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Abstract
1.	 Non‐native species can dominate plant communities by competitively displacing 
native species, or because environmental change creates conditions favourable 
to non‐native species but unfavourable to native species. We need to disentangle 
these mechanisms so that management can target competitively dominant spe-
cies and reduce their impacts.

2.	 Joint‐species distribution models (JSDMs) can potentially quantify competitive 
impacts by simultaneously modelling how species respond to environmental vari-
ation and to changes in community composition. We describe a JSDM to model 
variation in plant cover and show how this can be applied to compositional data to 
detect dominant competitors that cause other species to decline in abundance.

3.	 We applied the model to an experiment in an invaded grassy‐woodland commu-
nity in Australia where we manipulated biomass removal (through slashing and 
fencing to prevent grazing by kangaroos) along a fertility gradient. Non‐native 
species dominated plant cover at high fertility sites in the absence of biomass re-
moval. Results from the JSDM identified three of the 72 non‐native plant species 
(Bromus diandrus, Acetosella vulgaris and especially Avena fatua) as having a strong 
competitive impact on the community, driving changes in composition and reduc-
ing the cover of both native and non‐native species, particularly in the absence 
of grazing. The dominant non‐native grasses Bromus diandrus and Avena fatua 
were among the tallest species in the community and had the greatest impact on 
shorter‐statured species, most likely through competition for light under condi-
tions of high fertility and low grazing.

4.	 Synthesis. We demonstrate a method to measure competitive impact using a joint‐
species distribution model, which allowed us to identify the species driving com-
positional change through competitive displacement, and where on the landscape 
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1  | INTRODUC TION

Dominance by non‐native plant species is frequently associated 
with declines in the abundance and diversity of native species (Vilà 
et al., 2011). These changes can occur if non‐native species are su-
perior competitors, such that increasing abundance of non‐natives 
directly drives declines in native species through competitive dis-
placement (Levine et al., 2003; MacDougall, Gilbert, & Levine, 2009). 
Alternatively, increasing dominance by non‐native species could be 
a consequence of changing environmental conditions that favour 
non‐natives over natives due to species in each group having dif-
ferent environmental tolerances (HilleRisLambers, Yelenik, Colman, 
& Levine, 2010; Shea & Chesson, 2002). As plant invasions are fre-
quently accompanied by environmental perturbations (Pysek et al., 
2010; Vellend et al., 2017), it can be difficult to determine when 
non‐native dominance is driven by competitive impact (Godsoe, 
Franklin, & Blanchet, 2017; Soberón, 2010). In fact, many non‐na-
tive species appear to have little impact on the communities they in-
vade (Lai, Mayfield, Gay‐des‐combes, Spiegelberger, & Dwyer, 2015; 
Williamson & Fitter, 1996). To manage non‐native species appropri-
ately, we need ways to identify which non‐native species, if any, are 
having strong competitive impacts, and where those impacts are 
greatest (Gallien, Münkemüller, Albert, Boulangeat, & Thuiller, 2010; 
Ricciardi, Hoopes, Marchetti, & Lockwood, 2013).

Joint‐species distribution models (JSDM) are extensions of 
standard species distribution models that have the potential to 
measure both competitive impact and species responses to en-
vironmental conditions using community composition data from 
sites along known environmental gradients (Kissling et al., 2012; 
Nieto‐Lugilde, Maguire, Blois, Williams, & Fitzpatrick, 2018). 
JSDMs use data on species composition across multiple sites to 
jointly model individual species responses to environmental varia-
tion, interpreting residual among‐species covariation as potentially 
resulting from interactions such as competition (Latimer, Banerjee, 
Sang, Mosher, & Silander, 2009; Ovaskainen, Hottola, & Shtonen, 
2010; Pollock et al., 2014; Warton et al., 2015). To date, JSDMs 
have mostly been used to model presence–absence data, where 
large negative residual covariance between two species could be 
interpreted as the competitive displacement of one species from 
sites that both could occupy. However, presence–absence data can 
only detect competitive impacts that result in complete exclusion 

from a site, yet dominance without exclusion is an important 
component of species impact (Levine et al., 2003; Seabloom et 
al., 2013). Here, we use a method proposed by Clark, Nemergut, 
Seyednasrollah, Turner, and Zhang (2017) to model cover data in 
a JSDM that overcomes the problem of zero inflation that is typ-
ically inherent in these data (see: Joint‐species tobit modelling in 
Materials and Methods; Figure 1). With this approach, we can de-
tect declines in species abundance associated with the presence of 
competitors, which should provide greater resolution in quantify-
ing competitive impacts.

