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1  | INTRODUC TION

To	understand	the	dynamics	of	marine	systems,	biogeographers	ex‐
amine	how	geography,	climate	and	biotic	factors	shape	biodiversity	
and	 evolutionary	 divergence	 at	 scales	 ranging	 from	genes	 to	 spe‐
cies	and	from	ecosystems	to	continents	and	globe‐spanning	oceans.	
This	work	is	increasing	in	importance	because	biogeographic	regions	
defined	by	species	assemblages	and	climatic/environmental	factors	
provide	the	foundation	to	identify	patterns	of	biodiversity	and,	more	
recently,	 to	define	conservation	regions	 (Ladle	&	Whittaker,	2011;	
Margules	&	Pressey,	2000;	Pressey	&	Bottrill,	2009).

Global	 biogeographic	 classification	 schemes	 have	 been	 devel‐
oped	for	terrestrial	 (Olson	et	al.,	2001),	freshwater	 (Abell,	Thieme,	
Revenga,	Bryer,	&	Kottelat,	2008)	and	marine	(Briggs,	1974;	Spalding	
et	al.,	2007;	Veron,	Stafford‐Smith,	Devantier,	&	Turak,	2015;	Watling,	
Guinotte,	Clark,	&	Smith,	2013)	provinces	and	vary	in	levels	of	de‐
tail.	Traditionally,	these	classification	systems	partition	biodiversity	
based	on	species	distributions	and	levels	of	endemism	(Abell	et	al.,	
2008;	Briggs,	1974;	Olson	et	al.,	2001).	However,	many	classification	
systems also consider abiotic factors, dominant habitat, connectiv‐
ity	and	geomorphological	features	(Belanger	et	al.,	2012;	Valentine	
&	Jablonski,	2010)	and	can	take	a	nested	hierarchical	approach	(i.e.	
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Abstract
Aim: To	test	hypothesized	biogeographic	partitions	of	the	tropical	Indo‐Pacific	Ocean	
with	phylogeographic	data	from	56	taxa,	and	to	evaluate	the	strength	and	nature	of	
barriers emerging from this test.
Location: The	Indo‐Pacific	Ocean.
Time period: Pliocene	through	the	Holocene.
Major taxa studied: Fifty‐six	marine	species.
Methods: We	tested	eight	biogeographic	hypotheses	for	partitioning	of	the	Indo‐
Pacific	using	a	novel	modification	to	analysis	of	molecular	variance.	Putative	barri‐
ers	to	gene	flow	emerging	from	this	analysis	were	evaluated	for	pairwise	ΦST, and 
these ΦST	distributions	were	compared	to	distributions	from	randomized	datasets	
and	 simple	 coalescent	 simulations	 of	 vicariance	 arising	 from	 the	 Last	 Glacial	
Maximum.	We	then	weighed	the	relative	contribution	of	distance	versus	environ‐
mental	or	geographic	barriers	 to	pairwise	ΦST	with	a	distance‐based	 redundancy	
analysis	(dbRDA).
Results: We	observed	a	diversity	of	outcomes,	although	the	majority	of	species	fit	a	
few	broad	biogeographic	regions.	Repeated	coalescent	simulation	of	a	simple	vicari‐
ance	model	yielded	a	wide	distribution	of	pairwise	ΦST	that	was	very	similar	to	empiri‐
cal	distributions	observed	across	five	putative	barriers	to	gene	flow.	Three	of	these	
barriers had median ΦST	that	were	significantly	larger	than	random	expectation.	Only	
21	of	52	species	analysed	with	dbRDA	rejected	the	null	model.	Among	these,	15	had	
overwater	distance	as	a	significant	predictor	of	pairwise	ΦST, while 11 were signifi‐
cant	for	geographic	or	environmental	barriers	other	than	distance.
Main conclusions: Although	there	is	support	for	three	previously	described	barriers,	
phylogeographic	 discordance	 in	 the	 Indo‐Pacific	 Ocean	 indicates	 incongruity	 be‐
tween	processes	shaping	the	distributions	of	diversity	at	the	species	and	population	
levels.	Among	the	many	possible	causes	of	this	incongruity,	genetic	drift	provides	the	
most	compelling	explanation:	given	massive	effective	population	sizes	of	Indo‐Pacific	
species,	even	hard	vicariance	for	tens	of	thousands	of	years	can	yield	ΦST values that 
range	from	0	to	nearly	0.5.

K E Y W O R D S

analysis	of	molecular	variance,	biogeographic	provinces,	biogeographic	realms,	comparative	
phylogeography,	discordance,	dispersal,	distance‐based	redundancy	analysis



     |  945CRANDALL et AL.

