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Abstract 1 

1. Non-native species can dominate plant communities by competitively displacing native 2 

species, or because environmental change creates conditions favourable to non-native species 3 

but unfavourable to native species. We need to disentangle these alternative mechanisms so 4 

that management can target competitively dominant species and reduce their impacts.  5 

2. Joint-species distribution models (JSDMs) can potentially quantify competitive impacts 6 

by examining how species respond to environmental variation and to changes in community 7 

composition. We describe a JSDM to model variation in plant cover, which detected declines in 8 

species abundance in the presence of a dominant competitor. 9 

3. We applied our model to an experiment in an invaded grassy-woodland community in 10 

Australia where we manipulated biomass removal (through slashing and grazing by kangaroos) 11 

along a fertility gradient. Non-native species dominated plant cover at high fertility sites in the 12 

absence of biomass removal. Using a JSDM, we determined that three of the 72 non-native plant 13 

species (Bromus diandrus, Acetosella vulgaris and especially Avena fatua) were having a strong 14 

competitive impact on the community, driving changes in composition and reducing the cover 15 

of both native and non-native species, particularly in the absence of grazing. The dominant 16 

annual grasses (Bromus diandrus and Avena fatua) were two of the tallest species in the 17 

community and were good competitors for light under conditions of high fertility and low 18 

grazing. Consequently, their impacts were greatest on smaller statured species. 19 

4. Synthesis. We demonstrate a method to measure competitive impact using a JSDM, 20 

identify species driving compositional change through competitive displacement, and identify 21 

where on the landscape competitive impacts are greatest. This information is central to 22 

managing plant invasions: by targeting dominant non-native species with large competitive 23 

impacts, management can reduce impacts where they are greatest. We provide details of the 24 

modelling procedure and reproducible code to encourage further application. 25 
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Introduction 26 

Dominance by non-native plant species is frequently associated with declines in the 27 

abundance and diversity of native species (Vilà et al., 2011). These changes can occur if non-28 

native species are superior competitors, such that increasing abundance of non-natives directly 29 

drives declines in native species through competitive displacement (Levine et al., 2003; 30 

MacDougall, Gilbert, & Levine, 2009). Alternatively, increasing dominance by non-native species 31 

could be a consequence of changing environmental conditions that favour non-natives over 32 

natives due to species in each group having different environmental tolerances 33 

(HilleRisLambers, Yelenik, Colman, & Levine, 2010; Shea & Chesson, 2002). As plant invasions 34 

are frequently accompanied by environmental perturbations (Pysek et al., 2010; Vellend et al., 35 

2017), it can be difficult to determine when non-native dominance is a driven by competitive 36 

impact (Godsoe, Franklin, & Blanchet, 2017; Soberón, 2010). In fact, many non-native species 37 

appear to have little impact on the communities they invade (Lai, Mayfield, Gay-des-combes, 38 

Spiegelberger, & Dwyer, 2015; Williamson & Fitter, 1996). In order to manage non-native 39 

species appropriately, we need ways to identify which non-native species, if any, are having 40 

strong competitive impacts, and where those impacts are greatest (Gallien, Münkemüller, 41 

Albert, Boulangeat, & Thuiller, 2010; Ricciardi, Hoopes, Marchetti, & Lockwood, 2013). 42 

 43 

Species distribution models have the potential to account for competitive impacts and 44 

species responses to environmental conditions by using community composition data from sites 45 

along known environmental gradients (Kissling et al., 2012; Nieto-Lugilde, Maguire, Blois, 46 

Williams, & Fitzpatrick, 2018). Joint-species distribution models (JSDM) simultaneously 47 

estimate the environmental responses of multiple species, and partition residual variation 48 

between co-occuring species (covariation). Many authors interpret covariation as representing 49 

species interactions such as competition (Latimer, Banerjee, Sang, Mosher, & Silander, 2009; 50 

Ovaskainen, Hottola, & Shtonen, 2010; Pollock et al., 2014; Warton et al., 2015). Large negative 51 

residual covariance can be observed where one species competitively displaces a second from 52 
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sites that both species could occupy. However, non-native dominance can have more nuanced 53 

impacts than just complete exclusion (Seabloom et al., 2013), requiring greater resolution that 54 

co-occurrence data can provide. Here we use a method proposed by Clark et al. (2017) that 55 

overcomes the problem of zero-inflation that is inherent in abundance data (see: Joint-species 56 

tobit modelling in Methods; Fig. 1). With this approach, we can detect declines in species 57 

abundance due to competitive displacement, in addition to complete exclusion.  58 

