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a b s t r a c t 

The characterisation of vertices in a network, in relation to other peers, has been 

used as a primitive in many computational procedures, such as node localisation and 

(de-)anonymisation. This article focuses on a characterisation type known as the multiset 

metric representation . Formally, given a graph G and a subset of vertices S = { w 1 , . . . , w t } ⊆
V (G ) , the multiset representationof a vertex u ∈ V ( G ) with respect to S is the multiset 

m (u | S) = {| d G (u, w 1 ) , . . . , d G (u, w t ) |} . A subset of vertices S such that m (u | S) = m (v | S) ⇐⇒ 

u = v for every u, v ∈ V (G ) \ S is said to be a multiset resolving set, and the cardinality of 

the smallest such set is the outer multiset dimension. We study the general behaviour of 

the outer multiset dimension, and determine its exact value for several graph families. We 

also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and 

provide methods for efficiently handling particular cases. 
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1. Introduction 

The characterisation of vertices in a graph by means of unique features, known as distinguishability or resolvability , has

found applications in computer networks where nodes ought to be localised based on their properties rather than on identi-

fiers [6] , or to determine the social role of an actor in society in comparison to other peers with similar structural properties

[7] . In fact, simple structural properties of vertices, such as their degree or the subgraphs induced by their neighbours, have

been successfully used to re-identify (supposedly) anonymous users in social graphs [8,17,18] . 

This article focuses on vertex characterisations that are defined in relation to a subset of vertices of the graph. The

earliest of such characterisations is known as metric representation , introduced independently by Slater [15] in 1975 and
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Harary and Melter [3] in 1976. Formally, given an ordered set of vertices S = { w 1 , . . . , w t } ⊆ V in a graph G = (V, E) , the

metric representation of a vertex u ∈ V with respect to S is the t -vector r (u | S) = (d G (u, w 1 ) , . . . , d G (u, w t )) , where the metric

d G (u, v ) is computed as the length of a shortest u − v path in G . An ordered subset S satisfying that every two distinct

vertices u and v in the graph have different metric representation, i.e. r (u | S) � = r (v | S) , is said to be a resolving set . The

minimum cardinality amongst the resolving sets in a graph G is known as the metric dimension of G , and denoted as dim (G ) .

The metric dimension of graphs has been extensively studied in literature since the 70s. Issues that are relevant to the

present day, such as privacy in online social networks, are still benefiting from such research effort [9–12,16] . 

The assumption that resolvability requires an order to exist (or be imposed) on a set S for obtaining metric representa-

tions remained unchallenged until 2017, when Simanjuntak, Vetrík, and Mulia introduced the notion of multiset representa-

tion [14] by looking at the multiset of distances rather than at the standard vector of distances. 

For a vertex u ∈ V and a vertex set S ⊆ V , the multiset representation of u with respect to S , denoted m( u | S ), is defined by 

m (u | S) = {| d G (u, w 1 ) , . . . , d G (u, w t ) |} , 
where {| . |} denotes a multiset. 

Using this definition, the notions of resolvability in terms of the metric representation were straightforwardly extended

to consider resolvability in terms of the multiset representation [5,14] . Our main observation in this article is that these

straightforward extensions are in fact an oversimplification of the problem of distinguishing vertices in a graph based on

the multiset representation. We argue that this problem has two flavours, one of which has been neglected in literature. 

Contributions. This article makes the following contributions. 

• We generalise the metric dimension of graphs to accommodate different characterisations of their vertices, such as

the metric and multiset representations. We show that the metric dimension problem with respect to the multiset

representation admits two interpretations: one that can be found in the literature [5,14] and is known as the multiset

dimension , and another one that we call the outer multiset dimension . The latter is well-defined, whereas the multiset

dimension is undefined for an infinite number of graphs [5,14] . We also show that the outer multiset dimension finds

applications on measuring the re-identification risk of users in a social graph. 

• We characterise several graph families for which the outer multiset dimension can be easily determined, or bounded

by the metric dimension. 

• We prove that the problem of computing the outer multiset dimension in a graph is NP-Hard. 

• We provide a polynomial computational procedure to calculate the outer multiset dimension of full 2-ary trees, and

a parallelisable algorithm for the general case of full δ-ary trees. 

Structure of the article. In Section 2 , we discuss the generalisation of the notion of metric dimension, focusing on vector

and multiset metric representations as particular cases of interest. From Section 3 onwards, the paper focuses on the outer

multiset dimension. Section 3 is devoted to the basic properties of this parameter, whereas Section 4 discusses the com-

plexity of its computation. Finally, Section 5 studies the behaviour of the outer multiset dimension in the particular case of

trees. 

2. A generalisation of the metric dimension 

We consider a simple and connected graph G = (V, E) where V is a set of vertices and E a set of edges. The distance

d G (v , u ) between two vertices v and u in G is the number of edges in a shortest path connecting them. If there is no

ambiguity, we will simply write d(v , u ) . 
The metric dimension of graphs has traditionally been studied based on the so-called metric representation, which is the

vector of distances from a vertex to an ordered subset of vertices of the graph. To accommodate other types of relations

between vertices, we generalise the metric dimension by considering any equivalence relation ∼ ⊆ V × V over the set of

vertices of the graph. That is, we consider a relation ∼ that is reflexive, symmetric, and transitive. We use [ u ] ∼ to denote the

equivalence class of the vertex u ∈ V with respect to the relation ∼ , while V / ∼ denotes the partition of V composed of the

equivalence classes induced by ∼. 

Definition 2.1 (Resolving and outer resolving set) . A subset S of vertices in a graph G = (V, E) is said to be resolving (resp.

outer resolving) with respect to ∼ if all equivalence classes in V / ∼ (resp. (V − S) / ∼) have cardinality one. 

While standard resolving sets distinguish all vertices in a graph, outer resolving sets only look at those vertices that are

not in S , hence the name. We remark that there exist applications working under the assumption that S is given, implying

that vertices in S do not need to be distinguishable. For example, in an active re-identification attack on a social graph

[1,11,16] , a malicious agent, the attacker , first inserts a set of fake accounts in the graph, commonly called sybils , and creates

a set of unique connection patterns with a number of legitimate vertices, called victims or targets . After a sanitised version

of the social graph is released, the attacker retrieves the set of sybil nodes by using a pattern matching algorithm, and then

re-identifies the victims by means on their metric representations with respect to the set of sybils. 