Olson	et	al.,	2001;	Spalding	et	al.,	2007).	More	recently,	molecular	
phylogenies	at	the	species	level	have	also	been	used	to	describe	bio‐
geographic	regions	(Cowman,	Parravicini,	Kulbicki,	&	Floeter,	2017).

None	 of	 these	 varied	 approaches	 includes	 information	 below	
the	species	level	or	encompasses	the	distribution	of	genetic	lineages	
and	spatial	structuring	of	genetic	diversity	within	species.	Given	that	
biogeographic	barriers	occur	in	regions	where	geological	or	environ‐
mental	variations	create	filters	to	species	dispersal	and	connectivity	
(Avise,	1992),	 these	 same	processes	 should	 shape	 the	distribution	
of	intraspecific	genetic	diversity	and	reflect	processes,	such	as	spe‐
ciation,	 population	 growth,	 colonization	 and	 dispersal	 that	 under‐
lie	 species	 distributions.	 As	 such,	 synthesizing	 biogeographic	 and	
phylogeographic	 patterns	 provides	 an	 ideal	 way	 to	 test	 whether	
hypothesized	biogeographic	breaks	correspond	to	breaks	in	genetic	
structure,	as	would	be	expected	given	the	mechanisms	generally	in‐
voked	to	explain	such	breaks.

Early	efforts	to	design	global	marine	biogeographic	classifica‐
tion	schemes	were	based	on	the	distribution	of	well‐characterized	
fishes, with endemism being considered as having evolutionary 
uniqueness.	For	example,	Ekman	(1953)	described	large‐scale	bio‐
geographic	regions	and	subregions,	such	as	the	continental	shelf,	
tropical,	temperate	and	polar	waters.	Briggs	(1974)	further	divided	
continental	shelves	 into	biogeographic	regions	that	each	encom‐
passed	provinces	defined	by	10%	endemism	in	fishes,	a	criterion	
that	was	 later	 adopted	 by	 others	 (Hayden,	 Ray,	&	Dolan,	 1984).	
This	classification	scheme	was	revised	by	Briggs	and	Bowen	(2012;	
fig.	 1)	 who	 divided	 the	 tropical	 Indo‐Pacific	 into	 five	 provinces,	
including	the	expansive	Indo‐Polynesian	province	that	spans	from	
the	Maldives	to	French	Polynesia,	while	assigning	each	of	Hawai’i, 
the	Marquesas,	 Easter	 Island	 and	 the	Western	 Indian	 Ocean	 to	
the	 level	 of	 province	 based	 on	 the	 high	 level	 of	 fish	 endemism	
found in each. More recent efforts have been driven by the need 
for	fine‐scale	classification	to	address	regional	resource	manage‐
ment.	Spalding	et	al.	(2007)	developed	a	hierarchical	classification	
system	based	on	data‐driven	expert	opinion	 for	multiple	coastal	
taxa	 that	divided	 the	 Indo‐Pacific	 into	 three	 realms,	which	were	
further	subdivided	into	25	provinces	and	77	ecoregions	based	on	
species	distributions,	dominant	habitat	type,	and	geomorpholog‐
ical	 and	oceanographic	 features.	Kulbicki	 et	 al.	 (2013)	 employed	
a clustering method based on the dissimilarity of reef fish assem‐
blages	to	resolve	10	provinces	nested	within	three	regions	in	the	
Indo‐Pacific.	 Keith,	 Baird,	 Hughes,	 Madin,	 and	 Connolly	 (2013)	
defined	11	faunal	provinces	in	the	tropical	Indo‐Pacific	based	on	
distributions	 and	 co‐occurrence	 of	 range	 boundaries	 in	 corals.	
Finally,	 Veron	 et	 al.	 (2015)	 subdivided	 the	 Indo‐Pacific	 into	 124	
ecoregions	in	12	divisions	based	on	the	distribution	of	the	habitat‐
forming scleractinian corals and environmental distinctiveness.

One	 limitation	 of	 the	 aforementioned	 regionalization	 mod‐
els	 (Figure	 1)	 is	 that	 they	 are	 defined	 by	 patterns	 emerging	 from	
nearshore	 species	 distribution	 data	 (Keith	 et	 al.,	 2013;	 Kulbicki	
et	 al.,	2013;	Veron	et	al.,	2015)	and	give	 less	consideration	 to	 the	
processes	that	govern	the	distribution	of	marine	biodiversity	more	
generally	 (but	see	Briggs	&	Bowen,	2013).	Where	 large‐scale	geo‐
logical	processes	have	been	taken	into	account,	for	example	through	

application	 of	 cladistic	 biogeography	 (Pandolfi,	 1992),	 speciation	
patterns	match	with	 these	 regionalizations	 (Keith	 et	 al.,	 2013).	By	
focusing	on	pattern	over	process,	we	limit	our	ability	to	understand	
the	historical	or	contemporary	causes	of	biogeographic	patterns.

