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ABSTRACT The explosive rise of intelligent devices with ubiquitous connectivity have dramatically
increased Internet of Things (IoT) traffic in cloud environment and created potential attack surfaces for
cyber-attacks. Traditional security approaches are insufficient and inefficient to address security threats
in cloud-based IoT networks. In this vein, Software Defined Networking (SDN), Network Function
Virtualization (NFV) and Machine Learning techniques introduce numerous advantages that can effectively
resolve cybersecurity matters for cloud-based IoT systems. In this paper, we propose a collaborative and
intelligent network-based intrusion detection system (NIDS) architecture, namely SeArch, for SDN-based
cloud IoT networks. It composes a hierarchical layer of intelligent IDS nodes working in collaboration to
detect anomalies and formulate policy into the SDN-based IoT gateway devices to stop malicious traffic as
fast as possible. We first describe a new NIDS architecture with a comprehensive analysis in terms of the
system resource and path selection optimizations. Next, the system process logic is extensively investigated
through main consecutive procedures, including Initialization, Runtime Operation and Database Update.
Afterwards, we conduct a detailed implementation of the proposed solution in an SDN-based environment
and perform a variety of experiments. Finally, evaluation results of the SeArch architecture yield outstanding
performance in anomaly detection and mitigation as well as bottleneck problem handling in the SDN-based
cloud IoT networks in comparison with existing solutions.

INDEX TERMS Internet of Things Security, Software Defined Networking, Network Function Virtualiza-
tion, Machine Learning, Intrusion Detection System, Distributed Cloud Computing.

I. INTRODUCTION

THE advancement of Internet of Things (IoT) has been
bringing enormous capabilities for ubiquitously intel-

ligent connectivity and applications in many domains of
human life [1], [2]. Smarter devices can provide a smart
and active life for human by enabling sensing and actua-
tion abilities, contextual awareness [3], [4]. Recently, the
IoT appliances have been exponentially increased due to
a wide range of new technologies [1] such as sensors,
wireless communications and cloud computing technologies,

e.g., Software-Defined Networking (SDN), Network Func-
tion Virtualization (NFV) [5]. A good illustration, Cisco
Systems [6] forecasts the global mobile data traffic projec-
tions and growth trends for a period of time from 2017 to
2022, in which there will be 12.3 billion mobile-connected
devices by 2022, and the global mobile data traffic will reach
77 exabytes every month by 2022. The tremendous amount
of data would be absorbed into the Internet consisting of
smart-home devices, autonomous vehicles, wearable devices,
environmental sensors and almost anything we can imagine.
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Consequently, the opportunities from the development of
IoTs are endless, and its capabilities and potential will be
tangible very soon as a vast number of IoT devices are getting
connected to the Internet day by day. On the other hand, IoT
network systems present new potential cyber-attack surfaces
for malicious attackers leading to tremendous economic and
reputation destruction for system operators/providers [7], [8],
if there are no correctly protection solutions.

Fortunately, the network softwarization including SDN
and NFV cloud technologies are representing a major break-
through in Telco industries, by providing several benefits re-
garding dynamics, flexibility and manageability. Concerning
network security, these two key enablers of cloud computing
technologies are obtaining a great momentum by introduc-
ing dynamic and flexible security protection mechanisms
to cloud environment [9]. Although, a variety of studies
based on SDN/NFV technologies have been proposed to
better cope with IoT security threats [10]–[16]. However,
current solutions still face with some critical problems such
as bottleneck issues [11]–[15] and lacking of collaboration
[16], [17] while providing security services or mechanisms
for cloud-based IoT networks. In addition, due to the huge
quantity of IoT devices, it is always challenging for every
network operator to create an effective defense mechanism
against cyber attacks in IoT networks [7].

Therefore, in this article, we propose a novel collabora-
tive and intelligent network-based intrusion detection system
(NIDS) architecture to effectively defense against network-
related cyber attacks in SDN-based cloud IoT networks,
entitled SeArch. This security architecture consists of a hi-
erarchical distribution of NIDS nodes, including Edge-IDS,
Fog-IDS and Cloud-IDS, respectively. In which, these IDSs
are based on machine learning/deep learning algorithms for
their detection operations, and those located in the same
computing layer can be in a distributed design. In particular,
Edge-IDS is a lightweight security application integrated into
an SDN-based IoT gateway in the edge computing level, Fog-
IDS located in the fog computing layer runs as an SDN ap-
plication on top of SDN controller, and Cloud-IDS is an IoT
security application running on the cloud computing level
with enough computation power and storage resources. This
architecture introduces an effective collaboration way among
IDS nodes in network-related anomaly IoT traffic detection
by setting up communication channels among nodes for data
synchronization and load balancing.

Our significant contributions can be listed as follows:
• Firstly, we analyze existing security solutions and pro-

vide motivations for applying machine learning/deep
learning-based detection techniques to cyber attacks in
cloud-based IoT networks. Afterwards, we show the
resource consumption problem at the edge computing
level by our prior experiment.

• Secondly, we propose a new security architecture,
SeArch, representing a collaborative and intelligent
NIDS framework in SDN-based cloud IoT networks, in
which an arrangement of three layers of IDS nodes, i.e.,

Edge-IDS, Fog-IDS and Cloud-IDS, is introduced with
an effective collaboration among nodes.

• Furthermore, we conduct a thorough analysis of the sys-
tem and take the resource management and the overhead
of communication of the proposed solution into account.
Then we formulate a novel system resource optimization
and optimal path selection scheme.

• Finally, we carry out comprehensive experiments in an
SDN-based cloud IoT emulation network. An extensive
comparison of SeArch with existing solutions shows
significant improvements in anomaly detection and mit-
igation as well as performance bottleneck handling.

The rest of this article is constructed as follows. Section
II shows background knowledge about the SDN-based cloud
IoT networks and network-related security threats. Next,
research motivations will be provided in section III. Details
of our proposed SeArch architecture are presented in section
IV. Section V presents our deployment example and exper-
iments, and result analysis will be provided in section VI.
Finally, section VII concludes our study and draws some
future developments.

II. PRELIMINARIES
A. SDN-BASED CLOUD IOT NETWORKS
As illustrated in Figure 1, the modern cloud-based IoT
networks is often divided into three primary levels: Edge
computing, Fog computing and Cloud computing [1], [11],
[18], [19] which correspond to three layers of IoT system:
Perception, Distribution Network and Application. A brief
description of three computing levels is given as follows.

1) Edge Computing Level
The edge computing level mainly covers edge nodes (e.g.,
routers switches and small/macro base stations) powered by
mobile edge computing (MEC) technology [20]. However,
in the SDN-based cloud vein, we regularly consider SDN-
based IoT gateways which support protocols (e.g., Open-
Flow, NetConf) and connect to the SDN control plane located
in the fog computing level. An SDN-based IoT gateway
connects to IoT devices via several protocols [1] such as Zig-
Bee, WirelessHART, RUBEE, WiFi, Ethernet, and second-
generation 2G/3G/4G/5G. In addition, the edge computing
level is located at the distribution network layer of the IoT
systems which can provide real-time connection, services
and security for limited resource capacity IoT devices in the
perception layer [19] by leveraging the capability of MEC
technology. Besides, it is noted that computational capability
at the edge devices is one of the significant challenges for the
edge computing level because of the computation offloading
[21], [22]. For example, massive IoT devices may require
for different compute-intensive services/applications from a
mobile edge station, which can result in an outage situation.