We use ∼ S to denote the relation on the set of vertices of a graph defined by u ∼S v ⇐⇒ r (u | S) = r (v | S) , where r (v | S)
is the vector of distances from v to vertices in S , and 

∼= S to denote the relation u ∼= S v ⇐⇒ m (u | S) = m (v | S) , where m (v | S)
is the multiset of distances from v to vertices in S . These two relations are interconnected in the following way. 
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Fig. 1. Hierarchy of resolvability notions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 2.2. For every non-trivial graph G , the following facts hold: 

i. Every resolving set of G with respect to ∼= S is an outer resolving set. 

ii. Every outer resolving set of G with respect to ∼= S is an outer resolving set of G with respect to ∼ S . 

iii. Every outer resolving set of G with respect to ∼ S is a resolving set of G , and vice versa. 

Proof. Let S ⊆ V ( G ) be a resolving set of G with respect to ∼= S . Then, every pair of distinct vertices u, v ∈ V (G ) satisfy

m (u | S) � = m (v | S) . Thus, it trivially follows that the same property holds for every pair of distinct vertices u, v ∈ V (G ) \ S.

This completes the proof of (i). 

The second property follows straightforwardly from the fact that m (u | S) � = m (v | S) 	⇒ r (u | S) � = r (v | S) , and (iii) is a well-

known property of resolving sets based on the metric representation. �

Fig. 1 depicts the relations between resolvability notions enunciated in Proposition 2.2 in the form of a hierarchy. In the

figure, every arrow from resolvability notion A to resolvability notion B indicates that a set S which is resolving as defined

by A is also resolving as defined by B . We use the following shorthand notation in Fig. 1 and in the remainder of this article.

• resolving set to denote a resolving set with respect to ∼ S . 

• multiset resolving set to denote a resolving set with respect to ∼= S . 

• outer resolving set to denote an outer resolving set with respect to ∼ S . 

• outer multiset resolving set to denote an outer resolving set with respect to ∼= S . 

Definition 2.3 (Metric dimension and outer metric dimension) . The metric dimension (resp. outer metric dimension) of a

simple connected graph G = (V, E) with respect to a structural relation ∼ is the minimum cardinality amongst a resolving

(resp. outer resolving) set in G with respect to ∼ . If no resolving (resp. outer resolving) set exists, we say that the metric

dimension (resp. outer metric dimension) is undefined. 

An example of a metric dimension definition that is undefined for some graphs is given by Simanjuntak et al. [14] . They

use the multiset representation to distinguish vertices. It is easy to prove that a complete graph has no multiset resolving

set, which leads to indefinition. Conversely, the outer metric dimension with respect to the multiset representation is always

defined, given that for every graph G = (E, V ) , V is an outer multiset resolving set. 

Overall, we highlight the fact that, while the outer metric dimension and the standard metric dimension with respect to

the metric representation are equivalent (see Fig. 1 ), the use of the multiset representation renders the outer metric dimen-

sion different from the standard metric dimension. In fact, the outer multiset dimension is defined for any graph, whereas

the multiset dimension is not. Furthermore, recent privacy attacks and countermeasures on social networks [1,11,13,16] rely

on the notion of outer resolving set, rather than on the original notion of resolving set. The remainder of this article is thus

dedicated to the study of the outer multiset dimension , that is, the outer metric dimension with respect to ∼= S . 

3. Basic results on the outer multiset dimension 

In this section we characterise several graph families for which the outer multiset dimension can be easily determined,

or bounded by the metric dimension otherwise. We start by providing notation that we use throughout the rest of the

paper. 

Notation. Let G = (V, E) be a simple undirected graph of order n = | V (G ) | . We will say that G is non-trivial if n ≥ 2. We

denote by K n , N n , P n and C n the complete, empty, path and cycle graphs, respectively, of order n . Moreover, we will use the

notation u ↔ G v (negated as u �↔ G v ) to indicate that u and v are adjacent in G , that is (u, v ) ∈ E. For a vertex v of G , N G (v )
denotes the set of neighbours of v in G , that is N G (v ) = { u ∈ V (G ) : u ↔ v } . The set N G (v ) is called the open neighbourhood

of the vertex v in G and N G [ v ] = N G (v ) ∪ { v } is called the closed neighbourhood of v in G . The degree of a vertex v of G will

be denoted by δG (v ) . If there is no ambiguity, we will drop the subscripts and simply write u ↔ v , u �↔ v , N(v ) , etc. Two

different vertices u, v are called true twins if N[ u ] = N[ v ] . Likewise, u, v are called false twins if N(u ) = N(v ) . In general, u, v
are called twins if they are either true twins or false twins. Moreover, a vertex u is called a twin if there exists v � = u such

that u and v are twins. Note that the property of being twins induces an equivalence relation on the vertex set of any graph.



4 R. Gil-Pons, Y. Ramírez-Cruz and R. Trujillo-Rasua et al. / Applied Mathematics and Computation 363 (2019) 124612 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we will use the notation dim ms ( G ) for the outer multiset dimension of a graph G , and dim (G ) for the standard metric

dimension. 

Proposition 3.1. For every non-trivial graph G of order n , the following facts hold: 

i . 1 ≤ dim ms (G ) ≤ n − 1 . 

ii . dim ms (G ) ≥ dim (G ) . 

Proof. The fact that dim ms ( G ) ≥ 1 follows directly from the definition of outer multiset dimension, whereas dim ms (G ) ≤ n − 1

follows trivially from the fact that every vertex v is the sole vertex in V (G ) \ ( V (G ) \ { v } ) , and thus it has a unique multiset

representation w.r.t. V (G ) \ { v } , which is thus a multiset resolving set. The fact that dim ms (G ) ≥ dim (G ) follows directly

from items (ii) and (iii) of Proposition 2.2 . �

Once established the global bounds of the outer multiset dimension, we now focus on the extreme cases of these in-

equalities. 

Proposition 3.2. A graph G satisfies dim ms (G ) = 1 if and only if it is a path graph. 

Proof. Let G be a path graph. It is clear that the set { v } , where v is an extreme vertex of G , is a multiset resolving set of G ,

so dim ms ( G ) ≤ 1. By item (ii) of Proposition 3.1 , dim ms (G ) ≥ dim (G ) ≥ 1 , so the equality holds. On the other hand, if G is not

a path graph, then item (ii) of Proposition 3.1 also leads to dim ms (G ) ≥ dim (G ) ≥ 2 , as the standard metric dimension of a

graph is known to be 1 if and only if it is a path graph [2] . �

According to Proposition 3.2 , the cases where dim ms (G ) = dim (G ) = 1 coincide. However, this is not the case for the

upper bound of Proposition 3.1 (i). Indeed, while it is easy to see that, for any positive integer n ≥ 2, the complete graph

K n satisfies dim ms (K n ) = dim (K n ) = n − 1 , we have the fact that this is the sole family of graphs for which dim (K n ) = n − 1 ,

whereas there exist graphs G such that dim ms (G ) = n − 1 > dim (G ) , as exemplified by the next results. 