One	approach	to	address	such	process‐related	questions	in	bio‐
geographic	 regionalization	models	 is	 through	 inclusion	 of	 data	 on	
intraspecific	genetic	diversity.	There	are	many	intriguing	questions	
that	might	be	addressed	at	the	scale	of	intraspecific	genetic	diver‐
sity	patterns:	At	what	spatial	and	temporal	scale	does	intraspecific	
genetic	variation	occur	(Benzie,	1999)?	Are	intraspecific	genetic	pat‐
terns	consistent	with	biogeographic	hypotheses	showing	a	coarse‐
grained	nature	 (Briggs	&	Bowen,	2013;	Huang,	Goldberg,	Chou,	&	
Roy,	2018;	Pandolfi,	1992),	or	do	local	environments	play	a	greater	
role	than	large‐scale	geographic	regions	(Spalding	et	al.,	2007)?	Does	
the	observed	turnover	in	species	diversity	among	regions	result	sim‐
ply	from	the	vast	expanse	of	open	ocean	between	continents	and	
archipelagos	(Vermeij,	1987),	or	are	there	barriers	to	dispersal	such	
as	currents	(Barber,	Cheng,	Erdmann,	Tenggardjaja,	&	Ambariyanto,	
2011;	Treml,	Roberts,	Halpin,	Possingham,	&	Riginos,	2015),	that	act	
above	and	beyond	the	effects	of	geographic	distance?	Underlying	
processes	operating	across	a	 range	of	 temporal	 and	spatial	 scales	
are	likely	to	have	an	effect	on	genetic	diversity	and	turnover	of	hap‐
lotypes	much	as	they	do	on	species	diversity	(Palumbi,	1997).

Phylogeographic	 studies	 of	 marine	 organisms	 are	 notoriously	
challenging	due	 to	 large	effective	population	sizes	and	potentially	
high	 rates	 of	 larval	 dispersal	 among	 populations	 (Hellberg,	 2009).	
These	 traits	 tend	 to	 depress	 F‐statistics	 and	 related	measures	 of	
population	 structure,	 creating	 blurred	 and	 discordant	 phylogeo‐
graphic	patterns	(Crandall,	Frey,	Grosberg,	&	Barber,	2008;	Gagnaire	
et	al.,	2015;	Waples,	1998).	Replication	of	observations	is	thus	key	to	
elucidating	shared	historical	processes	(Horne,	2014a).	While	single‐
species	studies	of	phylogeography	abound	in	the	marine	literature	
(Keyse	 et	 al.,	 2014),	 and	 some	multispecies	 regional	 case	 studies	
have	been	 conducted	 (Barber	 et	 al.,	 2011;	Carpenter	 et	 al.,	 2011;	
Gaither	 &	 Rocha,	 2013;	 Ilves,	 Huang,	Wares,	 &	 Hickerson,	 2010;	
Kelly	&	Palumbi,	2010;	Liggins,	Treml,	Possingham,	&	Riginos,	2016;	
Marko	 et	 al.,	 2010;	 Teske,	 Von	 der	 Heyden,	 McQuaid,	 &	 Barker,	
2011;	 Toonen	 et	 al.,	 2011;),	 there	 has	 never	 been	 a	 multispecies	
phylogeographic	test	of	biogeographic	hypotheses	at	a	global	scale.

In	this	study,	we	leverage	a	unique,	curated	database	of	genetic	
data	spanning	the	vast	Indo‐Pacific	region	to	undertake	the	larg‐
est	multispecies	phylogeographic	study	to	date.	Using	data	 from	
56	 taxonomically	 diverse	 species,	 representing	 4	 phyla	 and	 27	
families,	we	investigate	which	of	the	biogeographic	divisions	iden‐
tified	 in	 published	 marine	 biogeographic	 regionalization	 models	
are	reflected	in	the	distribution	of	genetic	variation	below	the	spe‐
cies	 level.	Concordant	phylogeographic	patterns	across	 indepen‐
dent	species	provide	evidence	for	shared	evolutionary	processes,	
and	divisions	between	biogeographic	 regions	 indicate	significant	
environmental	or	geographic	barriers	that	could	be	recapitulated	
at	the	population	genetic	level	(Avise,	2000).	As	such,	if	the	parti‐
tions	defined	by	species	distributions,	major	habitat	features	and	
oceanography	 are	 regarded	 as	 first‐order	 approximations	 of	 im‐
portant	and	enduring	barriers	to	gene	flow,	then	we	would	expect	
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concordance	 between	 these	 biogeographic	 hypotheses	 and	 ge‐
netic‐based	population	level	phylogeography	(Bowen	et	al.,	2016;	
Harvey	et	al.,	2017).