Even with these improvements to JSDMs, separating environ-
mental responses from competitive impacts is challenging (Adler 

competitive impacts were greatest. This information is central to managing plant 
invasions: by targeting dominant non‐native species with large competitive im-
pacts, management can reduce impacts where they are greatest. We provide 
details of the modelling procedure and reproducible code to encourage further 
application.

K E Y W O R D S

grasslands, grazing, impact, invasive species, joint‐species distribution model (JSDM), light 
competition, nutrient addition, tobit regression

F I G U R E  1  A simulated example of tobit regression. Black circles 
show observed cover for a species measured at points along an 
environmental gradient. Cover declines as environmental suitability 
decreases, eventually reaching a point where the environment is 
unsuitable for the species and cover is zero. Beyond that point, 
environmental suitability continues to decline but cover remains 
at zero. These zero values are censored in that zero cover provides 
partial information about the latent suitability (open circles): it tells 
us a site is unsuitable but, beyond that, does not measure how 
unsuitable. Tobit regression aims to estimate latent suitability (the 
open circles, which are uncensored) by fitting a regression line (red) 
to the cover data, treating the zero values as censored
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et al., 2018), suggesting we should apply JSDMs to systems where 
the primary environmental drivers of species abundances are 
well understood (Giannini, Chapman, Saraiva, Alves‐dos‐Santos, 
& Biesmeijer, 2013; Wisz et al., 2013; Zurell, Pollock, & Thuiller, 
2018). In grasslands around the world, non‐native plant species 
often increase in dominance at higher fertility sites and when graz-
ing is excluded (Seabloom et al., 2015). This shift in dominance has 
been attributed to the competitive displacement of native species 
by non‐native species that are competitively superior under condi-
tions of high resource availability and low grazing. This competitive 
superiority arises because, relative to native species, many non‐na-
tive grassland species have traits associated with rapid growth and 
high biomass (Ordonez, Wright, & Olff, 2010; Van Kleunen, Weber, 
& Fischer, 2010), traits that are likely beneficial when there is lit-
tle aboveground disturbance and competition for light is intense 
(Borer et al., 2014; Hautier, Niklaus, & Hector, 2009). These trait 
differences between native and non‐native species should be less 
important under herbivory where biomass removal may reduce any 
competitive advantage of fast growth (Lind et al., 2013).

We aim to test these ideas using data from a 7‐year experiment 
that tracked changes in plant cover over time following herbivore 
exclusion (Driscoll, 2017). Sites were arrayed along a fertility gra-
dient and we predicted that non‐native species would dominate 
under high fertility and would increase in dominance following 
herbivore exclusion. We used JSDMs to model how species cover 
varied with fertility, grazing and rainfall, and identified species with 
strong negative residual covariances, suggestive of strong compet-
itive impacts on the community. We predicted that (a) competitive 
impacts, and hence the magnitude of negative residual covariances, 
would increase in the absence of grazing where competition for 
light would be most intense and (b) if competition for light caused 
competitive displacement, the strength of negative covariances be-
tween species (reflecting the strength of competitive interactions) 
should correlate with trait differences associated with growth and 
light capture.

2  | MATERIAL S AND METHODS

2.1 | Study system

This study was carried out in a box‐gum grassy woodland reserve in 
south‐eastern Australia (Pinnacle Reserve, ACT. 35°15′S, 149°02′E; 
620–708 m a.s.l.). The vegetation of the reserve comprised a scat-
tered overstorey of trees, predominantly Eucalyptus blakelyi and 
E. melliodora, with a dense understorey of grasses and forbs. The 
vegetation has been extensively modified over the last 150 years, 
primarily by tree clearance and livestock grazing. Livestock grazing 
ceased in the reserve in 1993 and the dominant herbivore is now 
the native eastern grey kangaroo (Macropus giganteus), which was 
at moderately high density over the course of the study (1.8–2.2/
h1; Driscoll 2017). The understorey vegetation was dominated by 
a mix of native and non‐native species, with many non‐native spe-
cies introduced for pasture improvement (e.g. Dactylis glomerata and 