Example 3.3. The cycle graphs C 4 and C 5 satisfy dim ms (C 4 ) = 3 > 2 = dim (C 4 ) and dim ms (C 5 ) = 4 > 2 = dim (C 5 ) . 

Proposition 3.4. Every complete k-partite graph G 

∼= 

K r 1 ,r 2 , ... ,r k 
such that r 1 = r 2 = · · · = r k ≥ 2 and 

∑ k 
i =1 r i = n satisfies

dim ms (G ) = n − 1 . 

Proof. Let G 

∼= 

K r 1 ,r 2 , ... ,r k 
be a complete k -partite graph such that r 1 = r 2 = · · · = r k ≥ 2 . Let u, v ∈ V (G ) be two arbitrary ver-

tices of G and let S ⊆ V (G ) \ { u, v } . If u �↔ v , then m (u | S) = m (v | S) , as they are false twins in G . Consequently, S is not a

multiset resolving set of G . We now treat the case where u ↔ v , for which we differentiate the following subcases: 

• S = V (G ) \ { u, v } . In this case, m (u | S) = m (v | S) = 

⋃ r−1 
i =1 {| 2 |} ∪ 

⋃ r−1 
i =1 {| 1 |} ∪ 

⋃ k −2 
i =1 

⋃ r 
j=1 {| 1 |} , and so S is not a multiset

resolving set of G . 

• S ⊂ V (G ) \ { u, v } . Here, if there exists some x ∈ V (G ) \ (S ∪ { u, v } ) such that x �↔ u (resp. x �↔ v ), then m (u | S) =
m (x | S) ( resp. m (v | S) = m (x | S) ) , as x and u (resp. x and v ) are false twins in G . Thus, S is not a multiset re-

solving set of G . Finally, if every x ∈ V (G ) \ (S ∪ { u, v } ) satisfies u ↔ x ↔ v , then we have that m (u | S) = m (v | S) =⋃ r−1 
i =1 {| 2 |} ∪ 

⋃ r−1 
i =1 {| 1 |} ∪ 

⋃ t 1 
i =1 

{| 1 |} ∪ · · · ∪ 

⋃ t k −2 

i =1 
{| 1 |} , with t i ≤ r for i ∈ { 1 , . . . , k − 2 } , which entails that S is not a multiset

resolving set of G . 

Summing up the cases above, we have that no set S ⊆ V ( G ) such that | S| ≤ n − 2 is a multiset resolving set of G , and so

dim ms (G ) ≥ n − 1 . The equality follows from item (i) of Proposition 3.1 . The proof is thus completed. �

Example 3.3 shows two cases where the outer multiset dimension of a cycle graph is strictly larger than its standard

metric dimension. With the exception of C 3 , which satisfies dim ms (C 3 ) = dim (C 3 ) = 2 , the strict inequality holds for every

other cycle graph, as shown by the following result. 

Proposition 3.5. Every cycle graph C n of order n ≥ 6 satisfies dim ms (C n ) = 3 . 

Proof. Consider an arbitrary pair of vertices u, v ∈ V (C n ) and a pair of vertices x, y ∈ V (C n ) \ { u, v } such that u ↔ x , y ↔ v ,
and both x and y lie on exactly one path from u to v (note that for n ≥ 6 at least one such pair x , y exists). We have

that m (x | { u, v } ) = m (y | { u, v } ) = {| 1 , d(u, v ) ± 1 |} , so no vertex subset of size 2 is a multiset resolving set of C n . Thus,

dim ms ( C n ) ≥ 3. 

Now, consider an arbitrary vertex v i ∈ V (C n ) and the set S = { v i −2 , v i , v i +1 } , where the subscripts are taken modulo n . We

differentiate the following cases for a pair of vertices x , y ∈ V ( C n ) �S : 

1. x = v i −1 . In this case, m (x | S) = {| 1 , 1 , 2 |} � = m (y | S) , as y is at distance 1 from at most one element in S . 

2. x and y satisfy { d(x, v i ) , d(x, v i −2 ) } = { d(y, v i ) , d(y, v i −2 ) } . In this case, assuming without loss of generality that a =
d(x, v i ) < d(y, v i ) , we have that m (x | S) = {| a, a + 2 , a − 1 |} � = {| a, a + 2 , a + 3 |} = m (y | S) . 

3. x and y satisfy { d(x, v i +1 ) , d(x, v i −2 ) } = { d(y, v i +1 ) , d(y, v i −2 ) } . In a manner analogous to that of the previous case,

we assume without loss of generality that b = d(x, v i +1 ) < d(y, v i +1 ) and obtain that m (x | S) = {| b, b + 1 , b + 3 |} � =
{| b, b + 2 , b + 3 |} = m (y | S) . 

′ ′ 
4. In every other case, we have that min { d | d ∈ m( x | S )} � = min { d | d ∈ m( y | S ), so m( x | S ) � = m( y | S ). 
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Fig. 2. The wheel graph W 1 , 5 
∼= 

〈 v 〉 + C 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, summing up the cases above, we have that S is a multiset resolving set of G , and so dim ms (G ) ≤ | S| = 3 . This

completes the proof. �

Next, we characterise a large number of cases where the outer multiset dimension is strictly greater than the stan-

dard metric dimension. To that end, we first introduce some necessary notation. We represent by n 
r C rep the number of

r -combinations, with repetition, from n elements. Likewise, we represent by n 
r P rep the number of r -permutations, with rep-

etition, from n elements. Recall that n 
r C rep = 

(
r+ n −1 

r 

)
= 

(
r+ n −1 

n −1 

)
, whereas n 

r P rep = n r . Finally, we recall the quantity f ( n , d ),

defined in [2] as the smallest positive integer k such that k + d k ≥ n . In an analogous manner, we define f ′ ( n , d ) as the

smallest positive integer k ′ such that k ′ + 

(
r+ d−1 

d−1 

)
≥ n . Since, by definition, n 

r C rep ≤n 
r P rep , we have that f ( n , d ) ≤ f ′ ( n , d ). With

the previous definitions in mind, we introduce our next result. 

Theorem 3.6. For every graph G = (V, E) of order n and diameter d such that dim (G ) < f ′ (n, d) , 

dim ms (G ) > dim (G ) . 