To	conduct	this	analysis,	we	present	a	novel	analytical	frame‐
work	for	phylogeographic	hypothesis	testing	across	multiple	spe‐
cies.	First,	we	develop	a	new	approach	to	analysis	of	molecular	
variance	(AMOVA)	set	within	a	comparative	framework	to	rigor‐
ously	evaluate	support	for	competing	biogeographic	hypotheses	
based	 on	 how	well	 they	 explain	 the	 distribution	 of	 genetic	 di‐
versity	in	each	species.	Second,	we	statistically	evaluate	genetic	
structure	 generated	 across	 divisions	 among	 regions	 (putative	
barriers)	for	the	two	best‐supported	regionalizations.	Finally,	we	
disentangle	the	relative	influences	of	geographic	distance	versus	
impediments	to	gene	flow	 (historical	vicariance,	steep	environ‐
mental	 gradients,	 etc.)	 on	 evolutionary	 divergence	 using	 dis‐
tance‐based	redundancy	analysis	(Legendre	&	Anderson,	1999).

2  | METHODS

2.1 | Data acquisition and quality control: 
Assembling the DIPnet database

A	list	of	published	marine	phylogeographic	studies	from	the	Indo‐

Pacific	 region	 was	 compiled	 in	 October	 2014	 during	 a	 National	

Evolutionary	Synthesis	Center	(NESCent)	workshop	of	the	Diversity	

of	 the	 Indo‐Pacific	 Network	 (DIPnet;	 http://diversityindopacific.

net/)	held	in	Durham,	North	Carolina,	based	on	keyword	searches	

of	the	literature	and	expert	knowledge	of	working	group	members.	

Lead	authors	on	published	papers	and	the	heads	of	research	groups	

known	to	be	actively	working	in	Indo‐Pacific	phylogeography	were	

also	contacted	for	data.	Data	were	submitted	between	July	2014	

to	April	2015	according	to	instructions	developed	by	the	NESCent	

working	 group.	 Each	 mitochondrial	 dataset	 consisted	 of	 Sanger	

F I G U R E  1  Biogeographic	regionalizations	that	were	tested	using	model	selection	with	analysis	of	molecular	variance	(AMOVA).	Colours	
represent	different	regions	within	a	scheme.	(a)	Briggs	and	Bowen	(2012),	endemism	in	fishes,	provinces	(k	=	5);	(b)	Keith	et	al.	(2013),	
range	boundaries	of	corals,	provinces	(k	=	11);	(c)	Kulbicki	et	al.	(2013),	reef	fish	species	composition,	realms	(k	=	3);	(d)	Kulbicki	et	al.	(2013),	
provinces	(k	=	10);	(e)	Spalding	et	al.	(2007),	expert	opinion,	realms	(k	=	3);	(f)	Spalding	et	al.	(2007)	provinces	(k	=	27);	(g)	Spalding	et	al.	
(2007)	ecoregions	(k	=	77);	(h)	Veron	et	al.	(2015),	coral	distribution,	divisions	(k	=	12)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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sequence data in FASTA format. Metadata for each sequence were 
assembled	in	a	spreadsheet	template	generated	using	the	Biocode	
Field	Information	Management	System	[Biocode	FIMS;	now	avail‐
able	at	GeOMe,	see	Deck	et	al.	 (2017)].	Genetic	data	and	associ‐
ated metadata underwent rigorous quality control during and after 
submission	(Supporting	Information	Text	S1).

2.2 | Regionalizations and overwater distances

Sequences	 for	 each	 species	 and	 genetic	 locus	 combination	 were	
assigned	 group	 membership	 using	 several	 spatial	 regionalization	
schemes	 (Figure	 1).	 The	 location	 of	 each	 population	 sample	 site	
(latitude	 and	 longitude)	 in	 the	 database	was	 extracted	 directly	 or	
estimated	 using	 the	 geographic	 place	 names	 in	 the	 metadata.	 All	
individual	 sample	 sites	were	 intersected	with	 each	 regionalization	
(Figure	1)	to	assign	appropriate	group	membership	to	each	sample.