Trifolium subterraneum) or as pasture contaminants (e.g. Avena fatua 
and Bromus diandrus). Mean annual precipitation in the area was 
~660 mm/year and daily maximum temperatures range from 9°C 
to 33°C during the spring growing period and as low as 4°C in the 
preceding winter months (Bureau of Meteorology, 2017). Soils are 
typically of relatively low fertility, shallow and rocky, although some 
deeper soils occur on slopes and in depressions.

2.2 | Data collection

We used data from an experiment that tested whether different 
management interventions can increase native grassland species 
richness (Driscoll, 2017). In 2010, 10 sites were established in open, 
unshaded areas along a natural fertility gradient (see below). Sites 
ranged from relatively uninvaded communities to communities dom-
inated by non‐native species. Each site contained 10 permanently 
marked 5 m × 5 m plots separated by at least 1 m. One of 10 different 
experimental treatments was applied to each plot, but we use only 
a subset of the treatments in this study (see Appendix S1, Figure 
S1). From 2011, five plots at each site were fenced in a single en-
closure to exclude mammalian herbivores (predominantly kangaroos 
but also rabbits). One plot inside and one plot outside the fence had 
its aboveground biomass removed each year by slashing, and one 
plot inside and one plot outside the fence was left unmanipulated 
(unslashed). We analysed these four treatments at each site (grazed, 
unslashed; grazed, slashed; fenced, unslashed; and fenced, slashed), 
allowing us to test whether the competitive impact of non‐native 
species was stronger in the absence of biomass removal by grazing 
and/or slashing, and to assess whether uniform biomass removal by 
slashing had similar effects to herbivore grazing.

Vegetation surveys were conducted every year from 2010 to 
2016, except for 2014. In late spring (October) of each year, the per 
cent cover of all vascular plant species was visually estimated in four 
1 m × 1 m quadrats placed in the corners of each plot (only three 
quadrats per plot were surveyed in 2013 due to time constraints). 
We use plant cover as a proxy for abundance. Our dataset thus com-
prised 6 years of vegetation cover data from 160 quadrats across 40 
plots. In total, we had 920 quadrat level vegetation measurements, 
comprising 10,780 cover estimates for 142 species (70 native and 72 
non‐natives; see Appendix S1, Figure S2 for more detail). In 2015 and 
2016, we measured the traits of abundant species, defined as those 
comprising the first 80% of total recorded cover at each site. At each 
site, we measured traits associated with growth rate and light cap-
ture on 5–10 adult individuals in each of the unslashed plots following 
standard protocols (Pérez‐Harguindeguy et al., 2013). These traits in-
cluded canopy height (m), maximum height (m), canopy width (m), leaf 
length and width (cm) and specific leaf area (mm2/mg; SLA). To avoid 
the influence of outliers, we used 90th quantile values from all mea-
sured plants to estimate species maximum potential for each trait.

Total extractable nitrogen at sites along the fertility gradient 
ranged from 615 ppm to 2,420 ppm (Driscoll & Strong, 2017). Total 
soil carbon, nitrogen and phosphorus levels, as well as extractable 
nitrogen and phosphorus, all covaried strongly across the 10 sites 
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(Appendix S1), and we used total extractable nitrogen as a proxy for 
overall soil fertility. Grasslands in this region also respond strongly to 
variation in annual rainfall (Prober, Thiele, & Speijers, 2013; Figure S3). 
We obtained data on total rainfall for the 4 months prior to each sur-
vey (August–November) from the Australian Bureau of Meteorology 
(BOM, Appendix S1) as a proxy for water availability. Total rainfall 
during these 4 months ranged from 185 to 414 mm over the 7 years 
of the study. Both total nitrogen and spring rainfall were centred and 
scaled prior to model fitting.