Proof. Let G = (V, E) be a graph of order n and diameter d . It was proven in [2] that every such graph satisfies dim (G ) ≥
f (n, d) . Indeed, no vertex subset S ⊆ V such that | S | < f ( n , d ) is a metric generator of G , because the number of different metric

representations, with respect to S , for elements in V �S is at most d | S| < n − | S| = | V \ S| . In general, if | S| = r, the set of all

possible different metric representations for elements of V �S with respect to S is that of all permutations, with repetition,

of r elements from { 1 , 2 , . . . , d} . Applying an analogous reasoning, we have that the set of all possible different multiset

metric representations for elements of V �S with respect to S is that of all combinations, with repetition, of r elements from

{ 1 , 2 , . . . , d} . Thus, any multiset metric generator S of G must satisfy n | S| C rep ≥ n − | S| , so dim ms ( G ) ≥ f ′ ( n , d ). In consequence,

if dim (G ) < f ′ (n, d) , then dim ms (G ) > dim (G ) . �

An example of the previous result is the wheel graph W 1 , 5 
∼= 

〈 v 〉 + C 5 , which has diameter 2 (see Fig. 2 ). As discussed in

[2,4] , dim (W 1 , 5 ) = 2 = f (6 , 2) < f ′ (6 , 2) = 3 < 4 = dim ms (W 1 , 5 ) . 

To conclude this section, we give a general result on the relation between outer multiset resolving sets and twin vertices,

a particular case of which will be useful in further sections of this paper. 

Proposition 3.7. Let G be a non-trivial graph and let S ⊆ V ( G ) be an outer multiset resolving set of G. Let u, v ∈ V (G ) be a pair

of twin vertices. Then, u ∈ S or v ∈ S. 

Proof. The proof follows from the fact that, as twin vertices, u and v satisfy d(u, x ) = d(v , x ) for every x ∈ V (G ) \ { u, v } ,
which entails that u and v have the same multiset representation according to any subset of V (G ) \ { u, v } . �

Corollary 3.8. Let G be a non-trivial graph and let T = { [ u 1 ] , [ u 2 ] , . . . , [ u t ] } be the set of equivalence classes induced in V ( G ) by

the twin equivalence relation. Then, 

dim ms (G ) ≥
t ∑ 

i =1 

( | [ u i ] | − 1 ) . 

Proof. The result follows from the fact that, for every twin equivalence class, at most one element can be left out of any

outer multiset resolving set. �

4. Complexity of the outer multiset dimension problem 

In the previous section, we showed that algorithms able to compute the metric dimension can be used to determined

or bound the outer multiset dimension. The trouble is, however, that calculating the metric dimension is NP-Hard [6] . We

prove in this section that computing the outer multiset dimension of a simple connected graph is NP-hard as well. The

proof is, in some way, inspired by the NP-hardness proof of the metric dimension problem given in [6] . To begin with, we

formally state the decision problem associated to the computation of the outer multiset dimension: 

Outer Multiset Dimension ( DimMS ) 

INSTANCE: A graph G = (V, E) and an integer k satisfying 1 ≤ k ≤ | V | − 1 . 

QUESTION: Is dim ms ( G ) ≤ k ? 
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Fig. 3. Gadget of a variable x i . 

Fig. 4. Gadget of clause C j . 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 4.1. The problem DIMMS is NP-complete. 

Proof. The problem is clearly in NP. We give the NP-completeness proof by a reduction from 3-SAT. Consider an arbitrary

input to 3-SAT, that is, a formula F with n variables and m clauses. Let x 1 , x 2 , . . . , x n be the variables, and let C 1 , C 2 , . . . , C m 

be

the clauses of F . We next construct a connected graph G based on this formula F . To this end, we use the following gadgets.

For each variable x i we construct a gadget as follows (see Fig. 3 ). 

• Nodes T i , F i are the “true” and “false” ends of the gadget. The gadget is attached to the rest of the graph only through

these nodes. 

• Nodes a 1 
i 
, a 2 

i 
, b 1 

i 
, b 2 

i 
“represent” the value of the variable x i , that is, a 1 

i 
and a 2 

i 
will be used to represent that variable

x i is true, and b 1 
i 

and b 2 
i 

that it is false. 

• Nodes d 1 
i 

and d 2 
i 

will help to differentiate between nodes in different gadgets. 

• Q i is a set of end-nodes of cardinality q i adjacent to d 1 
i 

. Notice that all these nodes are indistinguishable from d 2 
i 

.

Moreover, the cardinalities of these sets Q i are pairwise distinct, which is necessary for our purposes in the proof. We

further on state the explicit values of their cardinalities. 

For each clause C j we construct a gadget as follows (see Fig. 4 ). 

• Nodes c 1 
j 

and c 3 
j 

will be helpful in determining the truth value of C j . 

• Nodes c 2 
j 

and c 4 
j 

will help to differentiate between nodes in different gadgets. 

• P j is a set of end-nodes of cardinality p j adjacent to c 2 
j 
. Notice that all these nodes are indistinguishable from c 4 

j 
. As

in the case of the sets Q i from the variable gadgets, the cardinalities of these sets P j are also pairwise distinct. 

As mentioned before, we require some conditions on the cardinalities of the sets P i and Q i from the variables and clauses

gadgets, respectively. The values of their cardinalities (which we require in our proof) are as follows. For every i ∈ { 1 , . . . , n }
we make q i = 2 · i · n, and for every j ∈ { 1 , . . . , m } we make p j = 2 · j · n + 2 n 2 . In concordance, we notice that the set of

numbers p i and q j are pairwise distinct. Also, we clearly see that 
∑ 

q i + 

∑ 

p j is polynomial in n + m . 

The gadgets representing the variables and the gadgets representing the clauses are connected in the following way in

order to construct our graph G . 

• Nodes c 1 
j 
, for every j , are adjacent to nodes T i , F i for all i . 

• If a variable x i does not appear in a clause C j , then the nodes T i , F i are adjacent to c 3 
j 
. 

• If a variable x i appears as a positive literal in a clause C j , then the node F i is adjacent to c 3 
j 
. 

3 
• If a variable x i appears as a negative literal in a clause C j , then the node T i is adjacent to c 
j 
. 
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We first remark that the constructed graph G is connected, and that its order is polynomial in the number of variables

and clauses of the original 3-SAT instance. We will prove now that the formula F is satisfiable if and only if the multiset

dimension of G is exactly M = 

∑ n 
i =1 q i + 

∑ m 

j=1 p j + n . 

First, let us look at some properties that must be fulfilled by a multiset resolving set S of minimum cardinality in G .