Overwater	distances	between	all	 sampled	 localities	were	mea‐
sured	using	a	simple	cost‐path	algorithm.	To	simplify	 this	distance	
calculation,	all	samples	within	10	km	were	treated	as	a	single	mean	
location	 (distances	 between	 these	 clustered	 sites	 were	 set	 to	 0)	 
and	all	locations	that	fell	on	land	(due	to	coordinate	imprecision	or	
geolocating	based	on	place	names)	were	moved	to	the	nearest	water	
cell,	if	within	20	km.	Overwater	distances	were	calculated	between	
all	 possible	 pairs	 of	 unique	 locations.	 Using	 a	 cost	 surface	where	
water	 has	 a	 cost	 of	 one	 (land	 cells	 cannot	 be	 crossed),	 the	 algo‐
rithm	 effectively	 finds	 the	 shortest	 geographic	 distance	 between	
points	across	water	cells	only.	The	R	package	gdistance	 (van	Etten,	
2017)	was	used	for	finding	overwater	distances.	R	code	for	this	and	 
all	 other	 analyses	 can	 be	 found	 at	 http://dipnet.github.io/
popgenDB/.

2.3 | Analysis of molecular variance

We	 identified	 the	 best	 supported	 biogeographic	 regionalization	
scheme	 for	 each	 species	 using	 a	 novel	 approach	 to	 the	 hierarchi‐
cal	 analysis	 of	 molecular	 variance	 (Excoffier,	 Smouse,	 &	 Quattro,	
1992)	model	wherein	we	calculated	the	Bayesian	information	crite‐
rion	 (BIC;	 Schwarz,	 1978),	 based	on	both	FST	 (Weir	&	Cockerham,	
1984)	 and	ΦST (Excoffier	 et	 al.,	 1992)	 for	use	 in	 a	model	 selection	
framework.	As	 results	were	 broadly	 similar	 for	 both	 statistics,	we	
present	 results	 for	ΦST, which includes genetic distance between 
haplotypes	(we	provide	results	for	FST,	which	is	based	solely	on	hap‐
lotype	frequencies	in	Supporting	Information	Text	S2).	For	each	spe‐
cies,	sampling	locations	were	binned	into	regions	according	to	each	
biogeographic	regionalization	scheme	as	described	above.	AMOVA	
was conducted using the pegas package	(Paradis,	2010)	in	R	(R	Core	
Team,	2014)	for	each	dataset	to	estimate	the	variance	components	
for	individuals	nested	within	sampling	locations	(s2

err
),	sampling	loca‐

tions	nested	within	regions	(s2
loc
),	and	regions	(s2

reg
).	The	biogeographic	

regionalization	scheme	that	was	best	aligned	with	the	genetic	struc‐
ture	of	a	species‐locus	combination	will	result	in	the	greatest	amount	
of	variance	in	the	data	explained	by	regions	(s2

reg
)	and	the	least	varia‐

tion	explained	by	samples	nested	within	regions	(s2
loc
)	and	individuals	

nested	within	samples	(s2
err
).	BIC	was	employed	to	select	the	biogeo‐

graphic	regionalization	that	best	explained	the	genetic	structure	for	
each	species‐locus	combination	and	was	calculated	as	follows	(modi‐
fied	from	Jombart,	Devillard,	&	Balloux,	2010):

where n	 is	 the	number	of	samples	nested	within	regions	and	k is 
the	number	of	regions.	BIC	was	then	converted	to	relative	prob‐
ability	following	Johnson	and	Omland	(2004).	The	regionalization	
yielding	the	highest	relative	probability	(lowest	BIC)	was	deemed	
the	best	model.	We	present	results	for	56	species	that	had	suffi‐
cient	sampling	to	test	at	least	five	out	of	the	eight	biogeographic	
hypotheses	 (citations	 to	 original	 datasets	 can	 be	 found	 in	 the	
Appendix).

Our	a priori	model‐selection	framework	is	similar	to	spatial	analysis	
of	molecular	variance	 (SAMOVA;	Dupanloup,	Schneider	&	Excoffier,	
2002)	used	for	detecting	patterns	of	genetic	structure	post hoc, be‐
cause	 it	 employs	 AMOVA	 and	 maximizes	ΦCT.	 However,	 SAMOVA	
cannot	be	used	to	test	which	regionalization	model	best	explains	the	
data.	SAMOVA	alters	the	affiliation	of	samples	to	regions,	given	a	pre‐
determined	number	of	regions.	In	contrast,	our	approach	penalizes	the	
number	of	 regions	by	employing	BIC,	 thereby	allowing	 for	objective	
comparison	among	hypotheses	with	different	numbers	of	regions	in	a	
model selection context.