 59 

Even with these advances, separating environmental responses from competitive impacts is 60 

challenging (Adler et al., 2018), suggesting we should apply JSDMs to systems where the 61 

primary environmental drivers of species abundances are well understood (Giannini, Chapman, 62 

Saraiva, Alves-dos-Santos, & Biesmeijer, 2013; Wisz et al., 2013; Zurell, Pollock, & Thuiller, 63 

2018). In grasslands around the world, non-native plant species often increase in dominance at 64 

higher fertility sites and when grazing is excluded (Seabloom et al., 2015). This shift in 65 

dominance is attributed to competitive displacement of native species by non-native species. 66 

Species compete intensely when belowground resources are abundant (high nutrient and water 67 

availability; Harpole et al., 2016; Harpole & Tilman, 2006), leading to reductions in community 68 

diversity and dominance by competitively superior species. Where competition is intense, 69 

competitive superiority is expected to be related to differences in species traits (Kraft, Godoy, & 70 

Levine, 2015). Many non-native grassland species have traits associated with rapid growth and 71 

high biomass (Ordonez & Olff, 2013; Van Kleunen, Weber, & Fischer, 2010), traits that are likely 72 

beneficial when there is little above ground disturbance and competition for light is intense 73 

(Borer et al., 2014; Hautier, Niklaus, & Hector, 2009). These differences would be less important 74 

under herbivory (Lind, Borer, & Seabloom, 2013), reducing the competitive impact of dominant 75 

species. 76 

 77 

We aim to test these ideas using data from a 7-year experiment that tracked changes in plant 78 

cover over time following herbivore exclusion (Driscoll, 2017). Sites were arrayed along a 79 
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fertility gradient which allowed us to test whether the relationship between non-native 80 

dominance and resource availability is driven competitive impact. We used a JSDM to model 81 

how species cover varied with fertility, grazing and rainfall, and identified species with strong 82 

negative residual covariances, suggestive of strong competitive impacts on the community. We 83 

predicted that: 1) competitive impacts, and hence the magnitude of negative residual 84 

covariances, would increase in the absence of grazing where competition for light would be 85 

most intense; and 2) if competition for light caused competitive displacement, the strength of 86 

negative covariances between species (reflecting the strength of competitive interactions) 87 

should correlate with trait differences associated with growth and light capture. 88 

 89 

Methods 90 

Study system 91 

This study was carried out in a box-gum grassy woodland reserve in south-eastern Australia 92 

(Pinnacle Reserve, ACT. 35° 15’ S, 149° 02’ E; 620 - 708 m a.s.l.). The vegetation of the reserve 93 

comprised a scattered overstorey of trees, predominantly Eucalyptus blakelyi and E. melliodora, 94 

with a dense understorey of grasses and forbs. The vegetation has been extensively modified 95 

over the last 150 years, primarily by tree clearance and livestock grazing. Livestock grazing 96 

ceased in the reserve in 1993 and the dominant herbivore is now the native eastern grey 97 

kangaroo (Macropus giganteus), which was at moderately high density over the course of the 98 

study (1.8 – 2.2 ha-1; Driscoll 2017). The understorey vegetation was dominated by a mix of 99 

native and non-native species, with many non-native species introduced for pasture 100 

improvement (e.g. Dactylis glomerata and Trifolium subterraneum) or as pasture contaminants 101 

(e.g. Avena fatua and Bromus diandrus). Mean annual precipitation in the area was ~660 mm 102 

year-1 and daily maximum temperatures range from 9 °C to 33 °C during the spring growing 103 

period and as low as 4 °C in the preceding winter months (Australian Government Bureau of 104 

Meteorology, 2017). Soils are typically low fertility, shallow and rocky, although some deeper 105 

soils occur on slopes and in depressions.  106 
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 107 

Data collection 108 

 We used data from an experiment that tested whether different management interventions 109 

can increase native grassland species richness (Driscoll, 2017). In 2010, ten sites were 110 

established along a fertility gradient (see below). Sites ranged from relatively uninvaded 111 

communities to communities dominated by non-native species. Each site contained 10 112 

permanently marked 5 m x 5 m plots separated by at least 1 m. One of 10 different experimental 113 

treatment was applied to each plot, but we use only a subset of the treatments in this study (see 114 