First, as the nodes in Q i ∪ { d 2 
i 
} , for every i ∈ { 1 , . . . , n } , are indistinguishable among them, and at least | Q i | of them must be

in S , we can assume without lost of generality that Q i ⊂ S . By using a similar reasoning, also P j ⊂ S for every j ∈ { 1 , . . . , m } .
Moreover, for every i ∈ { 1 , . . . , n } , at least one of the nodes a 1 

i 
, a 2 

i 
, b 1 

i 
, b 2 

i 
must be in S , otherwise some pairs of them would

have the same multiset representation, which is not possible. Thus, the cardinality of S is at least M . Clearly, if M = | S| , then

we have already fully described a set of nodes that could represent S . 

Lemma 4.2. Consider a set S ∗ containing exactly M nodes given as follows. All nodes in Q i for i ∈ { 1 , . . . , n } , all nodes in P j
for j ∈ { 1 , . . . , m } , and exactly one node from each set { a 1 

i 
, a 2 

i 
, b 1 

i 
, b 2 

i 
} for i ∈ { 1 , . . . , n } are in S ∗. Then, all pairs of nodes have

different multiset representations with respect to S ∗, except possibly c 1 
j 

and c 3 
j 

(for some j ∈ { 1 , . . . , m } ). 

Proof. To prove the lemma, we will explicitly compute the multiset representation of each node. For easier representation,

we use a vector (x 1 , . . . , x n ) to denote the multiset over positive integers such that 1 has multiplicity x 1 , 2 has multiplicity

x 2 , and so on. 

• m (c 4 
j 
| S ∗) = (0 , p j , 0 , n, . . . ) , 

• m (c 2 
j 
| S ∗) = (p j , . . . ) , 

• m (d 1 
i 
| S ∗) = (q i , . . . ) , 

• m (d 2 
i 
| S ∗) = (0 , q i , . . . ) , 

• (m( T i | S 
∗), m( F i | S 

∗)) is equal to either ((1 , q i , . . . ) , (0 , q i + 1 , . . . )) or ((0 , q i + 1 , . . . ) , (1 , q i , . . . )) , 

• a 1 
i 
, a 2 

i 
, b 1 

i 
, b 2 

i 
: Let’s assume b 2 

i 
∈ S ∗. Then { m (a 1 

i 
| S ∗) , m (a 2 

i 
| S ∗) , m (b 1 

i 
| S ∗) } = { (1 , 0 , q i , . . . ) , (0 , 1 , q i , . . . ) , (0 , 0 , q i + 1 , . . . ) }

An analogous result remains if the assumption that b 2 
i 

∈ S ∗ is dropped, based on the following observations. First, one

and only one of the nodes a 1 
i 
, a 2 

i 
, b 1 

i 
, b 2 

i 
is in S ∗, and the distances from the other three to this one are exactly 1, 2, 3

in some order. Second, each of these nodes have q i nodes at distance 3. 

• m (c 1 
j 
| S ∗) = (0 , p j + n, 

∑ n 
i =1 q i , 

∑ m 

l=1 p l − p j ) , 

• c 3 
j 

: the number of nodes at distance two depends on which node belongs to S ∗ from each variable gadget. We distin-

guish three possible cases for the distance between c 3 
j 

and the node from S ∗ belonging to the gadget corresponding

to a variable x i . 

– If x i appears in C j as a positive literal, and a 1 
i 

∈ S ∗ or a 2 
i 

∈ S ∗, then such distance is 3. 

– If x i appears in C j as a negative literal, and b 1 
i 

∈ S ∗ or b 2 
i 

∈ S ∗, then such distance is 3. 

– If none of the above situations occurs, then such distance is 2. 

Therefore, the multiset representation of c 3 
j 

is related to the set (0 , p j + w j , 
∑ 

q i + n − w j , 
∑ 

p l − p j ) , where w j is the

number of nodes from gadgets representing some x i matching the third case above. Notice that, as the difference between

any p j and any q i is at least 2 n , all pairs of nodes have also a different multiset representation, except possibly (c 1 
j 
, c 3 

j 
) that

depend on the selected nodes from each variable gadget. We next particularise some of these situations. 

• As q i � = p j for every i ∈ { 1 , . . . , n } and every j ∈ { 1 , . . . , m } , we observe m (c 2 
j 
| S ∗) � = m (d 1 

i 
| S ∗) , m (c 4 

j 
| S ∗) � = m (d 2 

i 
| S ∗) . 

• Since p j � = q i + 1 for every i ∈ { 1 , . . . , n } and every j ∈ { 1 , . . . , m } , we deduce m (c 4 
j 
| S ∗) � = m (T i | S ∗) and m (c 4 

j 
| S ∗) � =

m (F i | S ∗) . 
• Since p j 1 � = p j 2 + n for every j 1 , j 2 ∈ { 1 , . . . , m } , we get m (c 4 

j 1 
| S ∗) � = m (c 1 

j 2 
| S ∗) . 

Remaining cases trivially follow, and are left to the reader, and so the proof of the lemma is complete. �

We will now show a way to transform the set S ∗ into values for the variables x i that will lead to a satisfiable assign-

ment for F . If S ∗ ∩ { a 1 
i 
, a 2 

i 
} � = ∅ for some variable x i , then we set the variable x i = true (with respect to S ∗). Otherwise

( S ∗ ∩ { a 1 
i 
, a 2 

i 
} = ∅ or equivalently S ∗ ∩ { b 1 

i 
, b 2 

i 
} � = ∅ ), we set x i = false . Hence, the clause C j is true or false in the natural

way, according to the values previously given to its variables. 

Lemma 4.3. Let S ∗ be a set of nodes as defined in the premise of Lemma 4.2 . Then c 1 
j 

and c 3 
j 

have different multiset representa-

tions with respect to S ∗ if and only if the clause C j is true . 

Proof. Notice that the distance between c 3 
j 

and the node in S ∗ from the gadget corresponding to x i is 3 if and only if the

clause C j is true (see Lemma 4.2 ). Thus, w j = 0 (as defined in Lemma 4.2 ) when the clause C j is false , and only in this case

m (c 3 
j 
| S ∗) = m (c 1 

j 
| S ∗) . �

By using the lemmas above, we conclude the NP-completeness reduction, through the following two lemmas. 

Lemma 4.4. If F is satisfiable, then the outer multiset dimension of G is M. 
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Proof. Recall that dim ms ( G ) ≥ M . It remains to prove that if F is satisfiable then dim ms ( G ) ≤ M . Let us construct a set S in the

following way. If x i is true , then a 1 
i 

∈ S. Otherwise ( x i is false ), b 1 
i 

∈ S. Also, we add to S all nodes in the sets P j and Q i .

Hence, according to Lemmas 4.2 and 4.3 , S is a multiset resolving set, and its cardinality is exactly M . �

Lemma 4.5. If the outer multiset dimension of G is M , then F is satisfiable. 