2) Fog Computing Level
The fog computing level is also placed at the distribution
network layer. It mainly consists of SDN controllers and
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FIGURE 1: Overview of SDN-based Cloud IoT Networks

SDN application servers, in which they could be formed as
a distributed manner. These SDN controllers communicate
with SDN-based IoT gateways via southbound protocols
(e.g., OpenFlow, NetConf); meanwhile, northbound APIs are
used for data exchange with application servers and the cloud
computing level. Hence, the fog computing can provide not
only enough computational resources but also low latency
and compute-intensive applications [12], [19], which makes
it become a great place to deploy IoT security applications.

3) Cloud Computing Level

A standard definition for the cloud computing level is given
by the National Institute for Standards and Technology
(NIST) in 2011 [23], it reports "a model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or ser-
vice provider interaction". Accordingly, this computing level
is majorly responsible for storage, processing and accessing
of data produced by a vast number of IoT devices. In other
words, high computational applications and big data storage
should be placed at the cloud computing level [19].

B. NETWORK SECURITY THREATS
Cloud environment for IoT networks and platforms provides
not only connectivity among IoT devices and applications
but also distributed computational resources and storage.
Consequently, several potential security vulnerabilities have
been exploited recently by attackers [10]. As illustrated
in Figure 2, we can categorize common cyber-attacks into
Network-related and other groups which could happen and
seriously harm the cloud-based IoT networks. However, in

this research, we only pay attention to well-known network-
related security threats which are briefly described as follows.

Eavesdropping attack

Cloud-based IoT Networks

Denial-of-Service attack Spoofing attack
Man-in-the-middle attack

Network-related attacks

Threats on SDN-based 
cloud platforms

Threats on 
IoT devices Threats on cloud 

IoT Applications

FIGURE 2: Common security threats in the cloud-based IoT
networks

1) Eavesdropping attack
Known as data sniffing, eavesdropping technique [24] is a
serious cyber-attack conducted by listening to IoT device
communications. In particular, if transferring data are un-
encrypted in an insecure channel, sniffers can extract sen-
sitive information from those communications such as de-
vice credentials or configurations. Eavesdropping attacks are
challenging to detect and prevent completely; this is because
adversaries do not cause network transmissions to appear to
be abnormal.

2) Denial-of-Service attack
Denial-of-Service (DoS) or Distributed DoS (DDoS) attacks
[8] are the most common and dangerous cyber-threats in
cloud-based IoT environment. With the purpose of flooding
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network links and IoT devices with an enormous traffic
volume, adversaries can quickly exhaust network and com-
putational resources resulting in the unavailability of the IoT
communication system. Different techniques can be used to
launch a saturation attack, such as ICMP flood, TCP/UDP
SYN flood, TearDrop and Low & Slow DDoS. For example,
Mirai botnet network is built based on a swarm of more
than 400,000 vendor/technology-specific IoT devices that
saturated a French WebHost in September 2016 [8] with 1
Tbps of DDoS traffic.

3) Spoofing attack
The adversarial purpose of a spoofing attack is to send
malicious traffic to destination IoT networks and devices but
seem legitimate traffic patterns. For instance, attackers can
launch an eavesdropping attack to gather information about
authorized accesses, then spoof attack traffic with legitimate
information such as IP addresses, hence gaining access to IoT
network system [25].

4) Man-in-the-middle attack
A man-in-the-middle attack (MITM) is an advanced ver-
sion of the spoofing attack where an adversary lies on the
network path between two IoT devices in communication.
The attacker impersonates both devices and relays traffic
by independently communicating with each endpoint in or-
der to intercept the transferring data between victims. This
technique makes two parties believe in their communication
channel without any doubts about delaying, cloning, replay-
ing, spoofing or dropping packets. Accordingly, the MITM
attack can bring savage effects to IoT systems in case of sen-
sitive information captured by an adversary such as control
traffic or key exchange data, hence causing insurmountable
security problems for IoT system [26].

III. RESEARCH MOTIVATIONS
A. EXISTING SOLUTIONS FOR SECURING
CLOUD-BASED IOT NETWORKS
Many research efforts [10], [27] have been proposed to
secure cloud-based IoT networks. A recent research [11]
introduces a multi-level DDoS mitigation framework to de-
fend against DDoS attacks for industrial IoT networks. This
mechanism leverages SDN to manage a large number of
industrial IoT devices and to mitigate DDoS attack traffic.
However, this solution is vulnerable to bottleneck problems
because the detection engine is centrally placed on top of the
SDN controller. Moreover, high latency between detection
engine and the data plane would reduce the attack miti-
gation performance. Similarly, a fog-assisted intrusion de-
tection/prevention system [12] and an artificial intelligence-
based two-stage intrusion detection system [13] are proposed
to deal with attacks in IoT networks relying on SDN and
cloud platform technologies. As a result, these mechanisms
can be collapsed because of a centralized control in case of a
high data processing load.

Authors in [17] present a distributed mechanism for in-
trusion detection system utilizing SDN and programmable
forwarding devices (e.g., OpenvSwitch), in which intrusion
detection system is located at the forwarding devices, and it
is running as a security service in the data plane. One of the
main drawbacks of this mechanism is lacking collaboration
among detection engines; hence if a new kind of attacks
presents, it takes a long time to detect or even cannot recog-
nize the new attack due to lacking updates from other nodes
in the system. A study in [16] shows the same approach for
placing the detection engine in the SDN-based IoT gateway
as an extra security function. Accordingly, these two methods
[16], [17] are still not capable of handling with different
and new cyber-attacks in IoT networks. Another research
proposes a novel framework [14], called ATLANTIC, for
anomaly traffic detection, classification, and mitigation based
on the capability of SDN. ATLANTIC calculates deviations
from collected information in flow tables in the data plane
and then uses machine learning algorithms to classify traffic
flows. Again, this framework does not mention or resolve
the centralized bottleneck problem, but it only focuses on
intelligently recognizing new attacks.

Additionally, in [28], an SDN-IoT architecture based on
Network Function Virtualization is proposed with virtual IoT
gateway which brings dynamics, scalability and elasticity
to the control and management of IoT network traffic in
the data plane but does not open considerable and detailed
discussions regarding security issues. Another study [15]
presents a framework to overcome the big data problem
by analyzing IoT traffic patterns in lower layers instead
of evaluating the values in the application layer. In which,
the volume of data is significantly reduced before coming
to Internet or other places, however, it places very high
pressures on devices in the data plane, and it is vulnerable to
bottleneck issues in case of a high traffic load. Authors in [29]
introduce a new host-based intrusion detection and mitigation
architecture based on SDN and OpenFlow protocol to protect
smart IoT devices at network-level in home environment.
Nonetheless, this framework is insecure to bottleneck and
scalability problems because of its centralized design, and it
requires high computational efforts for traffic monitoring in
realtime. Consequently, these mentioned approaches are only
applicable for addressing some specific security problems
and can operate efficiently under certain conditions.

To sum up, previous research are still facing with critical
problems, i.e., bottleneck issues [11]–[15], lacking of col-
laboration [16], [17], in order to better secure cloud-based
IoT networks. In this article, therefore, this motivates us to
come up with our new security architecture for efficiently
securing SDN-based cloud IoT networks, which can benefit
the advantages of existing solutions while avoiding their
drawbacks.