2.3 | Analyses

2.3.1 | Relative dominance of non‐native species

We examined how the dominance of non‐native species changed over 
time, in relation to soil fertility and rainfall, and in response to the ex-
perimental treatments (fencing and slashing). Our response variable 
was the proportion of non‐native species cover in each plot in each 
year. This was calculated by taking the average cover of each species 
across quadrats in each plot in each year, summing these averages to 
get the total average cover of all species in each plot in each year, and 
calculating the proportion of total cover comprising non‐native spe-
cies. We logit‐transformed this proportion and modelled it as a linear 
function of soil fertility, fitting a separate intercept and slope for each 
experimental treatment (grazed/fenced and slashed/unslashed) and 
for each year. We included rainfall by specifying a single coefficient for 
the effect of inter‐annual rainfall variation on the proportion of non‐
native cover. The model structure is described in detail in Appendix S2.

2.3.2 | Joint‐species tobit modelling

To test whether dominance by non‐native species was a conse-
quence of environmental responses or competitive displacement, we 

specified a JSDM that modelled the cover of each species in response 
to variation in soil fertility, rainfall and experimental treatment 
(JSDM1). This model included a single covariance matrix to capture 
unexplained residual variation, with negative residual covariances 
potentially indicating competitive impacts. We fitted a second model 
(JSDM2) to test whether competitive impacts varied with grazing and 
slashing treatments. JSDM2 had the same structure as JSDM1, but 
we fitted separate residual covariance matrices for each experimental 
treatment, which allowed us to test whether the magnitude of nega-
tive residual covariances was greater in the absence of biomass re-
moval where light competition should be most intense. We analysed 
data for the years 2013–2016, which were the years during which 
the experimental treatments showed clear effects (see: Figure 2 and 
Figure S4b), and restricted our analyses to species present in >20% 
of plots measured between 2013 and 2016 (N = 30, 14 native and 16 
non‐native species; Figure S2). These species were present at >50% 
of sites in each year and were thus sufficiently widespread that ab-
sences were more likely due to unsuitable environmental conditions 
or competitive displacement rather than dispersal limitation. We ana-
lysed cover data at the quadrat level because we expected species 
interactions to be most evident at this scale. Zero cover was recorded 
when a species was absent from a quadrat. Even after restricting our 
analysis to the 30 most common species, most of our data comprised 
zero values (~69%; 4,396 cover estimates, 10,004 absences).

We used tobit regression to accommodate zero inflation by 
treating absences as censored data (Clark et al., 2017; Tobin, 1958). 
Censored data occur when it is not possible to observe a value be-
yond some limit. In this case, we assume there is an unobserved la-
tent variable that measures the ‘suitability’ of each quadrat for each 
species, where suitability encompasses all biotic and abiotic factors 
that might influence species cover. When a species is present in a 
quadrat, we equate the latent suitability with cover, assuming that 
higher cover indicates higher suitability (Figure 1). Quadrats where 

F I G U R E  2  Proportional cover of non‐native species (logit‐transformed) as a function of soil fertility at 10 sites measured over 7 years 
(2010–2016 with no measurement in 2014). There were four treatments at each site, which are plotted separately. Slashed plots are shown 
on the top line and unslashed plots on the lower line, with filled circles and solid lines for fenced plots, and open circles and dashed lines for 
grazed plots. Fertility is scaled and standardized as described in Appendix S1
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species are absent can be thought of as sufficiently low suitability 
that a species cannot persist but quadrats with zero cover can still 
vary in their underlying suitability. We model observations of zero 
cover as censored data arising from this latent suitability distribu-
tion, which can take values less than zero:

where y is the observed cover and y* is the corresponding la-
tent suitability value. To complete the model, we need to specify 
a distribution for the underlying latent variable. We specified the 
underlying distribution as multivariate normal with 30 dimensions, 
one for each species.