Appendix 1, Fig S1). From 2011, five plots at each site were fenced in a single enclosure to 115 

exclude mammalian herbivores (predominantly kangaroos but also rabbits). One plot inside and 116 

one plot outside the fence had its above-ground biomass removed each year by slashing, and 117 

one plot inside and one plot outside the fence was left unmanipulated (unslashed). We analysed 118 

these four treatments at each site (grazed, unslahed; grazed, slashed; fenced, unslashed; and 119 

fenced, slashed), allowing us to test whether the competitive impact of non-native species was 120 

stronger in the absence of biomass removal by grazing and/or slashing, and to assess whether 121 

biomass removal by slashing had similar effects to herbivore grazing. 122 

 123 

Vegetation surveys were conducted every year from 2010 to 2016, except for 2014. In late 124 

spring (October) of each year, the percent cover of all vascular plant species was visually 125 

estimated in four 1 m x 1 m quadrats placed in the corners of each plot (only three quadrats per 126 

plot were surveyed in 2013 due to time constraints). We use plant cover as a proxy of 127 

abundance because abundance scales can vary significantly between species. Our dataset thus 128 

comprised six years of vegetation cover data from 160 quadrats across 40 plots. In total, we had 129 

920 quadrat level vegetation measurements, comprising 10,780 cover estimates for 142 species 130 

(70 native and 72 non-natives; see Appendix 1, Fig. S2 for more details). In 2015 and 2016, we 131 

measured the traits of abundant species, defined as those comprising the first 80% of total 132 

recorded cover at each site. At each site, we measured traits associated with growth rate and 133 
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light capture on 5-10 adult individuals in each of the unslashed plots following standard 134 

protocols (Pérez-Harguindeguy et al., 2013) including canopy height (m), maximum height (m), 135 

canopy width (m), leaf length and width (cm) and specific leaf area (mm2 mg-1; SLA). To avoid 136 

the influence of outliers, we used 90th quantile values from all measured plants to estimate 137 

species maximum potential for each trait.  138 

 139 

Total extractable nitrogen at sites along the fertility gradient ranged from 615 ppm to 2420 140 

ppm (Driscoll & Strong, 2017). Total soil carbon, nitrogen and phosphorus levels, as well as 141 

extractable nitrogen and phosphorus, all covaried strongly across the 10 sites (Appendix 1), and 142 

we used total extractable nitrogen as a proxy for overall soil fertility. Grasslands in this region 143 

also respond strongly to variation in annual rainfall (Prober, Thiele, & Speijers, 2013; Fig. S3). 144 

We obtained data on total rainfall in the four months prior to each survey (August – November) 145 

from the Australian Bureau of Meteorology (BOM, Appendix 1) as a proxy for water availability. 146 

Total rainfall during these months ranged from 185 – 414 mm over the seven years of the study. 147 

Both total nitrogen and spring rainfall were centred and scaled prior to model fitting. 148 

 149 

Analyses 150 

1) Relative dominance of non-native species. 151 

We examined how the dominance of non-native species changed over time, in relation to soil 152 

fertility, and in response to the experimental treatments (fencing and slashing). Our response 153 

variable was the proportion of non-native species cover in each plot in each year. This was 154 

calculated by taking the average cover of each species across quadrats in each plot in each year, 155 

summing these averages to get the total average cover of all species in each plot in each year, 156 

and calculating the proportion of total cover comprising non-native species. We logit-157 

transformed this proportion and modelled it as a linear function of soil fertility, fitting a 158 

separate intercept and slope for each experimental treatment (grazed/fenced and 159 

slashed/unslashed) and for each year. We included rainfall as an additional explanatory 160 
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variable, specifying a single coefficient for the effect of inter-annual rainfall variation on the 161 

proportion of non-native cover. The model structure is described in detail in Appendix 2. 162 

 163 

2) Joint-species tobit modelling 164 

To test if dominance by non-native species was a consequence of environmental responses 165 

or competitive displacement, we specified a JSDM that modelled the cover of each species in 166 

response to variation in soil fertility, rainfall and experimental treatment (JSDM1). This model 167 

included a single covariance matrix to capture unexplained residual variation. We fitted a 168 

second model (JSDM2) to test whether competitive impacts were greater in fenced plots. JSDM2 169 

had the same structure as JSDM1, but separate residual covariance matrices for each 170 

experimental treatment. We analysed data for the years 2013-2016, which were the years 171 

during which the experimental treatments showed clear effects (see: Figs 2 & S4b), and 172 

restricted our analyses to species present in >20% of plots measured between 2013 and 2016 173 