B. INTELLIGENCE-BASED APPROACH FOR SECURITY
IN IOT NETWORKS
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1) Machine learning techniques for cyber security
Machine learning techniques have been exhibiting notable
successes in classification problems in many computer
networks-related areas [17], [30], [31], recently. Because it
provides a general solution to solve complex classification
problems where a phenomenon model is hugely complex to
derive or very dynamic to be assumed in mathematics, which
makes the machine learning’s popularity nowadays. Con-
cerning the classification of machine learning techniques,
although there are many ways to classify them, we consider
a common classification based on learning methods [30],
[31] including rein f orcement, supervised and unsupervised
in this work. Most research applied reinforcement learning
approach are for optimization problems or finding an optimal
solution for a specific situation [32]. Meanwhile, supervised
and unsupervised learning algorithms are mostly for classi-
fying and clustering input data into separated groups. There-
fore, two latter are seen in many studies related to security
solutions in IoT networks [27], which motivates us to take
a machine learning-based approach into account with the
purpose of intelligently classifying IoT network traffic in this
research.

To make the above motivation clear, we conduct a prior
experiment on three machine learning-based security solu-
tions for a simple SDN-based network in MaxiNet emulator
[33]. The emulated network comprises a Web server and 08
hosts (04 attackers and 04 benign users); they are all based on
Linux containers and connect to an OpenFlow switch (Open-
vSwitch). We leverage BoNeSi tool [34] to launch DDoS
TCP SYN attacks with 100, 200 and 300 Mbps from attackers
to the Web server in the SDN network, then precision and
accuracy metrics are recorded for the evaluation of this attack
detection performance. Those security solutions based on a
lightweight traffic classifier [35] (Support Vector Machine
- SVM), a moderate traffic classifier [36] (Self Organizing
Map - SOM), and an intensive and complex traffic classifier
[37] (Stacked Autoencoder Deep Learning approach - SAE),
respectively. Note that, for training phase, we use public
data sets, CAIDA [38], [39], to extract training samples1 for
detection engines. As shown in Table 1, the DDoS detection
performance2 of three security approaches are remarkable
with a trained classification algorithm. Moreover, it shows
that a more complex classification algorithm gives a higher
chance to recognize the DDoS attack presence.

2) Computation issues at the edge computing level in
SDN-based cloud IoT networks
As discussed in Section II-A, the computational capacity is
one of the significant issues for SDN-based IoT gateway
devices because the edge device is a perfect location for

1Based on studies in [17], [40], we train SVM and SOM classifier using
simple features consisting of number of flows, number of packet per flow,
number of byte per flow, flow duration, growth of client ports, and protocol.
For the deep learning-based SAE classifier, we apply a set of 9 features for
TCP traffic and a set of 6 features for ICMP traffic as the same in [37].

2Traffic is classified into two classes, including normal and attack.

TABLE 1: Anomaly detection performance of security appli-
cations during different DDoS attack volumes

Algorithms SVM SOM SAE
Precision results (%)

100 Mbps 94.34 95.40 97.80
200 Mbps 93.06 96.63 97.63
300 Mbps 93.23 96.54 97.65

Accuracy results (%)
100 Mbps 94.56 96.85 97.98
200 Mbps 94.23 96.67 97.67
300 Mbps 94.12 96.78 97.90
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FIGURE 3: CPU utilization of a server running security
applications during different DDoS attack volumes

the deployment of applications [11], [19] such as access
control, intrusion detection and data encryption. For instance,
a security application which requires real-time and complex
processes, it always needs for an intensive computational
resource from the gateway device. As a result, the edge
device is unable to perform all processing tasks well and may
become overloaded. To clarify this issue, we again utilize the
emulation setup in the above section and extract the CPU
utilization3 of the machine hosted three security applications
based on SVM, SOM and SAE algorithms during attacks. As
can be seen in Figure 3, the results show that the required
computational capability is proportional to the complexity of
machine learning or deep learning algorithms, and there are
significant differences among cases. Hence, the placement
of security applications plays a crucial role in the operating
performance of the edge devices.

From above analyses, accordingly, in order to eliminate
this problem at the edge device while providing efficient
security services for SDN-based cloud IoT networks, we pro-
pose a collaborative and intelligent network-based intrusion
detection system in next section.

IV. COLLABORATIVE AND INTELLIGENT NIDS FOR
SDN-BASED CLOUD IOT NETWORKS
In this section, we elaborate the proposed SeArch architecture
for network anomaly detection system in SDN-based cloud
IoT networks. We firstly describe the overall architecture and

3We observe the CPU usage of the core running the security application.
And, the machine is Intel Core i7-4790 (4 cores) 3.60 GHz and 16 GB DDR3
1600 MHz.
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components, then operation workflow and proposed algo-
rithms will be provided hereinafter.

A. OVERALL ARCHITECTURE
In order to minimize mentioned issues, i.e., performance
bottleneck, lacking collaboration and resource overconsump-
tion at the edge computing (see section III), we propose
a collaborative and intelligent NIDS architecture in SDN-
based cloud IoT networks that is illustrated in Figure 4.
The introduced security architecture consists of three main
layers of IDS including Edge-IDS, Fog-IDS and Cloud-
IDS, respectively. In which, these IDSs are both placed in
hierarchical and vertical dimensions. However, IDSs, which
are in the same computing layer, can be in a distributed form.
In particular, Edge-IDS is a security application integrated
into an SDN-based IoT gateway device, Fog-IDS is installed
as an SDN application above SDN controllers, and Cloud-
IDS is an IoT security application running on the cloud with
enough computation and storage resources.

Regarding the collaboration among IDSs, each Edge-IDS
is designed to have an online communication channel4 to a
Fog-IDS for information/data exchange. Likewise, Fog-IDS
and Cloud-IDS establish their channels to send and receive
data. In addition, Fog-to-Fog-IDS and Cloud-to-Cloud-IDS
communications are set up for data/information sharing and
updating, and there are no channels between Edge-IDSs.
The main objective behind this arrangement is to reduce
information exchange latency and to avoid outage problems
for the edge devices because the higher layers should mainly
conduct data/information exchange while the edge devices
should focus on processing IoT traffic.

B. MULTI-LEVEL NIDS IN SDN-BASED CLOUD
From the above arrangement, we now expose each computing
level IDS in terms of the placement, functionality and degree
of collaboration among others in details.

Edge-IDS: This element is placed at the edge computing
level and runs as an intrusion detection engine which resides
in an SDN-based IoT gateway [11] powered by MEC tech-
nology [20]. The main tasks of an Edge-IDS are to period-
ically collect and extract traffic flow statistics information
from a local IoT network to derive a set of desired features
which is then fed into a machine learning-based engine.
Afterwards, anomaly detection and policy-making processes
are conducted locally to stop malicious traffic flows in the
connected SDN-based IoT gateway device. From our analy-
ses in section III-B2, therefore, we recommend to utilize only
lightweight or less time-complexity machine learning-based
detection algorithms i.e., Support Vector Machine [35], as the
core of detection engine. Due to the placement of this security
mechanism, this arrangement is considered as a source-based
detection approach. Moreover, for unknown traffic patterns
or a high volume incoming traffic, e.g., DDoS attack traffic,

4Each IDS at a layer is configured to keep in touch with its collaborators
using sockets referred to as the online channels.

the Edge-IDS actively forwards data to the upper layer (Fog-
IDS) for further processes via the online channel, and we will
elaborate further lateron.

Fog-IDS: At the fog computing level, the network-based
detection engine operates as SDN applications in a dis-
tributed manner with data synchronization/updates among
others. Because of the sufficient power supply, these Fog-
IDSs can perform machine learning-based detection algo-
rithms with moderate complexity and resource consumption,
e.g., Self Organizing Map - SOM. By doing so, the Fog-IDS
is expected to provide low latency and compute-intensive
security analyses in comparison with the Edge-IDS. Further-
more, a Fog-IDS should act as an upper or aggregation engine
of some Edge-IDSs from the lower layer in order to process
and categorize data (unknown and load-balancing). In brief,
the main tasks of a Fog-IDS are to aggregate and extract
received data to derive a set of desired features, and then
feed these features into a machine learning-based engine for
its anomaly detection. Subsequently, it makes policies and
applies to the dedicated SDN-based IoT gateway if possi-
ble; otherwise, it sends to a Cloud-IDS for more advanced
analyses regarding unrecognized traffic patterns. Besides, a
Fog-IDS can load balance with its Fog-IDS neighbours in
case of an outage situation caused by a large amount of data
forwarded from Edge-IDS nodes, e.g., a DDoS attack, which
is explained in section IV-D.