Cryptic	 species	 are	 often	 discovered	 on	 Indo‐Pacific	 reefs	 (e.g.	
Crandall,	 Frey	 et	 al.,	 2008),	 and	 can	 create	 a	 taxonomic	 bias	 if	 not	
properly	accounted	for	 (Knowlton,	1993).	To	assess	 the	presence	of	
cryptic	species	in	our	dataset	and	their	potential	effect	on	our	results,	
we used the software abgd	(0.001	<	p	<	0.1,	10	steps,	minimum	slope	
increase	=	1.5,	Jukes–Cantor	distances;	Puillandre,	Lambert,	Brouillet,	
&	Achaz,	2012)	to	partition	each	species	into	evolutionarily	significant	
units	(ESUs)	based	on	the	range	of	intraclade	genetic	variation.	Model	
selection	was	performed	on	the	resultant	ESUs,	as	above.

2.4 | Barrier strength analysis

Biogeographic	breaks	arise	for	different	reasons.	While	some	may	
be related to distances between suitable habitat being greater 
than	the	dispersal	capacity	of	an	 individual	species,	others,	such	
as	the	break	at	the	Sunda	Shelf	(hereafter	referred	to	as	the	“Indo‐
Pacific	Barrier”),	 are	 related	 to	 land	 barriers	 created	 by	 lowered	
sea‐level	stands.	To	understand	the	influence	of	specific	biogeo‐
graphic	breaks	on	the	genetic	structuring	of	taxa,	we	further	eval‐
uated	the	boundaries	between	regions	of	the	two	best‐supported	
models	(combining	them	into	a	single	merged	regionalization)	with	
a	 novel	 analysis	 that	 examines	 the	 central	 tendency	 of	 pairwise	
ΦST	values	measured	across	each	boundary.	We	used	the	StrataG R 
package	(Archer,	Adams,	&	Schneiders,	2017)	to	calculate	pairwise	
ΦST	across	each	putative	barrier	for	68	species	for	which	a	pairwise	
comparison	was	possible	(some	species	not	amenable	to	AMOVA	
were	 included	 here;	 Supporting	 Information	 Tables	 S1,	 S2).	 To	

(1)BIC=n ln
(

s2
loc
+s2

err

)

+ k ln (n)
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evaluate significance, we randomly assigned localities for each of 
the	68	species	to	one	of	two	“regions”	and	estimated	pairwise	ΦST 
between	 these	 two	 randomly	 drawn	 regions.	We	 replicated	 this	
procedure	 10	 times	 to	 create	 612	 randomized	ΦST	 values	 (repli‐
cates where all localities were assigned to only one region were 
thrown	out).	We	compared	median	ΦST	 values	 for	 each	putative	
barrier	to	the	randomized	median,	with	95%	confidence	intervals	
for	 the	 medians	 established	 by	 bootstrapping	 10,000	 datasets,	
each	containing	100	random	samples	of	pairwise	ΦST values from 
the original dataset. p‐values	were	calculated	as	the	proportion	of	
bootstrapped	medians	 that	were	 greater	 than	 the	 bootstrapped	
medians	for	the	randomized	datasets.

While	pairwise	ΦST values in marine systems tend to be low, there 
is	no	established	set	of	expectations	for	these	values.	So,	for	com‐
parative	purposes,	we	conducted	a	simulation	of	a	simple	allopatric	
event in fastsimcoal 2.6 (Excoffier	&	Foll,	2011)	that	reflects	our	best	
understanding of isolation due to low sea level stands during the 
Last	Glacial	Maximum	(Crandall,	Frey	et	al.,	2008):	10,000	genera‐
tions	ago	(roughly	10–20	kya	for	a	species	with	a	1–2	year	genera‐
tion	time),	a	single	panmictic	population	with	a	half‐million	effective	
individuals	split	 into	two	populations	of	a	quarter‐million	effective	
individuals	 each,	 which	 experience	 no	 gene	 flow	 between	 them.	
From	 this	 scenario,	 we	 generated	 samples	 from	 each	 of	 the	 two	
populations	of	20	non‐recombining	haploid	DNA	sequences,	1,000	
base	pairs	in	length,	with	a	mutation	rate	of	5	×	10−8	per	base	pair	
per	generation	[i.e.	mitochondrial	DNA	(mtDNA);	Crandall,	Sbrocco,	
DeBoer,	 Barber,	 &	 Carpenter,	 2012].	 This	 scenario	 was	 simulated	
1,000	times,	and	pairwise	ΦST for each iteration was calculated using 
a batch version of arlsumstat	(Excoffier	&	Lischer,	2010).