(N = 30, 14 native and 16 non-native species; Fig S2.) These species were present at >50% of 174 

sites in each year and were thus sufficiently widespread that absences were more likely due to 175 

unsuitable environmental conditions or competitive displacement rather than dispersal 176 

limitation. We analysed cover data at the quadrat level because we expected species 177 

interactions to be most evident at this scale. Zero cover was recorded when a species was 178 

absent from a quadrat. Even after restricting our analysis to the 30 most common species, most 179 

of our data comprised zero values (~69%; 4,396 cover estimates, 10,004 absences). 180 

We used tobit regression to accommodate zero inflation by treating absences as censored 181 

data (Clark et al., 2017; Tobin, 1958). Censored data occur when it is not possible to observe a 182 

value beyond some limit. In this case, we assume there is an unobserved latent variable that 183 

measures the ‘suitability’ of each quadrat for each species, where suitability encompasses all 184 

biotic and abiotic factors that might influence species cover. When a species is present in a 185 

quadrat we equate the latent suitability with cover, assuming that higher cover indicates higher 186 

suitability (Fig. 1). Quadrats where species are absent can be thought of as sufficiently low 187 
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suitability that a species cannot persist but quadrats with zero cover can still vary in their 188 

underlying suitability. We model observations of zero cover as censored data arising from this 189 

latent suitability distribution, which can take values less than zero: 190 

 191 

𝑦 = {
𝑦∗, if 𝑦∗ > 0
0, if 𝑦∗ ≤ 0

 192 

 193 

where y is the observed cover and y* is the corresponding latent suitability value. To complete 194 

the model, we need to specify a distribution for the underlying latent variable. We specified the 195 

underlying distribution as multivariate normal with 30 dimensions, one for each species. 196 

 197 

We regressed latent suitability (y*) against the environmental variables soil fertility and 198 

rainfall, with residual variation captured in a single covariance matrix (JSDM1). We specified 199 

different regression coefficients for each experimental treatment, modelled hierarchically, and 200 

included normally distributed random effects to account for repeated measurements of plots 201 

nested within sites. The structure of JSDM1 was: 202 

 203 

JSDM 1: 204 

𝒚[𝑖𝑗𝑘𝑙]
∗ ∼ 𝑀𝑢𝑙𝑡𝑖𝑁𝑜𝑟𝑚𝑎𝑙(𝝁[𝑖𝑗𝑘𝑙], 𝚺) 205 

𝝁[𝑖𝑗𝑘𝑙] = (

𝜇1[𝑖𝑗𝑘𝑙]

𝜇2[𝑖𝑗𝑘𝑙]

⋮
𝜇𝑁[𝑖𝑗𝑘𝑙]

) 206 

𝜇𝑠[𝑖𝑗𝑘𝑙]
= 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑆[𝑗]

+ 𝛽𝑠𝑙𝑜𝑝𝑒𝑆[𝑗]
⋅ 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦[𝑗𝑘] + 𝛽𝑟𝑎𝑖𝑛𝑆[𝑗]

⋅ 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙[𝑖] + 𝛽𝑝𝑙𝑜𝑡[𝑗𝑘]
 207 

𝛽𝑝𝑙𝑜𝑡[𝑗𝑘]
∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝛽𝑠𝑖𝑡𝑒[𝑘]

, 𝜎𝑝𝑙𝑜𝑡
2 ) 208 

𝛽𝑠𝑖𝑡𝑒[𝑘]
∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑠𝑖𝑡𝑒

2 ) 209 
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where 𝒚[𝑖𝑗𝑘𝑙]
∗  is an N-length vector of latent suitability values in year i (1-3), under treatment j 210 

(1-4), at site k (1-10) in quadrat l (1-4). s indexes species (s = 1 … N) with intercept terms 211 

measuring average site suitability for each species in each treatment, and slope and rain terms 212 

measuring how site suitability varied with soil fertility and rainfall for each species in each 213 

treatment. Σ is an N x N covariance matrix with the diagonal containing the residual variances in 214 

suitability for each species, σ2, and the off-diagonals containing the residual covariances 215 

between each species pair, conditional on the value of 𝝁[𝑖𝑗𝑘𝑙] . This matrix has N * (N – 1) / 2 = 216 

435 unique elements, with the covariance between two species defined as: Σ12 = σ1 σ2 ρ12 = Σ21.  217 

The covariances describe how residual variation in the cover of one species is related to 218 

residual variation in the cover of a second species. If, having accounted for environmental 219 

effects, the cover of one species declined in quadrats when the cover of a second species 220 

increased, the residuals of the two species would covary negatively. We interpreted negative 221 

covariances as due to competition on the grounds that we had modelled species responses to 222 

the major environmental gradients in these grasslands (fertility and water availability) 223 