Cloud-IDS: A Cloud-IDS is referred to a cloud-based
detection engine running as IoT applications at the cloud
computing layer with the inexhaustible resource supply, and
it could be formed in a distributed style. The core engine
of a Cloud-IDS can operate machine learning-based detec-
tion algorithms with much higher complexity and resource
consumption, e.g., Deep learning. Therefore the outcome
of detection is believed as the most conscious of a traffic
pattern sent from a Fog-IDS. Similar to the operation of
the Fog-IDS node, this IDS level deals with unhandled data
and then sends back appropriate policies to Fog-IDS for
immediately stopping malicious traffic flows generated from
IoT networks.

It is noted that NIDS engines in our introduced security
mechanism are initiated easily as virtual machines with built-
images in physical servers powered by the capability and
flexibility of SDN/NFV and MEC technologies.

C. SYSTEM MODEL ANALYSIS
Since the proposed security architecture operates as a dis-
tributed system in the edge, fog and cloud computing layers,
resource management must be considered. Otherwise, infor-
mation/data processing may put pressure on some specific
nodes in case of high traffic load (e.g., DDoS attack traffic)
generated from IoT networks; hence it can easily lead to a
bottleneck problem if no load balancing decision is made
in time. Furthermore, data flows among IDSs are also for-
warded using the same SDN-based cloud infrastructure, i.e.,
flow-tables in SDN switches or SDN-based IoT gateways.
Accordingly, the overhead of communication of the proposed
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TABLE 2: Notations

Resource Optimization Formulation
N Set of IDS nodes in the edge, fog and cloud levels
Ri Resources of an IDS node i

Rmax
i Maximum capacity of resource Ri in node i

Bmax
i Maximum bandwidth can be processed by a node i

B ji Transferred bandwidth from node j to i, and B ji 6= Bi j
Bi Sum of incoming bandwidth to node i s.t. Bi = ∑ j B ji and

Bi ≤ Bmax
i

L ji Link capacity between node j and i, and L ji = Li j
D An IDS node, and D ∈ N

DR
i (Bi) Usage of resource R when IDS node i processes bandwidth Bi

Optimal Path Selection
ai j The amount data sent from node i to node j
si The available supply at a node i
ci j The cost for flow along the arc between node i and node j

solution must be appropriately minimized. To achieve these
goals, we formulate a novel system resource optimization and
optimal path selection scheme thereinafter.

1) Efficient system resource management

Authors in [41] report the CPU usage of virtual machines is
proportional to the amount of processing traffic by measuring
the CPU utilization per network I/O rate on a Xen hypervisor.
Consequently, a virtual machine consumes more resources
when processes more incoming traffic. Therefore, we can
approximate how much resources are needed and how many
traffic information can be processed by remaining resources.
Besides, the amount of incoming traffic is represented by
bandwidth. Thus, we design an optimization formula that can
calculate optimal bandwidth distribution for each IDS node

in order to avoid the exceeded resource capacity.
Firstly, we define some notations in Table 2. As can be seen

from Figure 4 b), the proposed mechanism includes a set of
N nodes and can distribute traffic based on the concurrent
resource usage of each IDS node. A resource Ri of an IDS
node i is a type of virtual resources provided by physical
servers, Ri ∈ {vCPU,vMemory} in case CPU and memory
of the IDS node are considered. Since physical resource has
a limit, thus the value of resource Ri should not exceed
its capacity Rmax

i . A bandwidth B ji denotes the transferred
bandwidth from node j to i, therefore a total bandwidth
between two nodes j and i becomes B ji+Bi j, which should
not be excessive compared to a full duplex link capacity L ji

between them. DRi
i (Bi) refers the usage of resource R when

IDS node i processes bandwidth Bi (Mbps), where Bi ≤ Bmax
i .

For instance, an IDS node i handles with 10Mbps traffic, then
CPU usage of the IDS can be formed as DvCPU

i (10).
From above description of variables, we can set up an

optimization formula as follows:
maximize

∑
j

B ji (1)

subject to
0≤ Bi ≤ Bmax

i (2)

∀ j, i ∈ N : B ji +Bi j ≤L ji (3)

∀Ri ∈ {vCPU,vMemory} , i ∈ N : DRi
i (Bi)≤ Rmax

i . (4)

The main objective of this formulation is calculating max-
imum incoming traffic on an IDS node i to make a load
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balancing decision in time avoiding the overload case, and it
is written as equation (1). Afterwards, we have to determine
conditions to find out a feasible solution for the formula.
Equation (2) shows the amount of processing bandwidth Bi,
and it must be a positive value and less than the maximum al-
located value. Next, equation (3) should be satisfied because
the bandwidth of data traffic exchanging between two nodes
j and i must not be over a link capacity L ji. Similarly, the
resources of a node should not be over its capacity; hence,
equation (4) also has to be satisfied.

In this work, we introduce to efficiently manage the system
resource by leveraging the capabilities of SDN/NFV tech-
nology to initiate IDS nodes as virtual machines over the
cloud environment. As a result, the cloud administrator can
rely on our proposed calculation in order to set up the right
configuration for IDS nodes such as vCPU, vMemory, Bmax

and location. In addition, we now denote this calculation
as ESRM_ f unc(N) to refer to the proposed efficient system
resource management in this study.

2) Optimal path selection for data exchange
In our proposed security architecture, the system is char-
acterized using a graph structure representing nodes and
communication channels among them, which is shown in
Figure 4 b). In order to meet the mentioned requirement
regarding the overhead of communication, we have to find an
optimal path, which has the minimum communication cost,
between two any IDS nodes in the system. In other words,
we are interested in minimizing the cost of transferring data
in the proposed system. To achieve this aim, we follow the
minimum cost flow formulation in transportation and net-
work flow problems [42]. Firstly, we define some variables
as follows: ai j denotes the amount data that must be sent
from node i to node j, i.e., unhandled data and load balancing
data; si represents the available supply of data at a node i, if
si ≤ 0, thus there is a required demand of data at node i;
the shipping cost for flow along the arc between node i and
node j is denoted as ci j. In common sense, it is reasonable to
assume the system is balanced, i.e., total supply equals total
demand, then ∑

n
i=1 si=0, where n is the total number of nodes

in the system. Accordingly, the minimum cost of the system
communication problem can be expressed as follows:

minimize
n

∑
i, j=1

ci jai j (5)

subject to
n

∑
j=1

ai j−
n

∑
k=1

aki = si for i = 1,2, ...,n (6)

ai j ≥ 0 for i = 1,2, ...,n. (7)

From equation (5) and its conditions, we can find the
optimum path between two any nodes in the system. The
solution for solving this equation is well described in [42].
Therefore, we utilize the solution and the result as a primitive

to find paths for node communication in our proposed archi-
tecture. For ease of use, we denote equation (5) as a function
FSP_ f unc(i, j) to find the optimum path between node i and
j from now on.

D. SYSTEM PROCESS LOGIC
To present our novel SeArch security architecture in dealing
with network-related cyber-attacks in SDN-based cloud IoT
networks, the overall system process logic is provided by
three main following consecutive procedures.