2.5 | Distance‐based redundancy analysis

To	understand	genetic	diversification	it	is	important	to	disentangle	
differentiation	due	to	distance	versus	environmental	and	geographic	
barriers. To test whether genetic differentiation at regional bounda‐
ries	was	no	more	than	expected	based	on	overwater	distance	among	
sampling	locations	or	was	higher,	possibly	being	indicative	of	other	
evolutionary	processes	such	as	historical	 isolation	at	 low	sea‐level	
stands,	 we	 used	 distance‐based	 redundancy	 analysis	 (dbRDA;	
Legendre	 &	 Anderson,	 1999).	 dbRDA	 is	 a	 multivariate	 regression	
method	that	overcomes	the	issue	of	non‐independence	inherent	in	
Mantel	tests	and	multiple	regression	with	distance	matrices	(Guillot	
&	Rousset,	2013)	through	constrained	ordination	on	non‐Euclidean	
distance	 measures.	 Here,	 the	 distance	 matrix	 (pairwise	 ΦST val‐
ues	between	 sampled	population	pairs)	was	ordinated	via	multidi‐
mensional	 scaling	 [MDS:	capscale	 function	 in	 the	R	package	vegan 
(Oksanen	et	al.,	2017)]	to	yield	population	values	along	orthogonal	
eigenvectors;	these	vectors	form	the	response	variables	in	an	RDA.	
Among	our	predictive	variables,	the	measure	of	overwater	distances	
was also initially formatted as distance matrices; here again we 
used ordination to convert these distance matrices to eigenvectors, 
choosing	 two	 dimensions	 as	 a	 reasonable	 representation	 of	 loca‐
tions	along	the	Earth’s	surface	(employing	MDS,	with	the	cmdscale 

function in vegan).	 To	 predict	 the	 effects	 of	 putative	 barriers	 be‐
tween	biogeographic	 regions,	we	used	 the	merged	 regionalization	
from	 the	 two	 best‐supported	 regionalization	models.	 Each	 region	
was	then	defined	as	a	predictor	of	pairwise	ΦST, with localities within 
each region scored as one, and those outside the region scored as 
zero.	To	investigate	the	effect	of	distance	in	the	context	of	barriers	
we	started	with	a	null	model	of	no	effect	of	distance	or	barriers	(ΦST 
~	1)	and	used	forward	model	selection	to	determine	the	minimal	set	
of	predictive	variables.	We	used	an	adjusted	R2	method	appropriate	
for	permuted	data	(Blanchet,	Legendre,	&	Borcard,	2008)	with	the	
ordiR2step function in vegan. Model significances and significances 
of	the	individual	MDS	terms	were	assessed	using	1,000	ANOVA‐like	
permutations	(anova.cca	function).	We	carried	out	dbRDA	on	52	spe‐
cies	analysed	 in	 the	AMOVA	after	 removing	 four	species	 that	had	
fewer	than	five	sample	locations.

3  | RESULTS

3.1 | The diversity of the Indo‐Pacific database

The	 DIPnet	 database	 represents	 the	 largest	 curated,	 publicly	
available	 collection	 of	 mtDNA	 sequences	 for	 phylogeographic	
comparisons.	 We	 received	 162	 submissions	 of	 sequence	 data,	
which	included	over	35,000	sequences.	After	strict	quality	con‐
trol	and	filtering	(see	Supporting	Information	Text	S1	for	details)	
the	 resulting	 database	 contained	 data	 from	 238	 marine	 spe‐
cies	 (230	 from	 the	 Indo‐Pacific)	 across	 the	 phyla	 Arthropoda,	
Chordata, Cnidaria, Echinodermata and Mollusca based on eight 
mitochondrial	 gene	 regions.	 Data	 were	 sourced	 from	 57	 Indo‐
Pacific	 countries	 and	>1,100	unique	 localities,	 spanning	 the	en‐
tire	 Indo‐Pacific	 from	 the	 Red	 Sea	 to	 Rapa	 Nui	 (Easter	 Island).	
Sampling	 intensity,	 geographic	 coverage	 and	 completeness	 of	
the	metadata	 submissions	were	variable	 (Figure	2),	 and	41	 spe‐
cies	were	 represented	by	more	 than	one	genetic	marker.	 In	 the	
analyses	 presented	 here,	 we	 removed	 one	 of	 these	markers	 to	
avoid	 pseudo‐replication	 (see	 Supporting	 Information	 Text	 S1	
for	 removal	 criteria).	 The	 raw	 sequence	 files	 and	 associated	
metadata	 can	 be	 searched	 and	 downloaded	 from	 the	 Genomic	
Observatories	 Metadatabase	 (GeOMe;	 https://www.geome‐db.
org/;	Deck	et	al.,	2017),	an	open	access	repository	for	geographic	
and	ecological	metadata	associated	with	biosamples	and	genetic	
data. The trimmed and aligned dataset used here is available at 
https://github.com/DIPnet/IPDB.