Proof. Let S be a set of nodes of cardinality equal to the multiset dimension of G . Hence, as explained before, without

lost of generality all nodes in the sets P j , Q i , and exactly one node of a 1 
i 
, a 2 

i 
, b 1 

i 
, b 2 

i 
, must belong to S , and no other node

is in S . If a 1 
i 

∈ S or a 2 
i 

∈ S, then let x i be true . Otherwise, let x i be false . Since S is a multiset resolving set, according to

Lemmas 4.2 and 4.3 , all clauses C j of F must be true , unless the nodes c 1 
j 

and c 3 
j 

would have the same multiset representa-

tion, which is not possible. If all clauses of F are true , then F is satisfiable, as claimed. �

The last two lemmas together complete the reduction from 3-SAT to the problem of deciding whether the outer multiset

dimension of a graph G is equal to a given positive integer. The latter problem can in turn be trivially reduced to DimMS .

This completes the proof. �

5. Particular cases involving trees 

Given that, in general, computing the outer multiset dimension of a graph is NP-hard, it remains an open question for

which families of graphs the outer multiset dimension can be efficiently computed. The goal of this section is to provide a

computational procedure and a closed formula to compute the outer multiset dimension of full δ-ary trees. A full δ-ary tree

is a rooted tree whose root has degree δ, all its leaves are at the same distance from the root, and its descendants are either

leaves or vertices of degree δ + 1 . We expect the results obtained in this section to pave the way for the study of the outer

multiset dimension of general trees. 

Notation. Given a multiset M and an element x , we denote the multiplicity of x in M as M [ x ]. We use εG ( x ) to denote

the eccentricity of the vertex x in a graph G , which is defined as the largest distance between x and any other vertex in the

graph. We will simply write ε( x ) if the considered graph is clear from the context. Given a tree T rooted in w, we use T x 
to denote the subtree induced by x and all descendants of x , i.e. those vertices having a shortest path to w that contains x .

Finally, an outer multiset basis is an outer multiset resolving set of minimum cardinality. 

We start by enunciating a simple lemma that characterises multiset resolving sets in full δ-ary trees. 

Lemma 5.1. Let T be a full δ-ary tree rooted in w with δ > 1 . A set of vertices S ⊆ V ( T ) is an outer multiset resolving set if and

only if ∀ u, v ∈ V (T ) \ S : d(u, w ) = d(v , w ) ⇒ m (u | S) � = m (v | S) . 
Proof. Necessity follows from the definition of outer multiset resolving sets. To prove sufficiency we need to prove that 

∀ u, v ∈ V (T ) \ S : d(u, w ) � = d(v , w ) ⇒ m(u | S) � = m(v | S) . 
Take two vertices x , y ∈ V ( T ) �S such that d(x, w ) < d(y, w ) . Because T is a full δ-ary tree, we obtain that d(x, w ) <

d(y, w ) ⇐⇒ εT (x ) < εT (y ) . Also, there must exist two leaf vertices y 1 , y 2 in T which are siblings and satisfy d(y 1 , y ) =
d(y 2 , y ) = εT (y ) . Considering that y 1 and y 2 are false twins, we obtain that y 1 , y 2 �∈ S ⇒ m (y 1 | S) = m (y 2 | S) . Therefore, given

that d(y 1 , w ) = d(y 2 , w ) , it follows that y 1 ∈ S or y 2 ∈ S . We assume, without loss of generality, that y 1 ∈ S . On the one hand,

we have that d ( y 1 , y ) ∈ m( y | S ). On the other hand, because d(y 1 , y ) = εT (y ) > εT (x ) , we obtain that d ( y 1 , y ) �∈ m( x | S ), implying

that m( x | S ) � = m( y | S ). �

Based on the result above, we provide conditions under which an outer multiset basis can be constructed in a recursive

manner. This is useful for the development of a computational procedure that finds the outer multiset dimension of an

arbitrary full δ-ary tree. 

Lemma 5.2. Given a natural number � > 1, let T 1 , . . . , T δ be δ full δ-ary trees of depth � with pairwise disjoint vertex sets. Let

w 1 , . . . , w δ be the roots of T 1 , . . . , T δ, respectively, and let T be the full δ-ary tree rooted in w defined by the set of vertices

V (T ) = V (T 1 ) ∪ · · · ∪ V (T δ ) ∪ { w } and edges E(T ) = E(T 1 ) ∪ · · · ∪ E(T δ ) ∪ { (w, w 1 ) , . . . , (w, w δ ) } . Let S 1 , . . . , S δ be outer multiset

bases of T 1 , . . . , T δ, respectively. Then 

∀ i � = j∈{ 1 , ... ,δ} m T i (w i | S i )[ εT i (w i )] � = m T j (w j | S j )[ εT j (w j )] ⇒ 

S 1 ∪ . . . ∪ S δ is an outer multiset basis of T . 

Proof. Let S = S 1 ∪ . . . ∪ S δ . Consider two vertices x and y in V ( T ) �S such that d T (x, w ) = d T (y, w ) . We will prove that

m T ( x | S ) � = m T ( y | S ), which gives that S is an outer multiset resolving set via application of Lemma 5.1 . Our proof is split

in two cases, depending on whether x and y are within the same sub-branch or not. 

First, assume that x ∈ V ( T i ) and y ∈ V ( T j ) for some i � = j ∈ { 1 , . . . , δ} . For every leaf vertex z in T , but not in T i , we ob-

tain that d T (x, z) = εT (x ) . Because εT (x ) > εT i 
(x ) , we get m T (x | S)[ εT (x )] = 

∑ 

k ∈{ 1 , ... ,δ}\{ i } m T (w k | S k )[ εT (w k )] , which is the

k k 
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sum of the leaf vertices that are not in S from all sub-branches, but T i . Analogously, we obtain that m T (y | S)[ εT (y )] =∑ 

k ∈{ 1 , ... ,δ}\{ j} m T k 
(w k | S k )[ εT k 

(w k )] . Therefore, 

m T (x | S)[ εT (x )] − m T (y | S)[ εT (y )] = m T j (w j | S j )[ εT j (w j )] − m T i (w i | S i )[ εT i (w i )] . 

The premise is that ∀ i � = j∈{ 1 , ... ,δ} m T i 
(w i | S i )[ εT i 

(w i )] � = m T j (w j | S j )[ εT j 
(w j )] . This gives m T j 

(w j | S)[ εT j 
(w j )] − m T i 

(w i | S)
[ εT i 

(w i )] � = 0 , which leads to m T ( x | S )[ εT ( x )] � = m T ( y | S )[ εT ( y )], which implies that m T ( x | S ) � = m T ( y | S ). 