1) Initialization Phase
Under the perspective of the cloud administrator, we need
to investigate the cloud infrastructure of three distributed
computing levels properly. Next, we formulate a detailed plan
for deployment based on the capabilities of SDN/NFV and
MEC technologies. This step focuses on some key points
such as the resource allocation and the deployment location
of IDS nodes, and these processes can clearly benefit from
our proposals mentioned in sections IV-C1, IV-C2 by using
ESRM_ f unc(N), FSP_ f unc(i, j). Additionally, we exten-
sively discussed the placement of machine learning-based
detection engine in the SDN-based cloud for IoT networks
in sections III-B and IV-B. Then, we use some ready-made
data sets [38], [39], [43], [44] and extract samples for train-
ing phases of lightweight, moderate and compute-intensive
classification algorithms.

Algorithm 1 Runtime Operation at Edge-IDS nodes

1: EIDS ← Set of IDS nodes at the edge computing level
and EIDS ∈ N.

2: Bi ← Amount of total incoming bandwidth of an IDS
node i at a certain time.

3: for i = 1 to EIDS do
4: Collect IoT traffic flow statistics data from gateway.
5: Calculate Bi, DvCPU

i (Bi) and DvMemory
i (Bi).

6: if (DvCPU
i (Bi) ≤ vCPUmax

i ) and (DvMemory
i (Bi) ≤

vMemorymax
i ) then

7: continue
8: else
9: Forward ∆Bi to a designated Fog-IDS, where ∆Bi =

Bi−Bmax
i .

10: end if
11: Extract f eatures from remaining data amount.
12: Feed inputs into a lightweight IDS.
13: Get IDS’s outcome.
14: if outcome = normal then
15: continue
16: else if outcome = malicious then
17: Call Policy creation and enforcement.
18: else if outcome = unknown then
19: Forward to a connected Fog-IDS node.
20: end if
21: end for
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Algorithm 2 Runtime Operation at Fog-IDS and Cloud-IDS
nodes

1: FIDS,CIDS ← Set of IDS nodes at the fog and cloud
computing levels and FIDS,CIDS ∈ N.

2: Bi ← Amount of total incoming bandwidth of an IDS
node i at a certain time.

3: for i = 1 to {FIDS,CIDS} do
4: Calculate Bi, DvCPU

i (Bi) and DvMemory
i (Bi).

5: if (DvCPU
i (Bi) ≤ vCPUmax

i ) and (DvMemory
i (Bi) ≤

vMemorymax
i ) then

6: continue
7: else
8: Forward ∆Bi

Number o f neighbors to each Fog-IDS or
Cloud-IDS neighbor, where ∆Bi = Bi−Bmax

i .
9: end if

10: Extract f eatures from remaining data amount.
11: if i ∈ FIDS then
12: Feed inputs into a moderate IDS.
13: else
14: Feed inputs into a compute-intensive IDS.
15: end if
16: Get IDS’s outcome.
17: if outcome = normal then
18: continue
19: else if outcome = malicious then
20: Call Policy creation and enforcement
21: else if outcome = unknown then
22: if i ∈ FIDS then
23: Forward to a connected Cloud-IDS node.
24: else
25: Send a report to the cloud administrator.
26: end if
27: end if
28: end for

2) Runtime Operation Phase
In the next step, we describe how IoT traffic can be classified,
and data exchange are done in the SeArch framework after
the Initialization phase is done. At first, every Edge-IDS
continuously collects IoT traffic flow statistics information
passing the associated SDN-based IoT gateway device. For
example, the gateway device is an OpenFlow switch, then the
collection data of IoT traffic is the switch’s flow-table data,
including all raw information of flow-tables [45]. Moreover,
the collected amount of data represented by a corresponding
bandwidth value, Bi, are forwarded to the Edge-IDS node i
for processing. Afterwards, the Edge-IDS checks its current
resource usage (vCPU , vMemory) and compares with the
condition mentioned in Equation (4) (see line 6 in Algorithm
1). If the condition is satisfied, it means the Edge-IDS node
i can handle all the incoming data. Otherwise, it decides to
load balance a part of the incoming data to a connected Fog-
IDS with an exact amount, see line 9 in Algorithm 1.

Next, the Edge-IDS node i conducts feature engineering
and extraction to take out values of desired features, the

Algorithm 3 Proposed Database Update Scheme

1: N = {EIDS, FIDS, CIDS} ← Set of all IDS nodes.
2: Newi ← New traffic patterns collected by an IDS node i

that is not sent to any nodes before.
3: Ti ← Regular period of time (minutes) for updating

connected nodes of an IDS node i.
4: Time_Counteri ← Time counter (minutes) for database

exchange of an IDS node i.
5: for i = 1 to N do
6: if Time_Counteri ≥ Ti then
7: if Bi < Bmax

i then
8: if i ∈ EIDS then
9: Send Newi to connected Fog-IDS node.

10: else if i ∈ FIDS then
11: Send Newi to connected Fog-IDS and Cloud-

IDS nodes.
12: else if i ∈CIDS then
13: Send Newi to connected Cloud-IDS nodes.
14: end if
15: Time_Counteri← 0
16: end if
17: else
18: Time_Counteri← Time_Counteri +1
19: end if
20: end for

Edge-IDS forms these values into inputs and feeds them into
its classification algorithm [27]. There are two possibilities of
outcomes from the machine learning-based detection engine
on an input: obvious (normal or malicious) and unknown
traffic patterns. For obvious decisions, the Edge-IDS can
take action/policy immediately to stop malicious traffic flows
passing the gateway while keeping normal traffic flows. Since
there are several types of network-related attacks which can
happen in IoT networks (see section II-B), therefore we will
adequately address the policy creation and enforcement in
the SeArch system later. For unknown patterns, it means
the Edge-IDS i cannot decide on this input because of any
reasons such as lacking key features or unseen type of traffic,
and then these patterns will be forwarded to a superior
Fog-IDS node for security checking with more advanced
knowledge. Algorithm 1 summarizes the operation of Edge-
IDS nodes.

Regarding the Fog-IDS nodes, they perform detection
tasks for unknown and load-balanced traffic patterns from the
edge nodes and among the fog nodes. This is reasonable due
to a low latency between the edge and fog computing levels
(see section II-A2 and [12], [19]), while only unhandled
data is transferred to the Cloud-IDS nodes for the most
advanced security analyses based on deep learning. Finally,
polices are loaded to SDN controllers that can apply these
policies to corresponding SDN-based IoT gateway devices
to drop/block abnormal traffic flows. Similar processes are
applied for the Cloud-IDS nodes in runtime operation. All
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mentioned processes can be summarized in Algorithm 2.

3) Database Update Scheme
One of the essential factors encouraging the performance
improvement of the SeArch solution is the database synchro-
nization and update scheme among IDS nodes. The reason is
that the network traffic behaviour of IoT networks is always
dynamic time by time; hence it is needed to update databases
of IDS nodes and train machine learning algorithms with
updated data in order to produce more accurate decisions.
Therefore, we propose a scheme for database update among
nodes of the system, which is accurately described in Algo-
rithm 3. From the proposed scheme, we can see that Edge-
IDS nodes update Fog-IDS nodes, Fog-IDS nodes share new
data with Fog-IDS and Cloud-IDS nodes, and Cloud-IDS
nodes only update among them.