(Leishman & Thomson, 2005; Morgan et al., 2016; Prober, Thiele, & Speijers, 2016). Large 224 

negative covariances imply potentially strong competitive impacts, while species with low 225 

cover, or where cover is well explained by environment variables, will have smaller covariances 226 

because there is less residual variation that could be associated with co-occurring species. 227 

Moreover, if a dominant species causes several species to decline in cover, resulting in strong 228 

negative covariances, this is likely to induce a pattern of positive covariances among the 229 

impacted species because they would all tend to have lower cover at sites where the dominant 230 

species was present and higher cover at sites where it was absent.  231 

 232 

3) Change in species covariances by treatment 233 
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Specifying a single covariance matrix in JSDM1 meant the covariances were estimated from 234 

the data in all treatments. In JSDM2, we specified a separate covariance matrix for each of the 235 

four treatments: 236 

JSDM2: 237 

𝒚[𝑖𝑗𝑘𝑙]
∗ ∼ 𝑀𝑢𝑙𝑡𝑖𝑁𝑜𝑟𝑚𝑎𝑙(𝝁[𝑖𝑗𝑘𝑙], 𝚺[𝑗]) 238 

𝜇𝑠[𝑖𝑗𝑘𝑙]
= 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑆[𝑗]

+ 𝛽𝑠𝑙𝑜𝑝𝑒𝑆[𝑗]
⋅ 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦[𝑗𝑘] + 𝛽𝑟𝑎𝑖𝑛𝑆[𝑗]

⋅ 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙[𝑖] + 𝛽𝑞𝑢𝑎𝑑𝑟𝑎𝑡[𝑗𝑘𝑙]
 239 

where both the coefficients for species s and the covariances Σ varied with treatment j (1-4). 240 

Comparing the covariance matrices for different treatments in JSDM2 allowed us to evaluate 241 

whether competitive interactions were stronger in plots where herbivores were excluded. 242 

 243 

4) Predicting competitive impact from functional traits 244 

We predicted that competitive impacts, measured as the magnitude of negative covariance 245 

between species, should be linked to differences in traits associated with growth and light 246 

capture. To test this, we regressed the posterior mean of the negative covariance parameters 247 

estimated in JSDM2 against the absolute difference in measured trait values for each species 248 

pair. Trait values were normalised prior to analysis so that traits measured using different units 249 

could be compared directly. For the regression models, we specified separate intercept and 250 

slope coefficients for the covariance-trait relationships in each experimental treatment, with the 251 

slopes and intercepts modelled as drawn from normal distributions for each trait.  252 

 253 

All models were fitted to the data in a Bayesian framework using adaptive Hamiltonian 254 

Monte Carlo with the probabilistic programming language Stan (Carpenter et al., 2017) and the 255 

rstan interface (Guo et al., 2016) in R, version 3.4 (R Core Team, 2016). Details of model fitting 256 

and prior specification are in Appendix 2 and online at https://github.com/aornugent/impact2. 257 

We took a conservative approach to identifying interactions in the data by specifying that we a 258 

https://github.com/aornugent/impact2
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priori expected covariances to be weak (see prior specification in Appendix 2), meaning that 259 

strong residual covariances required strong support from the data. 260 

 261 

Results  262 

1) Relative dominance of non-native species  263 

Overall, the proportion of total cover that comprised non-native species increased with 264 

increasing soil fertility (Figs 2, S4a). Prior to and immediately after fencing (2010 & 2011), the 265 

relationship between fertility and proportion of non-native cover was similar in the fenced and 266 

grazed plots, and in the slashed and unslashed treatments. However, from 2012 onwards the 267 

proportion of non-native cover increased substantially at higher fertility sites in the fenced, 268 

unslashed plots (i.e., in the absence of biomass removal). There was no clear change over time in 269 

the proportion of non-native cover along the fertility gradient in plots that were grazed, slashed 270 

or both (Figs 2, S4b). The proportion of non-native cover was higher in years with higher spring 271 

rainfall (Fig. S3a) 272 

 273 

2) Joint species tobit modelling 274 

Species responded differently to changes in soil fertility, with latent site suitability increasing 275 

strongly with higher soil fertility for two native and five non-native species (95% credible 276 

intervals above zero in at least one treatment; Fig. 3). The remaining species, both native and 277 

non-native, declined in cover with increasing fertility. Relationships between cover and fertility 278 

did not vary much between experimental treatments with three exceptions: relative to other 279 

species, the cover of the non-native species Avena fatua, Bromus diandrus and Acetosella vulgaris 280 

increased more strongly with fertility in the fenced, unslashed treatment. At high fertility, 281 

several fenced, unslashed plots were completely dominated by one or more these species. For 282 

most species, cover was positively related to rainfall across years (Fig. S3b).  283 