For the second case assume that x ∈ V ( T i ) and y ∈ V ( T i ) for some i ∈ { 1 , . . . , δ} . This implies that m T ( x | S i ) � = m T ( y | S i ), because

S i is an outer multiset resolving set in T i . Moreover, for every vertex z ∈ V ( T ) �V ( T i ) it holds that d T (x, z) = d T (y, z) , which

gives the expected result: m T ( x | S ) � = m T ( y | S ). 

So far we have proved that S is an outer multiset resolving set. To prove that S is a basis, we proceed by showing that

any outer multiset resolving set S ′ in T satisfies that the sets S ′ ∩ V (T 1 ) , . . . , S 
′ ∩ V (T δ ) are outer multiset resolving sets in

T 1 , . . . , T δ, respectively. Given that S 1 , . . . , S δ are outer multiset bases, this would mean that S is an outer multiset resolving

set of minimum cardinality. 

Let S ′ 
1 

= S ′ ∩ V (T 1 ) , . . . , S 
′ 
δ

= S ′ ∩ V (T δ ) . Assume that S ′ 
i 

is not an outer multiset resolving set in T i for some i ∈ { 1 , . . . , δ} .
This means that there exist vertices x and y such that m T i 

(x | S ′ 
i 
) = m T i 

(y | S ′ 
i 
) . Because T i is a full δ-ary tree with δ > 1 and

depth at least two, there must exist two leaf vertices x 1 , x 2 (resp. y 1 , y 2 ) in T i which are siblings and satisfy d(x 1 , x ) =
d(x 2 , x ) = εT i 

(x ) (resp. d(y 1 , y ) = d(y 2 , y ) = εT i 
(y ) ). Considering that x 1 and x 2 (resp. y 1 and y 2 ) are false twins, we obtain

that x 1 ∈ S ′ or x 2 ∈ S ′ (resp. y 1 ∈ S ′ or y 2 ∈ S ′ ). This implies that x and y have the same eccentricity in T i , because εT i 
(x ) <

εT i 
(y ) ⇒ εT i 

(y ) �∈ m T i 
(x | S ′ 

i 
) , while εT i 

(x ) > εT i 
(y ) ⇒ εT i 

(x ) �∈ m T i 
(y | S ′ 

i 
) . Given that T i is a full δ-ary tree, it follows that x and y

also have the same distance to the root vertex w i . Therefore, for every vertex z ∈ V ( T ) �V ( T i ) it holds that d T (x, z) = d T (y, z) ,

which gives m T (x | S ′ ) = m T (y | S ′ ) . This contradicts the premise that S ′ is a multiset resolving set. Hence S ′ 
i 

is an outer multiset

resolving set. �

Lemma 5.2 provides a sufficient condition for obtaining an outer multiset basis of a full δ-ary tree T by joining bases of

the first level branches of T . The next result goes further, by providing a sufficient condition to finding δ / 1 outer multiset

bases in T , based on δ + 1 outer multiset bases of the first level branches of T . This allows us to express the size of an outer

multiset basis in a recurrence equation and, consequently, provide a closed formula for the outer multiset dimension of full

δ-ary trees. 

Theorem 5.3. Let T δ� be a full δ-ary tree of depth � . Let n be the smallest positive integer such that there exist δ + 1 outer

multiset bases S 1 , . . . , S δ+1 in T δn satisfying that ∀ i � = j∈{ 1 , ... ,δ+1 } m 

T δn 
(w | S i )[ ε

T δn 
(w )] � = m 

T δn 
(w | S j )[ ε

T δn 
(w )] , where w is the root of

T δn . Then, for every � ≥ n , the outer multiset dimension of T δ� is given by δ� −n × dim ms (T δn ) . 

Proof. We proceed by induction. 

Hypothesis. For some � ≥ n , the following two conditions hold: 

1. There exists δ + 1 outer multiset bases S 1 , . . . , S δ+1 in T δ� satisfying that ∀ i � = j∈{ 1 , ... ,δ+1 } m 

T δ
� 

(w | S i )[ ε
T δ
� 

(w )] � =
m 

T δ
� 

(w | S j )[ ε
T δ
� 

(w )] 

2. The outer multiset dimension of T δ� is given by δ� −n × dim ms (T δn ) . 

Clearly, these two conditions hold for � = n (base case). The remainder of this proof will be dedicated to finding δ + 1

outer multiset bases R 1 , . . . , R δ+1 of T δ
� +1 that satisfy condition (1). The second condition will follow straightforwardly from

the size of the bases R 1 , . . . , R δ+1 . 

Let w 

′ be the root of T δ
� +1 

and w the root of T δ� . Let w 1 , . . . , w δ be the children vertices of w 

′ in T δ
� +1 

. For each sub-branch

T w k 
of T δ

� +1 
, with k ∈ { 1 , . . . , δ} , let φk be an isomorphism from T δ� to T w k 

. It follows that ˆ S k = { φk (u ) | u ∈ S k } is an outer

multiset basis of T w k 
, for every k ∈ { 1 , . . . , δ + 1 } . Moreover, given that ∀ k ∈{ 1 , ... ,δ+1 } m T w k 

(w k | ̂  S k ) = m 

T δ
� 

(w | S k ) , we conclude

that 

∀ i � = j∈{ 1 , ... ,δ+1 } m T w i 
(w i | ̂  S i )[ εT w i 

(w i )] � = m T w j 
(w j | ̂  S j )[ εT w j 

(w j )] . 

By Theorem 5.2 , we obtain that, for every i ∈ { 1 , . . . , δ + 1 } , the set R i = 

⋃ 

j∈{ 1 , ... ,δ+1 }\{ i } ˆ S j is an outer multiset basis of

T δ
� +1 . Moreover, for every i ∈ { 1 , . . . , δ + 1 } , the following holds 

m T δ
� +1 

(w 

′ | R i )[ εT δ
� +1 

(w 

′ )] = 

∑ 

j∈{ 1 , ... ,δ+1 }\{ i } 
m T w j 

(w j | ̂  S i )[ εT w j 
(w j )] . 

From the equation above we obtain that for every i, j ∈ { 1 , . . . , δ + 1 } , 
m T δ

� +1 
(w | R i )[ εT δ

� +1 
(w )] − m T δ

� +1 
(w | R j )[ εT δ

� +1 
(w )] = m T w j 

(w j | ̂  S j )[ εT w j 
(w j )] − m T w i 

(w i | ̂  S i )[ εT w i 
(w i )] . 
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Table 1 

Three outer multiset bases of T 2 4 satisfying the premises of 

Theorem 5.3 . Vertices of T 2 4 have been labelled by using a 

breadth-first ascending order, starting by labelling the root 

node with 1 and finishing with the label 2 n +1 − 1 . 