Generally, IoT traffic is considered as heterogeneous from
a macro perspective; however, according to [46] it is group-
specific from the perspective of each local IoT network.
Thus, our proposed arrangement allows the detection engine
at each SDN-based IoT gateway to more efficiently classify
group-specific (local) IoT network traffic than mixed several
traffic types. Even if there is an unseen traffic pattern, the
Edge-IDS can send it to the Fog-IDS for further checking,
and because the fog nodes have more knowledge of the
traffic compared to the edge nodes by sharing and updating
databases together. Consequently, the unseen traffic pattern
will be verified very soon by the designated Fog-IDS node,
then a policy can be issued to drop/block the traffic flow if the
unseen data is recognized as an attack pattern. In conclusion,
the proposed Algorithm 3 can allow the system to improve
the performance of source-based detection for both group-
specific and heterogeneous traffic at local IoT networks.

V. IMPLEMENTATION AND EXPERIMENTS
A. DEPLOYMENT SETUP
To verify the novelty of the SeArch architecture, we have
implemented the proposed NIDS framework, as illustrated
in Figure 5. In which, we leverage the use of a distributed
SDN emulator, MaxiNet [33], and a docker container-based
framework - Containernet [47], in order to emulate a dis-
tributed SDN-based networks through 03 physical machines.
In each machine, we set up a small scale network with
some OpenvSwitches running as SDN-based IoT gateways
associated with Edge-IDS (E1-E95) nodes, and 12 container-
based hosts (d1-d126) are distributed as shown in Figure 5.
ONOS [48] is chosen as the SDN controller with an Fog-
IDS (F1-F37) in the application layer. GRE tunnels are set
up between machines to transfer data among SDN-based
networks. In addition, 02 physical machines are used for
formulating the cloud environment with 02 Cloud-IDS (C1-
C28) nodes, and these physical machines are connected to

5E1-E9 stand for 09 Edge-IDS nodes
6d1-d12 stand for 12 docker container-based hosts
7F1-F3 stand for 03 Fog-IDS nodes
8C1-C2 stand for 02 Cloud-IDS nodes

others using two L2 switches. A part of Figure 5 shows the
NIDS node graph connecting all nodes. Five machines are all
Intel Core i7-4790 3.60 GHz and 16 GB DDR3 1600 MHz.

Note that for ease of implementation, we assume that
we already applied two functions ESRM_ f unc(N) and
FSP_ f unc(i, j) (see section IV-C) to solve the resource al-
location and the deployment placement issues.

B. EXPERIMENTS

1) Machine learning-based detection and training datasets

As discussed above in sections III-B, IV-B and IV-D1, we
now have to select the machine learning algorithms for de-
tection engines in the SeArch architecture. Again, for an ease
of deployment, we utilize the lightweight traffic classifier
[35] (Support Vector Machine - SVM) for Edge-IDS, the
moderate traffic classifier [36] (Self Organizing Map - SOM)
for Fog-IDS and the compute-intensive traffic classifier
[37] (Stacked Autoencoder Deep Learning approach - SAE)
for Cloud-IDS, respectively. Nevertheless, other machine
learning-based detection techniques are absolutely feasible
to apply to the proposed system.

Moreover, we thoroughly investigated the network-related
threats in IoT networks in section II-B, including eavesdrop-
ping, denial-of-service (DoS/DDoS), spoofing and man-in-
the-middle (MITM) attacks. However, it can be seen that to
achieve sensitive information for conducting eavesdropping,
spoofing and MITM attacks, intruders must prior launch a
probing attack to gather useful network or target information.
Consequently, there are two common network-related cyber-
attacks, including DoS/DDoS and Probe/Reconnaissance at-
tacks which can harm IoT networks, generally. Further-
more, Table 3 illustrates the statistics of three well-known
datasets for network intrusion detection system, CAIDA [38],
[39], KDD Cup 1999 [43] and UNSW-NB15 [44]. From
the above analyses, we decide to consider DoS/DDoS and
Probe/Reconnaissance attacks in our experiments. Moreover,
we separately implement 02 types of SVM detection engine
for both above threats in each Edge-IDS node (E1− E9),
while SOM and SAE algorithms allow us to examine many
traffic types using one detection engine, for example in [17],
[40], the SOM is trained with and classifies both ICMP and
TCP DDoS traffic using a 2-dimensional map.

Initially, 30,000 data samples are extracted from three
datasets in Table 3 with a wide range of features. Based
on studies in [17], [40], we train Edge-IDS and Fog-IDS
detection engines using simple features consisting of number
of flows, number of packet per flow, number of byte per flow,
flow duration, growth of client ports, and protocol. For deep
learning-based Cloud-IDS nodes, we apply a set of 9 features
for TCP traffic and a set of 6 features for ICMP traffic as the
same in [37]. It is noted that we train IDS nodes for anomaly
detection according to their corresponding IoT traffic group
patterns, which is mentioned in the next section.
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FIGURE 5: Deployment topology of the proposed SeArch architecture

TABLE 3: Statistical distribution of CAIDA, KDD Cup 1999 and UNSW-NB15 data sets

CAIDA data sets [38], [39]
Traffic Types TCP Protocol (%) ICMP Protocol (%) Other Protocols (%)

Normal (2015) 88.45 6.0 5.55
DDoS Attack (2007) 7.58 91.25 1.17

KDD Cup 1999 data set [43]
Attack types Training Patterns Testing Patterns Number of Features

Probe, DoS, U2R, R2L 45,927 7,458 41
UNSW-NB15 data set [44]

Attack types Normal Patterns Attack Patterns Number of Features
Fuzzers, Analysis, Backdoors,

DoS, Exploits, Generic 2,218,761 321,283 49
Reconnaissance, Shellcode, Worms

2) IoT traffic generation
Although there is a wide variety of IoT devices, we already
discussed this in section IV-D3; therefore, we can generalize
the types of traffic into three common groups:

• Sensor traffic: IoT sensor devices generate this traffic
group in a certain period with a low number of packets
per traffic flow.

• Monitor traffic: This traffic type is generally referred to
real-time applications, characterized by a small number
of flows but a significant number of packets per flow.

• Alarm traffic: This traffic group is not easily described
because alarm IoT devices only generate traffic when
an abnormal event occurs. Accordingly, we assume this
traffic group has a moderate amount regarding both
the number of flows and the number of packets per
generated flow.

As can be seen in Figure 5, we configure each of small
scale SDN-based network to generate only one type of men-
tioned traffic groups as follows: Sensor traffic is for IoT

devices d1 to d4, d5 to d8 are generating Monitor traffic
and Alarm traffic is processed by d9 to d12, respectively. To
do so, we utilize BoNeSi traffic generator tool [34], which
provides various configurations of traffic generation, to gen-
erate HTTP-based traffic for normal IoT traffic. Regarding
attack traffic generation, BoNeSi is also used to generate
DoS/DDoS traffic, and Nmap scanning tool [49] is chosen
in order to launch Probe/Reconnaissance attacks. These tools
are installed in container-based IoT devices.

3) Policy creation and enforcement

After the detection phase is done in any NIDS nodes, policy
creation and enforcement play a key role in stopping attack
traffic flows in the IoT networks. Due to two mentioned
DoS/DDoS and Probe/Reconnaissance attacks, hence we
propose the following process to defend against or mitigate
malicious traffic flows.