We regressed latent suitability (y*) against the environmental 
variables soil fertility and rainfall, with residual variation captured in 
a single covariance matrix (JSDM1). We specified different regres-
sion coefficients for each experimental treatment, modelled hierar-
chically and included normally distributed random effects to account 
for repeated measurements of plots nested within sites. The struc-
ture of JSDM1 is as follows:

JSDM 1

where y∗
[ijkl]

 is an N‐length vector of latent suitability values in year 

i (1–3), under treatment j (1–4), at site k (1–10) in quadrat l (1–4). s 
indexes species (s = 1 … N) with intercept terms measuring average 
site suitability for each species in each treatment, and slope and 
rain terms measuring how site suitability varied with soil fertility 
and rainfall for each species in each treatment. Σ is an N × N cova-
riance matrix with the diagonal containing the residual variances in 
suitability for each species, σ2, and the off‐diagonals containing 
the residual covariances between each species pair, conditional on 
the value of �[ijkl]. This matrix has N * (N – 1)/2 = 435 unique ele-
ments, with the covariance between two species defined as: 
Σ12 = σ1 σ2 ρ12 = Σ21.

The covariances describe how residual variation in the cover of 
one species is related to residual variation in the cover of a second 
species. If, having accounted for environmental effects, the cover 
of one species declined in quadrats when the cover of a second 
species increased, the residuals of the two species would covary 
negatively. We interpreted negative covariances as due to com-
petition on the grounds that we had modelled species responses 
to the major environmental gradients in these grasslands (fertility 
and water availability; Leishman & Thomson, 2005; Morgan et al., 
2016; Prober, Thiele, & Speijers, 2016). Large negative covariances 
imply potentially strong competitive impacts while species with 
low cover, or where cover is well explained by environment vari-
ables, will have smaller covariances because there is less resid-
ual variation that could be associated with co‐occurring species. 
Moreover, if a dominant species caused several species to decline 
in cover, resulting in strong negative covariances, this is likely to 
induce a pattern of positive covariances among the impacted spe-
cies because they would all tend to have lower cover at sites where 
the dominant species was present and higher cover at sites where 
it was absent.

2.3.3 | Change in species covariances by treatment

Specifying a single covariance matrix in JSDM1 meant the covariances 
were estimated from the data in all treatments. In JSDM2, we speci-
fied a separate covariance matrix for each of the four treatments:

JSDM2

where both the coefficients for species s and the covariances Σ 
varied with treatment j (1–4). Comparing the covariance matrices 
for different treatments in JSDM2 allowed us to evaluate whether 
competitive interactions were stronger in plots without slashing 
or grazing.

2.3.4 | Predicting competitive impact from 
functional traits

We predicted that competitive impacts, measured as the magnitude of 
negative covariance between species, should be linked to differences 
in traits associated with growth and light capture. To test this, we re-
gressed the posterior mean of the negative covariance parameters 
estimated in JSDM2 against the absolute difference in measured trait 
values for each species pair. Trait values were normalized prior to anal-
ysis so that traits measured using different units could be compared 
directly. For the regression models, we specified separate intercept 
and slope coefficients for the covariance–trait relationships in each 
experimental treatment, with the slopes and intercepts modelled as 
drawn from normal distributions for each trait.

y=

⎧
⎪⎨⎪⎩

y∗, if y∗>0

0, if y∗≤0

y∗
[ijkl]

∼MultiNormal
(
�[ijkl],�

)

�[ijkl] =

⎛⎜⎜⎜⎜⎜⎜⎝

�1[ijkl]

�2[ijkl]

⋮

�N[ijkl]

⎞⎟⎟⎟⎟⎟⎟⎠

�s[ijkl]
=�interceptS[j] +�slopeS[j] ⋅ fertility[jk] +�rainS[j] ⋅rainfall[i] +�plot[jk]

�plot[jk]
∼Normal

(
�site[k]

, �2
plot

)

�site[k]
∼Normal

(
0, �2

site

)

y∗
[ijkl]

∼MultiNormal
(
�[ijkl],𝚺[j]

)

�s[ijkl]
=�interceptS[j] +�slopeS[j] ⋅ fertility[jk] +�rainS[j] ⋅rainfall[i] +�plot[jk]
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All models were fitted to the data in a Bayesian framework using 
adaptive Hamiltonian Monte Carlo with the probabilistic program-
ming language Stan (Carpenter et al., 2017) and the rstan interface 
(Guo et al., 2016) in R, version 3.4 (R Core Team, 2016). Details of 
model fitting and prior specification are in Appendix S2 and online 
at https​://github.com/aornu​gent/impact2. We took a conservative 
approach to identifying interactions in the data by specifying that 
we a priori expected covariances to be weak (see prior specification 
in Appendix S2), meaning that strong residual covariances required 
strong support from the data.