S 1 = { 22 , 24 , 14 , 25 , 26 , 16 , 28 , 18 , 2 , 8 , 30 , 20 , 21 } 
T 2 4 S 2 = { 22 , 12 , 24 , 14 , 26 , 16 , 28 , 18 , 6 , 8 , 30 , 20 , 21 } 

S 3 = { 22 , 24 , 14 , 25 , 26 , 16 , 17 , 28 , 18 , 8 , 30 , 20 , 21 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recall that ∀ k ∈{ 1 , ... ,δ+1 } m T w k 
(w k | ̂  S k ) = m 

T δ
� 

(w | S k ) , which means that i � = j ⇒ m T w j 
(w j | ̂  S j )[ εT w j 

(w j )] � = m T w i 
(w i | ̂  S i )[ εT w i 

(w i )] .

Therefore, we conclude that T δ
� +1 and R 1 , . . . , R δ+1 satisfy the first condition of the induction hypothesis, i.e. 

∀ i � = j∈{ 1 , ... ,δ+1 } m T δ
� +1 

(w | R i )[ εT δ
� +1 

(w )] � = m T δ
� +1 

(w | R j )[ εT δ
� +1 

(w )] . 

Finally, observe that | R 1 | = | ̂  S 2 | × · · · × | ̂  S δ+1 | = δ × dim ms (T δ� ) . The second condition of the induction hypothesis states that

dim ms (T δ� ) = δ� −n × dim ms (T δn ) , which gives that dim ms (T δ
� +1 

) = δ × dim ms (T δ� ) = δ� +1 −n × dim ms (T δn ) . �

We end this section by addressing the problem of finding the smallest n such that T δn contains δ + 1 outer multiset

bases S 1 , . . . , S δ+1 satisfying the premises of Theorem 5.3 . We do so by developing a computer program 

1 that calculates

such number via exhaustive search. The pseudocode for this computer program can be found in Algorithm 1 . It reduces

the search space by bounding the size of an outer multiset basis with the help of Lemma 5.2 (see Step 13 of Algorithm 1 ).

That said, we cannot guarantee termination of Algorithm 1 , essentially for two reasons. First, the computational complexity

of each iteration of the algorithm is exponential on the size of T δn while, at the same time, the size of T δn exponentially

increases with n . Second, there is no theoretical guarantees that such an n can be found for every δ. 

Algorithm 1 Given a natural number δ, finds the smallest n such that the full δ-ary tree of depth n satisfies the premises

of Theorem 5.3 . 

1: Let n = 0 and T δn a full δ-tree of depth n rooted in w 

2: min = 1 � Lower bound on the cardinality of a basis in T δ1 
3: max = δ − 1 � Upper bound on the cardinality of a basis in T δ

1 
4: repeat 

5: for i = min to max do � Each of these iterations can be ran in parallel

6: Let B be an empty set 

7: for all S ⊆ V (T δn ) s.t. | S| = i do 

8: if S is a resolving set then 

9: if ∀ S ′ ∈ B m 

T δn 
(w | S ′ )[ ε

T δn 
(w )] � = m 

T δn 
(w | S)[ ε

T δn 
(w )] then 

10: B = B ∪ { S} 
11: if B � = ∅ then 

12: break � The outer multiset dimension of T δn has been found 

13: min = dim ms (T δn ) × δ � See Lemma 5.2 

14: max = min + δ − 1 � This is the trivial upper bound 

15: n = n + 1 

16: until | B | ≥ δ + 1 

17: return n 

Despite the exponential computational complexity of Algorithm 1 , it terminates for δ = 2 . In this case, the smallest n

satisfying the premises of Theorem 5.3 is n = 4 . The three outer multiset bases S 1 , S 2 and S 3 of T 2 
4 

are illustrated in Table 1

below. 2 We refer the interested reader to Appendix 6 for a visual representation of the bases shown in Table 1 . The main

corollary of this result is the following. 

Corollary 5.4. The outer multiset dimension of a full 2-ary tree T 2 � of depth � is: 

dim ms (T 2 � ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 , if � = 1 , 

3 , if � = 2 , 

6 , if � = 3 , 

13 , if � = 4 , 

2 

� −4 × 13 , otherwise. 
1 The computer program can be found at https://github.com/rolandotr/graph . 
2 Our program took about 3.25 h in a DELL computer with processor i7-7600U and installed memory 16 GB to find the result shown in Table 1 . 

https://github.com/rolandotr/graph
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Proof. The first four cases are calculated by an exhaustive search using a computer program that can be found at https:

//github.com/rolandotr/graph . The last case follows from Theorem 5.3 . �

It is worth remarking that Algorithm 1 can be paralellised and hence benefit from a computer cluster. Running the algo-

rithm in a high performance computing facility is thus part of future work, which may lead to termination of Algorithm 1 for

values of δ higher than 2. 

6. Conclusions 

In this paper we have addressed the problem of uniquely characterising vertices in a graph by means of their multiset

metric representations. We have generalised the traditional notion of resolvability in such a way that the new formulation

allows for different structural characterisations of vertices, including as particular cases the ones previously proposed in

the literature. We have pointed out a fundamental limitation affecting previously proposed resolvability parameters based

on the multiset representation, and have introduced a new notion of resolvability, the outer multiset dimension, which

effectively addresses this limitation. Additionally, we have conducted a study of the new parameter, where we have analysed

its general behaviour, determined its exact value for several graph families, and proven the NP-hardness of its computation,

while providing an algorithm that efficiently handles some particular cases. 
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Appendix 

Here, the reader can find graphical representations for different outer multiset bases in a full 2-ary tree of depth 4. In

the figures, a basis is formed by the red-coloured vertices ( Figs. 5–7 ). 
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Fig. 5. The multiset representation of the root vertex with respect to the set of red-coloured vertices is {1, 2 2 , 4 10 }. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. The multiset representation of the root vertex with respect to the set of red-coloured vertices is { 2 , 3 3 , 4 9 } . (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.) 

https://github.com/rolandotr/graph
https://doi.org/10.13039/501100001866


12 R. Gil-Pons, Y. Ramírez-Cruz and R. Trujillo-Rasua et al. / Applied Mathematics and Computation 363 (2019) 124612 

1

3

7

15

3130

14

2928

6

13

2726

12

2524

2

5

11

2322

10

2120

4

9

1918

8

1716

Fig. 7. The multiset representation of the root vertex with respect to the set of red-coloured vertices is { 3 2 , 4 11 } . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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