 284 
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Figure 4 shows species’ residual covariances from JSDM1 as a pairwise covariance matrix 285 

(Fig. 4b) along with the median covariance for each species across all pairwise interactions (Fig. 286 

4a). We report the median covariance because covariance values could be highly skewed. One 287 

species, Avena fatua, stood out as having strong negative covariances, with high cover of A. fatua 288 

often associated with reduced cover of other species. Median covariance for the native grass 289 

Themeda triandra was the second most negative but of much smaller magnitude than A. fatua. 290 

Moreover, T. triandra covaried negatively with A. fatua (Fig. 4b), such that high cover of A. fatua 291 

was associated with low cover T. triandra and vice versa. Small-statured species, such as in the 292 

genera Aira, Vulpia and Hypochaeris, tended to covary positively. 293 

 294 

3) Change in species covariances by treatment 295 

JSDM2 revealed that species’ residual covariances varied by grazing and slashing treatment 296 

(Fig. 5), suggesting that competitive interactions were altered by biomass removal. Covariances 297 

were weakest in the grazed, slashed treatment with the median close to zero for most species 298 

(mean median covariance with 95% confidence intervals = -0.4, CI -2.2 to 1.3), implying weak 299 

interactions. Covariances were larger but still relatively weak in the fenced, slashed treatment 300 

(mean = 0.2, CI -1.5 to 2). Median covariances were most negative in the grazed, unslashed 301 

treatment (mean = -1.3, CI -3 to 0.5) and especially the fenced, unslashed treatment (mean = -302 

3.2, CI = -4.9 to -1.5), suggesting stronger competitive interactions in the absence of slashing, 303 

and especially in the absence of both grazing and slashing. Relative to the natural situation in 304 

these grasslands (the grazed, unslashed treatment), the three species whose cover increased 305 

most strongly with fertility in the fenced, unslashed plots (Avena fatua, Bromus diandrus and 306 

Acetosella vulgaris) showed a marked shift to more negative covariances in the same treatment, 307 

especially A. fatua (Fig. 5). This implies these species had a greater competitive impact on other 308 

species in the absence of biomass removal. 309 

 310 

4) Predicting impact from functional traits 311 
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In the fenced, unslashed treatment, stronger negative covariances between species were 312 

associated with greater differences in plant height (Fig. 6). This relationship was evident, 313 

though weaker, in the grazed, unslashed treatment but largely absent in both slashed 314 

treatments. Negative covariance decreased between species that had greater differences in SLA, 315 

but this relationship did not explain positive covariances between species. None of the 316 

remaining trait differences (canopy width and leaf dimensions) showed strong relationships 317 

with covariances. 318 

 319 

Discussion 320 

Measuring the strength of species interactions when these are confounded with 321 

environmental variation remains a major obstacle to studying the impact of non-native species 322 

in plant communities (HilleRisLambers et al., 2010; Levine et al., 2003; MacDougall & 323 

Turkington, 2005). We have shown how a joint-species-distribution model can be adapted to 324 

model plant cover and, when applied to our case study, could identify the non-native species 325 

having large competitive impacts on the community, as well as where those impacts were 326 

greatest. Globally, non-native species frequently dominate grasslands under conditions of high 327 

fertility in the absence of grazing (Seabloom et al., 2013, 2015). Our findings show this can 328 

result from displacement of native species by one or more competitively dominant non-native 329 

species. In our study, greater cover of three non-native species (Bromus diandrus, Acetosella 330 

vulgaris and especially the annual grass Avena fatua) was associated with strong declines in the 331 

cover even after accounting differences in environmental responses. This outcome is consistent 332 

with previous studies on the impact of non-native species in Australian temperate grasslands 333 