3  | RESULTS

3.1 | Relative dominance of non‐native species

Overall, the proportion of total cover that comprised non‐native 
species increased with increasing soil fertility (Figure 2, Figure 
S4a). Prior to and immediately after fencing (2010 and 2011), the 
relationship between fertility and proportion of non‐native cover 
was similar in the fenced and grazed, and in the slashed and un-
slashed treatments. However, from 2012 onwards, the propor-
tion of non‐native cover increased substantially at higher fertility 
sites in the fenced, unslashed plots (i.e. in the absence of biomass 
removal). There was no clear change over time in the proportion 
of non‐native cover along the fertility gradient in plots that were 
grazed, slashed or both (Figure 2, Figure S4b). The proportion of 

non‐native cover was higher in years with higher spring rainfall 
(Figure S3a).

3.2 | Joint‐species tobit modelling

Species responded differently to changes in soil fertility, with la-
tent site suitability increasing strongly with higher soil fertility (i.e. 
total extractable nitrogen) for two native and five non‐native spe-
cies (95% credible intervals above zero in at least one treatment; 
Figure 3). The remaining species, both native and non‐native, de-
clined in cover with increasing fertility. Relationships between 
cover and fertility did not vary much between experimental 
treatments with three exceptions: relative to other species, the 
cover of the non‐native species Avena fatua, Bromus diandrus and 
Acetosella vulgaris increased more strongly with fertility in the 
fenced, unslashed treatment. At high fertility, several fenced, un-
slashed plots were completely dominated by one or more these 
species. For most species, cover was positively related to rainfall 
across years (Figure S3b).

Figure 4 shows the species’ residual covariances from JSDM1 as 
a pairwise covariance matrix (Figure 4a) along with the median co-
variance for each species across all pairwise interactions (Figure 4b). 
We report the median covariance because covariance values could 
be highly skewed. One species, Avena fatua, stood out as having 
strong negative covariances, with high cover of A. fatua often as-
sociated with reduced cover of other species. Median covariance 

F I G U R E  3  Latent suitability with 
respect to soil fertility for 30 species 
estimated using a joint‐species 
distribution model and tobit regression 
(see text). Separate relationships were 
fitted for each species in each of four 
treatments, shown as different panels. 
Native species are drawn with dashed 
lines (n = 14) and non‐native species with 
solid lines (n = 16). Lines are coloured from 
dark blue to light yellow corresponding to 
a shift from negative to positive slopes, 
respectively

https://github.com/aornugent/impact2
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for the native grass Themeda triandra was the second most negative 
but of much smaller magnitude than A. fatua. Moreover, T. triandra 
covaried negatively with A. fatua (Figure 4a), such that high cover 
of A. fatua was associated with low cover T. triandra and vice versa. 
Small‐statured species, such as those in the genera Aira, Vulpia and 
Hypochaeris, tended to covary positively.

3.3 | Change in species covariances by treatment

JSDM2 revealed that species’ residual covariances varied by grazing 
and slashing treatment (Figure 5), suggesting that competitive inter-
actions were altered by biomass removal. Covariances were weakest 
in the grazed, slashed treatment with the median close to zero for 
most species (mean median covariance with 95% confidence inter-
vals = −0.4, CI −2.2 to 1.3), implying weak interactions. Covariances 
were larger but still relatively weak in the fenced, slashed treatment 
(mean = 0.2, CI −1.5 to 2). Median covariances were most negative 
in the grazed, unslashed treatment (mean = −1.3, CI −3 to 0.5) and 
especially the fenced, unslashed treatment (mean = −3.2, CI = −4.9 
to −1.5), suggesting stronger competitive interactions in the absence 
of slashing, and especially in the absence of both grazing and slash-
ing. Relative to the natural situation in these grasslands (the grazed, 
unslashed treatment), the three species whose cover increased most 

strongly with fertility in the fenced, unslashed plots (Avena fatua, 
Bromus diandrus and Acetosella vulgaris) showed a marked shift to 
more negative covariances in the same treatment, especially A. fatua 
(Figure 5). This implies these species had a greater competitive im-
pact on other species in the absence of biomass removal.

