse outcomes for
RA patients, an interaction seen in pre-clinical rodent models
as well [12].

Gene activity is regulated both at the transcriptional and
at the post-transcriptional level. Thus, to provide deeper
insights into the regulatory patterns of the identified genes,
we analyzed the TFs-DEGs and miRNAs-DEGs networks.
TFs drive the transcription of genes and may do so coor-
dinately across genes with related functions. In contrast,
miRNAs are particularly powerful regulators of transcript
levels at the post-transcriptional level, although it should be
noted that there are other classes of non-coding RNAs that
are less potent and less well characterized that also affect
transcript levels post-transcriptionally. We thus used targets
of TF and miRNA to identify their targets among the DEGs
that were involved in T2D and bone and joint diseases.
Among the identified TFs, GATA2, FOXC1, USF2, YY1,
E2F1, and JUN were previously identified as the regulators
of DEGs in our previous report on Alzheimer’s diseases by
a network-based approach [28]. GATA2 is also implicated
in early-onset coronary artery disease [29]. The dysregula-
tion of FOXC1 is involved in skeletal abnormalities [30].
The USF2 is also involved in diabetic nephropathy [31].
Dysregulation of YY1 in the liver causes insulin resistance,
dyslipidemia etc and has also been proposed as targeting
hepatic YY1 an important target for insulin-resistant dia-
betes [32]. It has been suggested that E2F1 promotes the
hyperglycemia during diabetes [33]. The JUN is involved in
inflammatory and bone disease [34]. T2D is involved with
dysregulated NFKB1 [35]. The involvement of the RELA is
not found in the literature in T2D and bone and joint disease.
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CREB1 polymorphism is associated with T2D risk in the
Chinese population [36].

The genes that we found to commonly show dysregulation
in T2D and with OP, RA, JIA and OA included some with
known influences on T2D (or related metabolic phenomena)
and the bone and joint diseases, but for some the common link
was not clear. For example, UCP3 codes for a mitochondrial
‘uncoupling factor’ that affects cell metabolism; it uncouples
oxidative phosphorylation from ATP synthesis, which can
result in heat generation and can protect the mitochondria
from oxidative stress. Mutations in UCP3 are associated
with obesity [37] and indeed insulin regulate UCP3 expres-
sion [38]. UCP3 is not characterized as affecting bone but
has been linked to cartilage cell survival which is clearly
crucial for joints and may indirectly affect bone density [39],
[40]. SYK codes for a tyrosine kinase enzyme that is essen-
tial for embryo development and crucial to immune system
function, notably B cells that are involved in many aspects
of inflammation, however, only indirect links of SYK with
bone physiology are known [41]. ROR1 codes for another
tyrosine kinase of poorly understood function but is involved
with cell response to hormones. However, ROR1 has known
influences on bone forming cells although a role in joint
biology and diabetes is unclear [42], although there is data
linking ROR1 to adipogenesis processes in vitro [43]. PPARG
is a crucial nuclear receptor that is the target of glitazone
compounds used to treat T2D, but also plays an important
role in connective tissue function, especially bone osteoblast
and smooth muscle formation [44], [45]. BUB1 protein has
an important role in cell division (mitosis) as a checkpoint
regulator, so this (and functions in cell death regulation)
could lead to many effects on bone and joint tissues [46].
AKT2 is a kinase enzyme regulator involved in cell signals;
its function is strongly linked to T2D due to its involvement
with insulin signaling, but it also plays a well established
role in regulating the activity of bone forming cells [47].
CCR5 encodes a receptor that mediates cell response to a
secreted chemokine factor, and it is particularly involved in
immune cell inter-communication and in macrophages that
regulate inflammation and bone formation. CCR5 blocking
compounds have been developed as HIV-1 therapies [48].
It has recently been found to have unexpected roles in bone
cells important in osteoporosis and joint damage [49]. A role
has been suggested in diabetes relating to lipid formation.
Lastly, ADCY2 encodes an adenyl cyclase enzyme that gen-
erates cyclic AMP, which is a crucial intracellular signaling
molecule induced by many regulatory hormones important to
bone [50] and metabolism [51]. In sum, these genes indicate
a range of ways that T2D and the bone and joint diseases
may interact, although in some cases further work is needed
to establish a firm link. Clearly there must be other shared
pathways that are not evident from our analysis, since it
is unlikely that they will all be detectable in the datasets
available, but the genes we identified, listed above, show a
mix of well and poorly characterized disease links that might
be expected.