(Driscoll, 2017; Driscoll & Strong, 2017; Prober, Thiele, Lunt, & Koen, 2005) and matching 334 

outcomes in grasslands globally (Chang & Smith, 2014; Flores-Moreno et al., 2016; Harpole et 335 

al., 2016). 336 

 337 
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Our results support the predictions outlined in the Introduction. First, competitive impacts, 338 

as revealed by the strength of negative covariances, were much stronger in the absence of 339 

biomass removal (Fig. 4). Second, under low or no biomass removal, the strength of negative 340 

covariances were linked to differences in plant height: in unslashed plots, taller species had 341 

greater impact on shorter species, implying a strong competitive advantage associated with 342 

plant height under these conditions (Fig. 6). This outcome most likely results from competition 343 

for light, which should favour taller, higher biomass species (Borer et al., 2014; Hautier et al., 344 

2009). While negative covariances were linked most strongly to height differences, negative 345 

covariances were smaller among species with greater differences in specific leaf area (Fig. 6). 346 

This implies that, while competitive dominance was due primarily to a trait advantage in height, 347 

this was partly offset by trait dissimilarity in SLA, potentially indicative of reduced competitive 348 

impact through niche differentiation (Gross, Börger, Duncan, & Hulme, 2013).  349 

 350 

Results from the JSDMs provide additional insights into interactions in these grasslands. For 351 

example, negative covariances, and hence competitive interactions, were weaker in the slashing 352 

treatments (Fig. 5). Annual biomass removal by slashing may prevent species from attaining 353 

cover sufficient to have a strong competitive impact (Mortensen et al., 2018). Grazing may also 354 

prevent competitive dominance, although interactions were stronger under grazing alone than 355 

when plots were slashed (Fig. 5), suggesting grazing removes less biomass than slashing, or 356 

selectively removes certain species allowing others to attain cover sufficient to have measurable 357 

impact (Evju, Austrheim, Halvorsen, & Mysterud, 2009). The most dominant species, Avena 358 

fatua had the greatest competitive impact, but also covaried negatively with two other species 359 

that had relatively high impact overall: the native grass Themeda triandra and non-native forb 360 

Acetosella vulgaris (Fig. 4). Avena fatua and A. vulgaris both increased in cover at higher fertility 361 

in the absence of biomass removal, suggesting these species competed for site occupancy under 362 

those conditions. The ability of A. vulgaris to form dense rhizomatous mats may have excluded 363 

A. fatua from some sites (Fan & Harris, 1996). Themeda triandra, in contrast, had higher cover at 364 
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lower fertility. Themeda triandra is known to dominate more intact native grasslands (Prober & 365 

Lunt, 2009), suggesting that A. fatua may be displacing an otherwise competitively dominant 366 

native grass at higher fertility sites. 367 

 368 

Other non-native species were abundant in these grasslands but had little or no competitive 369 

impact. Short-statured annual grasses in the genera Aira and Vulpia, for example, were 370 

widespread (Fig. S2) and had high average cover where they occurred (15% and 24% for Aira 371 

and Vulpia, respectively, compared with 30% for Avena fatua). Both Aira and Vulpia strongly 372 

negatively covaried with A. fatua and B. diandrus, and both covaried positively with other, 373 

typically short-statured, species that were also impacted by the competitive dominants. Hence, 374 

in addition to identifying the drivers of change in this community, we can identify non-native 375 

species that achieve moderate to large cover without impacting the community, most likely 376 

because they are ruderal-like species that exploit more marginal habitats. 377 

 378 

We have demonstrated how a JSDM can be applied to field data to measure impact and 379 

identify the species driving compositional change in a plant community. We emphasise that 380 

interpreting negative residual covariation as due to species interactions relies on having 381 

measured and correctly modelled the major environmental variables controlling species 382 

abundances (Hui, Taskinen, Pledger, Foster, & Warton, 2015). Our approach of crossing a 383 

natural fertility gradient with manipulation of biomass removal no doubt helped to disentangle 384 

competitive from environmental effects in this system, as it meant differences between the 385 

biomass treatments at each site were not confounded with other environmental variables. 386 

Nevertheless, the model appeared successful in identifying species having impact in the 387 

unmanipulated treatment alone (grazed, unslashed; Fig. 5), suggesting JSDMs can detect 388 

interactions in systems without experimental manipulation where the environmental drivers 389 

are well understood.  390 

 391 
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There are additional choices to be made in applying JSDMs to field data. We limited our 392 

analysis to common species, in part because large covariance matrices are difficult to estimate 393 

due to the large number of parameters and associated computational costs, and because fewer 394 

data are available to estimate parameters for less common species. Recent modelling 395 

developments have attempted to overcome these issues by using latent axes to group species 396 

showing similar responses to unmeasured sources of variation (Hui et al., 2015; Taylor-397 