3.4 | Predicting impact from functional traits

In the fenced, unslashed treatment, stronger negative covariances 
between species were associated with greater differences in plant 
height (Figure 6). This relationship was evident, though weaker, in 
the grazed, unslashed treatment but largely absent in both slashed 
treatments. Covariances were less negative between species that 
had greater differences in SLA in all treatments, but the strength of 
this relationship was much weaker than for height. None of the re-
maining trait differences (canopy width and leaf dimensions) showed 
strong relationships with covariances.

4  | DISCUSSION

Measuring the strength of species interactions when these are 
confounded with environmental variation remains a major obstacle 

F I G U R E  4   (a) The full residual covariance matrix for joint‐species distribution model 1 (JSDM1) and (b) the median residual covariance 
from all pairwise interactions for each species, with negative covariances indicative of competitive displacement (see text). The full matrix 
shows mean covariances from the posterior distributions shaded by magnitude and direction, ranging from large negative covariances (deep 
red) to large positive covariances (blue). A black dot indicates the 95% credible intervals for a covariance did not include zero. Non‐native 
species are marked with asterisks
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to studying the impact of non‐native species in plant communities 
(HilleRisLambers et al., 2010; Levine et al., 2003; MacDougall & 
Turkington, 2005). We have shown how a JSDM can be adapted 
to model plant cover and, when applied to our case study, could 
identify the non‐native species having large competitive impacts 
on the community, along with the conditions under which those 
impacts were greatest. Globally, non‐native species frequently 
dominate grasslands under conditions of high fertility in the ab-
sence of grazing (Seabloom et al., 2013, 2015). Our findings show 
this can result from displacement of native species by one or more 

competitively dominant non‐native species. In our study, greater 
cover of three non‐native species (Bromus diandrus, Acetosella vul‐
garis and especially the annual grass Avena fatua) was associated 
with strong declines in the cover of native species after account-
ing for differences in environmental responses. This outcome is 
consistent with previous studies that have measured the impact 
of non‐native species in Australian temperate grasslands (Driscoll 
& Strong, 2017; Prober, Thiele, Lunt, & Koen, 2005) and in grass-
lands globally (Chang & Smith, 2014; Flores‐Moreno et al., 2016; 
Harpole et al., 2016).

F I G U R E  5  The median residual 
covariance from all pairwise interactions 
for each species from joint‐species 
distribution model 2 (JSDM2), where 
a separate covariance matrix was 
fitted for each treatment (shown as 
separate panels). The median covariance 
summarizes the magnitude of competitive 
displacement between a single species 
and the rest of the community. Names of 
non‐native species are shown in black and 
native species in grey. Non‐native species 
are marked with asterisks

F I G U R E  6  Mean (circles) and 95% 
credible intervals for the slope of 
the relationship between covariance 
and trait differences among species. 
Negative values indicate that competitive 
displacement is associated with greater 
difference in trait values between species. 
The relationships are plotted separately 
for the four treatments, with filled circles 
for fenced plots, open circles for grazed 
plots, and slashed and unslashed plots in 
different panels. Trait differences were 
normalized before analysis to allow direct 
comparison of slope estimates for traits 
measured in different units
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Our results support the predictions outlined in the Introduction. 
First, competitive impacts, as revealed by the strength of negative 
covariances, were much stronger in the absence of biomass removal 
(Figure 5). Second, under low or no biomass removal, the strength of 
negative covariances was linked to differences in plant height: in un-
slashed plots, taller species had greater impact on shorter species, 
implying a strong competitive advantage associated with plant height 
under these conditions (Figure 6). This outcome most likely results from 
competition for light, which should favour taller, higher biomass spe-
cies (Borer et al., 2014; Hautier et al., 2009). While negative covariances 
were linked most strongly to height differences, negative covariances 
were smaller among species with greater differences in specific leaf 
area (Figure 6). This implies that, while competitive dominance was due 
primarily to a trait advantage in height, this was partly offset by trait dis-
similarity in SLA, potentially indicative of reduced competitive impact 
through niche differentiation (Gross, Börger, Duncan, & Hulme, 2013).