DoS/DDoS attacks: In [50], authors have carefully anal-
ysed the two most common DDoS attack types from the
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perspective of the SDN-based network. The first type (t1) is
to rely on the volume of packets or data coming from a source
address which generates one or two flows with a high volume
of packets in each flow. For example, Smurf and Fraggle, and
ICMP flooding attacks [10]. The second type (t2) relies on the
volume of the number of flows from a source IP address in a
short period (e.g., TCP SYN flooding [10]) and these flows
may be kept alive during the attack (e.g. Low and Slow rate
DDoS attack [51]). Accordingly, in the SeArch solution, if an
attack is detected at an Edge-IDS node, this node should be
allowed to install flow rules into the affected SDN-based IoT
gateway for a fast reaction to attacks. Otherwise, a Fog-IDS
or Cloud-IDS should inform the associated SDN controller
to sends a f low_mod message [45] to the affected gateway
device. For the first attack type, the policy is with a drop
action and a preset hard_timeout value to drop every packet
from the attacking source. Meanwhile, the sent f low_mod
message is with a delete action to remove malicious flows
in the second attack type. Besides, these IDS nodes can
inform the forwarding engine of the SDN controller to drop
packet_in messages of attacking sources which require for
new flow installation at the gateway.

Probe/Reconnaissance attacks: Because of the less traffic
volume generated from this kind of attacks, it could be
challenging to mitigate these attacks. However, in this study,
we suggest installing flow rules with a source IP matching
field and drop action for the malicious sources in a preset
hard_timeout value. By doing so, within a specific period,
the source cannot access to the destination in any approaches
due to the drop action that matches to every incoming packet
from the abnormal source IP address.

4) Attack scenarios
We now discuss about attack scenarios in our deployment.

DoS/DDoS attack scenarios: At first, we launch local
DDoS attacks (Lt1 - ICMP Flooding and Lt2 - TCP SYN
Flooding) in the IoT network including d5 to d8 containers,
in which d5, d6 and d7 simultaneously flood d8 (an Apache
webserver). After that, global DDoS attacks (Gt1 - ICMP
Flooding and Gt2 - TCP SYN Flooding), malicious traffic
is generated from all IoT devices, are conducted in order to
break down the web service in d8 container.

Probe/Reconnaissance attack scenarios: We carry out a
local scanning attack (LProbe) from d5 to d8 by launching the
Nmap tool. Similarly, a global scale probing attack (GProbe)
is launched from both d5 and d12 to d8 to achieve sensitive
information about the destination device.

Note that we carry out 10 experiment trials with 500
seconds for each, and mentioned attacks are generated many
times to the victim device during each trial.

5) Related solutions for comparison
To show the inspired performance of the SeArch architecture
in anomaly detection and mitigation for SDN-based cloud
IoT networks, we carry out experiments of the proposed so-
lution in comparison with following other existing methods:

TABLE 4: Anomaly detection performance indices

Detection Rate Precision Accuracy FAR

T P
T P+FN

T P
T P+FP

T P+T N
T P+FP+T N +FN

FP
T N +FP

• Distributed Edge-based Defense (DED): In references
[16], [17], authors proposed to utilize the SDN-based
IoT gateway device to detect and perform an appropri-
ate response in case of an attack presence. Setting up
this DED architecture in our testbed, machine learning-
based detection engines or Edge-IDS nodes (E1−E9)
are placed at SDN-based IoT gateway devices located
in three physical machines (1-3) as shown in Figure 5,
and they are then trained individually without in any
collaborations.

• Centralized Fog-based Defense (CFD): References [12],
[13] present similar approaches for anomaly detection
based on the power of the fog computing and improved
or combined intelligent classifiers. To achieve the CFD
architecture setup, we deploy another physical machine
with a centralized ONOS SDN controller which controls
all SDN-based IoT gateway devices9 in three physical
machines (1-3) as shown in Figure 5. Afterwards, we
place a Fog-IDS node on top of this ONOS controller, in
which the Fog-IDS collects traffic statistics information
from all SDN-based IoT gateway devices and conducts
its detection.

• Centralized Fog and Cloud-based Defense (CFCD):
Authors in reference [11] introduce a multi-level DDoS
mitigation framework leveraging the use of both the fog
and the cloud computing levels. Similarly, we utilize
the above centralized CFD setup and then connect the
Fog-IDS node to a Cloud-IDS node at another machine,
e.g., the physical machine 4 in Figure 5. Next, the Fog-
IDS collects traffic statistics information from all SDN-
based IoT gateway devices and conducts its detection.
Moreover, in case of overload, the Fog-IDS does a load
balancing with the Cloud-IDS node for more advanced
analyses.

Note that we implement these solutions [11]–[13], [16],
[17] in our testbed according to the above description to keep
their original novelties and functionalities.

VI. RESULT ANALYSIS
A. ANOMALY DETECTION PERFORMANCE
In our experiments, we measure four parameters: True Pos-
itive (TP) is the probability of abnormal traffic flows, which
are classified as illegal flows. True Negative (TN) shows
the probability of legitimate traffic flows that are trusted as
normal flows. False Positive (FP) reflects the probability of
normal traffic flows that are judged as abnormal flows, and
False Negative (FN) reveals the probability of attack traffic

9Note that, in this setup, there are no associated Edge-IDS nodes in SDN-
based IoT gateways.
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flows that are recognized as legal flows. According to the
recorded results, we next calculate four important criteria
including Detection rate, Precision, Accuracy, False alarm
rate (FAR) to evaluate the performance of our proposed
model, as illustrated in Table 4. In which, Detection rate is
the ratio of correctly identified attack over the total amount
of attacks happened in the networks. On the other hand,
Precision represents the ratio of correctly identified attacks
over the total amount of identification of attacks. False alarm
rate shows the ratio of incorrectly identified attack over the
total amount of incorrect identification, whereas Accuracy
means how correct the detection engine is. All indices are
measured in trials during different attacks.

As shown in Figure 6, it is clear that the DED solu-
tion achieves poor performances in terms of Detection rate,
Accuracy, Precision and False alarm rate for six different
attack scenarios. This is understandable because Edge-IDS
nodes could not effectively detect unknown malicious traffic
patterns without any collaborations, and achieve irrelevant
results when trained detection engine was updated during
attack time. Contrary SeArch, CFD and CFCD schemes
produce similar results of all four evaluation criteria. The
proposed SeArch is slightly lower regarding Detection rate
since the system needs to exchange information to become
converged and then achieve the most accurate decision for ev-
ery traffic pattern. Meanwhile, it shows not much different in
terms of Accuracy, Precision and False alarm rate compared
to CFD and CFCD approaches. To sum up, the SeArch archi-
tecture guarantees a remarkable level of anomaly detection
performance in comparison with the centralized solutions,
while completely outperforms the distributed approach with
non-collaborations.

B. ATTACK MITIGATION PERFORMANCE

Attack mitigation plays a crucial role in securing every net-
worked system; hence, we now analysis the results recorded
from our experiments among four comparing solutions.

1) Average detection time of a new attack presence in the
targeted network

Firstly, we consider how fast a new attack is detected in the
victim network. By generating unknown attacks of detection
engines (e.g., TCP SYN Flooding, Probe/Reconnaissance)
in the IoT network residing in the physical machine 2 (see
Figure 5), we measure and calculate the average detection
time of a new attack as depicted in Figure 7. It is evident
that at first the SeArch mechanism would take a bit longer
time compared to CFD and CFCD solutions to detect a new
incoming attack in the victim network, this is because of
collaboration time among IDS nodes and this leads to a less
delay of new attack detection performed by the SeArch solu-
tion later on. Meanwhile, DED could not detect a new attack
if Edge-IDS nodes do not update it detection brain to adapt
to the current network traffic; therefore we denote N/A (not
available) in this case. In summary, as the SeArch architecture

becomes converged, it can recognize a new attack pattern
very quickly in comparison with centralized solutions.