Rodríguez, Kaufeld, Schliep, Clark, & Gelfand, 2017; Thorson et al., 2015). We chose not to do 398 

this because latent axes might capture the common response of species to one or more of the 399 

competitive dominants, meaning this signal of competition would be missing from the residual 400 

covariation. There was evidence for a common response in our results where short-statured 401 

species, such as in the genera Aira and Vulpia, tended to covary positively, most likely because 402 

these species all had low cover where the competitive dominants were abundant and increased 403 

in cover only where the competitive dominants were rare. Fitting the full residual covariance 404 

matrix allowed for the pattern of positive covariances that we would expect due to the 405 

competitive impact of one or more dominant species. Restricting our analysis to common 406 

species may also have downplayed the impact of competitive dominants because, for some 407 

species, rarity could be due to competitive displacement. 408 

 409 

Conclusion 410 

Separating plant species responses to environmental variation from the outcome of species 411 

interactions is challenging (Adler et al., 2018). We have shown it is possible to quantify 412 

competitive interactions using a JSDM when we can measure or manipulate the major axes of 413 

environmental variation. This allowed us to identify the species driving compositional change 414 

through competitive displacement in a temperate grassland, to identify where on the landscape 415 

competitive impacts were greatest, and to identify widespread, abundant non-native species 416 

that had little or no impact on the community and thus were likely passengers of environmental 417 

change. We provide the data and code needed to reproduce our analyses in an R package 418 
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(https://github.com/aornugent/impact2) to encourage further application and model 419 

development. 420 
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Figures: 608 

Figure 1. A simulated example of tobit regression. Black circles show observed cover for a 609 

species measured at points along an environmental gradient. Cover declines as environmental 610 

suitability decreases, eventually reaching a point where the environment is unsuitable for the 611 

species and cover is zero. Beyond that point, environmental suitability continues to decline but 612 

cover remains at zero. These zero values are censored in that zero cover provides partial 613 

information about the latent suitability (open circles): it tells us a site is unsuitable but, beyond 614 

that, does not measure how unsuitable. Tobit regression aims to estimate latent suitability (the 615 

open circles, which are uncensored) by fitting a regression line (red) to the cover data, treating 616 

the zero values as censored. 617 

 618 

Figure 2. Proportional cover of non-native species (logit-transformed) as a function of soil 619 

fertility at 10 sites measured over 7 years (2010-2016 with no measurement in 2014). There 620 

were four treatments at each site, which are plotted separately. Slashed plots are shown on the 621 

top line and unslashed plots on the lower line, with filled circles and solid lines for fenced plots, 622 

and open circles and dashed lines for grazed plots. Fertility is scaled and standardized as 623 

described in Appendix 1. 624 

 625 

Figure 3. Latent suitability with respect to soil fertility for 30 species estimated using a joint-626 

species-distribution model and tobit regression (see text). Separate relationships were fitted for 627 

each species in each of four treatments, shown as different panels. Native species are drawn 628 

with dashed lines (n = 14) and non-native species with solid lines (n = 16). Lines are coloured 629 

from dark blue to light yellow corresponding to a shift from negative to positive slopes, 630 

respectively. 631 

 632 
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Figure 4. a) The median residual covariance from all pairwise interactions for each species 633 

and b) the full residual covariance matrix for JSDM1. Negative covariances are indicative of 634 

competitive displacement (see text). The full matrix shows mean covariances from the posterior 635 

distributions shaded by magnitude and direction, ranging from large negative covariances (deep 636 

red) to large positive covariances (blue). A black dot indicates the 95% credible intervals for a 637 

covariance did not include zero. Non-native species are marked with asterisks. 638 

  639 

Figure 5. The median residual covariance from all pairwise interactions for each species from 640 

JSDM2, where a separate covariance matrix was fitted for each treatment (shown as separate 641 

panels). The median covariance summarises the magnitude of competitive displacement 642 

between a single species and the rest of the community. Names of non-native species are shown 643 

in black and native species in grey. Non-native species are marked with asterisks. 644 

 645 

Figure 6. Mean (circles) and 95% credible intervals for the slope of the relationship between 646 

covariance and trait differences among species. Negative values indicate that competitive 647 

displacement is associated with a greater differences in trait values between species. The 648 

relationships are plotted separately for the four treatments, with filled circles for fenced plots, 649 

open circles for grazed plots, and slashed and unslashed plots in different panels. Trait 650 

differences were normalized before analysis to allow direct comparison of slope estimates for 651 

traits measured in different units. 652 
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