Results from the JSDMs provide additional insights into inter-
actions in these grasslands. For example, negative covariances, and 
hence competitive interactions, were weaker in the slashing treat-
ments (Figure 5). Annual biomass removal by slashing may prevent 
species from attaining cover sufficient to have a strong competitive 
impact (Mortensen et al., 2018). Grazing may also prevent competitive 
dominance, although interactions were stronger under grazing alone 
than when plots were slashed (Figure 5), suggesting grazing removes 
less biomass than slashing, or selectively removes certain species al-
lowing others to attain cover sufficient to have measurable impact 
(Evju, Austrheim, Halvorsen, & Mysterud, 2009). The most dominant 
species, Avena fatua, had the greatest competitive impact but also 
covaried negatively with two other species that had relatively high 
impact overall: the native grass Themeda triandra and non‐native forb 
Acetosella vulgaris (Figure 4). Avena fatua and A. vulgaris both increased 
in cover at higher fertility in the absence of biomass removal, suggest-
ing these species competed for site occupancy under those condi-
tions. The ability of A. vulgaris to form dense rhizomatous mats may 
have excluded A. fatua from some sites (Fan & Harris, 1996). Themeda 
triandra, in contrast, had higher cover at lower fertility. Themeda tri‐
andra is known to dominate more intact native grasslands (Prober & 
Lunt, 2009), suggesting that A. fatua may be displacing an otherwise 
competitively dominant native grass at higher fertility sites.

Other non‐native species were abundant in these grasslands but 
had little or no competitive impact. Short‐statured annual grasses in 
the genera Aira and Vulpia, for example, were widespread (Figure S2) 
and had high average cover where they occurred (15% and 24% for 
Aira and Vulpia, respectively, compared with 30% for Avena fatua). 
Both Aira and Vulpia strongly negatively covaried with A. fatua and B. 
diandrus, and both covaried positively with other, typically short‐stat-
ured, species that were also impacted by the competitive dominants. 
Hence, in addition to identifying the drivers of change in this com-
munity, we can identify non‐native species that achieve moderate to 
large cover without impacting the community, most likely because 
they are ruderal‐like species that exploit more marginal habitats.

We have demonstrated how a JSDM can be applied to field data 
to measure impact and identify the species driving compositional 

change in a plant community. We emphasize that interpreting neg-
ative residual covariation as due to species interactions relies on 
having measured and correctly modelled the major environmen-
tal variables, fertility and rainfall in our case, that control species 
abundances (Hui, Taskinen, Pledger, Foster, & Warton, 2015). Our 
approach of crossing a natural fertility gradient with manipulation 
of biomass removal no doubt helped to disentangle competitive 
from environmental effects in this system, as it meant differences 
between the biomass treatments at each site were not confounded 
with environmental variation. Nevertheless, the model appeared 
successful in identifying species having impact in the unmanipulated 
treatment alone (grazed, unslashed; Figure 5), suggesting JSDMs can 
detect interactions in systems without experimental manipulation 
where the environmental drivers are well understood.

5  | CONCLUSIONS

Quantifying the importance of competitive interactions is difficult 
when species abundance is confounded with environmental varia-
tion (Adler et al., 2018). We approached the problem using a JSDM 
to model changes in the cover of Australian temperate grassland 
species in response to gradients of fertility and rainfall, biomass 
removal treatments and variation in community composition. This 
identified the dominant non‐native species driving compositional 
change through competitive displacement in this community, high-
lighting the utility of JSDMs in studies of plant invasion where it is 
often unclear which non‐native species, if any, are directly impact-
ing invaded communities (HilleRisLambers et al., 2010; Lai et al., 
2015; MacDougall & Turkington, 2005). By experimentally altering 
grazing, we were able to show that the competitive impact of the 
dominant non‐native species increased in the absence of grazing 
and that species responses were mediated by trait differences in 
height, consistent with the outcome we would expect due to com-
petition for light (Borer et al., 2014). Hence, the modelling approach 
provided insights into the mechanisms underlying impact, paving 
the way for general tests of the drivers of community structure in 
other communities (Mortensen et al., 2018). We have provided the 
data and code in an R package (https​://github.com/aornu​gent/im-
pact2) to reproduce our analyses and encourage further application 
of the approach.
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