2) Average attack mitigation time
Furthermore, we look at how fast policy is conducted and
implemented in the data plane since a detection alert is raised.
It is clear that the DED solution only relies on source-
based detection and mitigation; thus it takes a very little
time to implement policies if an attack is detected, as shown
in Figure 7. Similarly, the SeArch solution also bases on
source-based detection and mitigation as discussed earlier,
thus it is just a little slower than the DED scheme because
of some unknown patterns at the beginning, and it absolutely
outperforms the CFD and CFCD approaches in more quickly
stopping attack traffic.

3) Number of dropped malicious packets
To efficiently stop abnormal traffic in the IoT network, one
key evaluation criterion is how many malicious packets are
dropped during the attack. Therefore, we record the total
number of dropped malicious packets when IoT networks are
under several attacks, and results are illustrated in Figure 8.
Because of the high degree of detection rate, thus SeArch,
CFD and CFCD solutions conduct and implement policies as
soon as an attack pattern is detected leading to a high number
of dropped attack packets. In the case of DED scheme, it
could not efficiently recognize abnormal traffic compared
to other solutions, and it only dropped a low number of
malicious packets during attacks as a result.

4) Number of packet_in messages to the SDN control plane
Attack traffic not only can harm the data plane and IoT
devices but also produce harmful effects on the control
plane. In our experiments, we take the number of packet_in
messages to the SDN controller into account to represent this
judgement criterion. As depicted in Figure 9, due to a low
detection rate of abnormal attacks in case of DED scheme,
hence it causes many flow mismatching events in SDN-based
IoT gateways leading to a considerable volume of packet_in
messages are generated and sent to ONOS controller. How-
ever, three remaining mechanisms including SeArch, CFD
and CFCD show an acceptable packet_in rate to the control
plane, and this is due to a right level of malicious traffic
detection and a fast implementation of policies in the data
plane, which protects the SDN control plane from a packet_in
flooding attack [52] in case of high rate attacks.

5) Number of conducted policies and traffic flow quantity in
the SDN-based IoT gateways
Finally, we pay attention to the number of conducted policies
(rules) in the data plane devices to judge our proposed archi-
tecture in attack mitigation performance. As can be seen in
Figure 10, the SeArch, CFD and CFCD methods create and
enforce policies more than twice on average in comparison
with the DFD solution. As we analyzed above, a high de-
tection rate implies a high number of generated policies, and
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FIGURE 6: Anomaly detection performance comparison among 4 different solutions
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then they are implemented to the SDN-based IoT gateway
devices; therefore, the recorded results are reasonable. In
addition, Figure 11 represents the total number of flow entries
in SDN-based IoT gateway devices during the attack time.
We can see that a higher number of conducted polices results
in many deleted malicious traffic flows; otherwise, the SDN-
based gateways must maintain a huge number of flow entries
in their flow-tables. In conclusion, the SeArch architecture
again achieves remarkable results in protecting the data plane
from being flooded by saturation attacks.
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FIGURE 8: Number of dropped packets over attack time for
different approaches

C. SYSTEM OVERHEAD

To evaluate a new security architecture, the system overhead
criteria should also be considered; hence we provide analyses
about how the SeArch architecture can deal with bottleneck
problems and overhead of collaboration at runtime operation.
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FIGURE 10: Number of conducted policies in the SDN-
based IoT gateways during attack for different approaches

1) Performance Bottleneck Handling
As illustrated in Figure 12, we measure the average CPU
utilization10 of three IDS node levels when a massive DDoS
attack - Gt2 , which is the most dangerous DDoS attack
types, is launched. The IDS nodes of the SeArch proposal
always consume the least computational resources in Edge
and Fog computing levels. Only CFCD-Cloud nodes have

10We observe the CPU usage of the core running the security application.
And, all machines are Intel Core i7-4790 (4 cores) 3.60 GHz and 16 GB
DDR3 1600 MHz.

5 10 15 20 25

Attack time (x20 seconds)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T
o

ta
l 

n
u

m
b

e
r 

o
f 

tr
a
ff

ic
 f

lo
w

s

SeArch

DED

CFD

CFCD

FIGURE 11: Total number of traffic flows in the whole
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FIGURE 13: Data amount of load balancing and database
update events compared to the total generated data of the
SeArch system during different attacks

a similar resource consumption degree with SeArch-Cloud
nodes. Therefore, the SeArch solution saves the most com-
putational resources on average, when the IoT networks are
under a massive DDoS attack. Accordingly, the performance
bottleneck issues are minimized in the case of the SeArch
architecture in comparison with existing solutions.

2) Overhead of the system collaboration
Finally, we examine the overhead of the system collaboration
when the network is under different cyber attacks. We record
the amount of data generated by load balancing and database
update events in comparison with the total generated data
in the SeArch architecture. As depicted in Figure 13, Gt2
and Gprobe attacks produce just around 15.0 % of the total
handling data for the system collaboration tasks. Meanwhile,
other attacks only account for less than 8.5 % of the total data
amount. In particular, Lt2 and Lprobe create a moderate level
of traffic flow quantity in a local network scale resulting in
a low proportion requiring for the system collaboration over-
head. And, Lt1 and Gt1 attacks generate little number flow
entries in the SDN-based gateways; hence the processing data
amount is quite small, and the overhead mostly comes from
the database update events. In summary, the overhead of the
system collaboration is unnoticeable compared to the total
data amount produced by the system operation.
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D. DISCUSSION

Through comprehensive analyses above, one can see that the
SeArch solution completely outperforms the DED scheme in
terms of anomaly detection performance and most criteria of
attack mitigation by using an efficient collaboration scheme.
However, for attack mitigation time, the SeArch needs a little
longer time than the DED method to mitigate attack traffic
at the beginning due to the collaboration process, and it is
expected to achieve better performance for a long run.

The SeArch framework completely surpasses the CFD and
CFCD methods regarding attack mitigation time and dealing
with performance bottleneck problems by leveraging a good
source-based location to place detection engines. Nonethe-
less, with regard to the detection performance, i.e., detection
rate, precision and accuracy, and mitigation attack criteria
including number of dropped malicious packets, number of
packet_in messages, number of conducted polices and num-
ber of traffic flow rules, the SeArch have similar performance
results with the CFD and CFCD methods.

From our above discussion, it proves that the proposed
SeArch architecture effectively benefits advantages from
other existing solutions while altogether avoiding their draw-
backs in order to defense network-related cyber-attacks in
SDN-based cloud IoT networks. Besides, based on our pro-
posed functions in section IV-C, the SeArch architecture
gives the cloud administrator an efficient mechanism for
resource optimization in practical deployment.

VII. CONCLUSION

In this paper, we propose a new security architecture, SeArch,
representing a collaborative and intelligent NIDS system in
SDN-based cloud IoT networks, in which an arrangement of
three layers of IDS nodes (Edge-IDS, Fog-IDS and Cloud-
IDS) is introduced with an effective collaboration among
nodes. This architecture leverages the use of machine learn-
ing/deep learning for intelligently detecting network-related
threats from IoT devices. A novel system resource optimiza-
tion and an optimal path selection scheme are proposed to
bring benefits to the resource management and the overhead
of communication of the proposed solution. In comparison
with existing solutions, the SeArch solution achieves a re-
markable anomaly detection performance, i.e., around 95.5%
on average of detection rate, accuracy and precision, which
is same to results obtained by the CFD and CFCD methods,
while providing a right level of attack mitigation, i.e., only
7.0 ms on average in attack mitigation time, and tackling per-
formance bottleneck problems as same as the DED scheme
does. Additionally, the SeArch architecture presents only a
minor overhead of the system collaboration, i.e., from 8.5%
to 15.0%. As our future development, we plan to investigate
other machine learning/deep learning algorithms and cyber
attacks with a more massive amount of data sets and vari-
ous/heterogeneous traffic types in the proposed architecture.
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