miRNAs are short 20-22 nucleotide long non-codingRNAs
which regulate expression of gene transcripts (mRNAs) at
post-transcriptional level. In this way, the miRNAs regulate
the level of protein expression by inhibiting the mRNAs
levels. There is evidence indicating the high potential of
miRNAs as biomarkers for complex diseases [28], [52]–[60].
Among the miRNA post-transcriptional regulators of the
identified DEGs, it has been shown that mir-335-5p increases
insulin resistance and suppresses pancreatic Îš cell secre-
tion [61]. Moreover, overexpression of mir-335-5p can per-
turb insulin secretion [62]. Evidence suggests mir-16-5p is
deregulated in retinal cells during hyperglycemia [63]. The
significant overexpression of mir-16-5p was observed in
hyperglycemia and euglycemia conditions in coronary heart
disease [64]. It has been shown that circulating mir-26b-5p
is dysregulated in T2D compared to control samples [65].
Moreover, significantly reduced expression of mir-26b-5p
was observed in metformin treatments in T2D patients [66]
indicating its involvement in pathogenesis, and its possible
therapeutic targetting in the treatment of T2D. Involvement
of the mir-124-3p in the progression and development of T2D
has seen previously [67]. The involvement of the mir-218-5p,
mir-98-5p, and mir-3135b with T2D and bone disease, how-
ever, has not been reported in the literature. However, overex-
pression of mir-29b-3p in T2D and in diarrhea-predominant
irritable bowel syndrome is seen [68], and it has been shown
that diabetes affects tissue expression of mir-29c-3p [69].

V. LIMITATIONS OF THE STUDY
Our analysis was performed using publicly available mRNA
expression, so it was limited by what is currently accessible.
We performed analyses of DEGs for use in gene enrichment
approaches and cell signal pathway and Gene Ontology (GO)
data; we were unable therefore to detect of DEGs that may
be highly variable in their response to disease conditions
between individuals, and we are limited by the current knowl-
edge of cellular pathways. It should also be noted that path-
way and GO analyses a large number of categories obtained
were reduced by manual curation, making the approach not
completely agnostic. While not difficult or time consuming,
developing more analytical semantic methodologies to tackle
this would better facilitate this approach and reduce opera-
tor bias as we have undertaken previously [20]. In addition
to transcript analyses, we also found evidence for disease
processes in the PPI data. This provided some confirmatory
evidence for pathways identified through consideration of
cell proteins and their interactions. However, this approach
is necessarily incomplete as our understanding of and cata-
loging of PPI is an early stage due to the enormous number
of protein motifs that exist.

VI. CONCLUSIONS
Our study demonstrates that an integrated approach to ana-
lyzing gene expression and gene function data can uncover
novel relationships between diseases, potentially lead to new
insights into the pathways that influence these conditions.
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We identified pathways that were common to T2D and the
bone and joint conditions and identified ten genes. Their
potential for pathogenic involvement was validated by evi-
dence of disease-associated SNPs located in (or close to)
them as well as the use of gene-disease association databases.
The candidate genes identified were SYK, UCP3, ROR1,
PPARG, BUB1, AKT2, CCR5, and ADCY2. The present
study also identified significant TFs (GATA2, FOXC1, USF2,
YY1, E2F1, JUN, RELA, CREB1, TFAP2A, NFB1) as well
as miRNAs with the potential to regulate these pathways
(namely mir-335-5p, mir-16-5p, mir-26b-5p, mir-124-3p,
mir-218-5p, mir-98-5p, mir-29b-3p, mir-3135b, mir-29c-3p,
mir-1-1). These factors have known disease involvement
although many have not been validated in the interaction
between T2D and the diseases examined here. Disease inter-
action pathways are very important since it indicates path-
ways of particular significance to the individual diseases,
outside from a comorbidity context. Thus, the methods we
used and pathway information identified show new ways
to detect pathogenic mechanisms in common and complex
diseases.
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