3.2 | Analysis of molecular variance and pairwise 
comparisons

AMOVA	 results	 showed	mixed	 support	 for	 each	of	 the	hypotheses	
that	we	tested,	with	most	species	supporting	those	with	the	fewest	
biogeographic	regions	(Figures	3	and	4):	Spalding	et	al.’s	(2007)	realms	
(k	=	3,	 supported	 by	 20	 species)	 and	 Briggs	 and	 Bowen’s	 (2012)	
	provinces	 (k	=	5,	 supported	 by	 18	 species).	 These	 two	 hypotheses	
were	followed	by	Kulbicki	et	al.’s	(2013)	realms	(k	=	3,	supported	by	13	
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species)	and	provinces	(k	=	11,	supported	by	12	species).	The	hypoth‐
esis	 that	 received	 the	 least	 support	 was	 Spalding	 et	 al.’s	 (2007)	
	ecoregions	(k	=	77,	supported	by	one	species).	Results	from	AMOVAs	
based on ESUs identified by abgd	showed	an	increase	in	taxa	that	sup‐
ported	 Briggs	 and	 Bowen	 (2012),	 indicating	 that	 Indian	 and	 Pacific	
Ocean	populations	of	some	taxa	were	diagnosed	as	cryptic	species	by	
this	algorithm	(Supporting	Information	Text	S2).	Results	were	not	ap‐
preciably	different	when	using	FST instead of ΦST, nor when using ef‐

fect	 size	 (s2
reg
),ΦCT=

s2
reg

s2
tot

,	 or	 the	 Akaike	 information	 criterion	 as	 the	

criterion	for	model	selection	instead	of	the	BIC	(Supporting	Information	
Text	S2).

3.3 | Barrier strength analysis

Results	of	this	analysis	are	summarized	in	Figure	5.	When	each	data‐
set	was	randomly	split	into	two	sets	of	localities,	ΦST ranged between 
0	and	0.92,	with	median	pairwise	ΦST	being	0.003	[95%	confidence	

interval	(CI)	0.0003–0.008,	38%	of	values	were	zero].	Median	pair‐
wise ΦST	between	the	Western	Indian	Ocean	Province	proposed	by	
Briggs	and	Bowen	(2012)	and	the	Western	Indo‐Pacific	Realm	pro‐
posed	by	Spalding	et	al.	 (2007)	was	0.018	(Figure	5;	bootstrapped	
95%	CI	0.000–0.079,	35%	zeros),	which	was	not	significantly	greater	
than	the	median	of	the	randomized	dataset	(p	=	0.12).	Median	pair‐
wise ΦST	=	0.021	between	the	Western	Indo‐Pacific	and	the	Central	
Indo‐Pacific	Realms	of	Spalding	et	al.	(the	Indo‐Pacific	Barrier;	boot‐
strapped	95%	CI	0.003–0.037,	24%	zeros)	was	significantly	greater	
than	the	median	of	the	randomized	dataset	(p	=	0.025).	A	similar	pat‐
tern	was	observed	between	the	Central	Indo‐Pacific	and	the	Eastern	
Indo‐Pacific	 (median	 pairwise	ΦST	 =	 0.015,	 95%	 CI	 0.005–0.022,	
22%	zeros,	significant	at	p	=	0.01).	Barriers	delimiting	peripheral	ar‐
chipelagos	had	higher	median	ΦST and higher variance. The bound‐
ary	between	the	Eastern	Indo‐Pacific	and	the	Hawaiian	Province	of	
Briggs	and	Bowen	(2012)	had	a	median	pairwise	ΦST	of	0.051	(95%	
CI	0.002–0.096,	32%	zeros,	 significant	 at	p	=	0.046),	while	 a	 simi‐
lar	comparison	with	the	Marquesan	Province	had	a	median	pairwise	

F I G U R E  2  Density	maps	showing	the	distribution	of	species	and	sequences	in	the	DIPnet	database.	The	total	number	of	species	(a)	and	
total	number	of	sequences	(b)	within	a	250‐km	radius	moving	window	are	shown	with	a	linear	colour	ramp.	Sample	points	are	shown	as	black	
points.	Hotspots	are	saturated	at	a	maximum	value	of	30	species	(a)	and	1,000	sequences	(b),	although	higher	values	exist.	For	reference,	
Hawai’i	contains	52	species	and	2,300	sequences,	a	region	south	of	Sulawesi	has	32	species	and	1,000	sequences,	and	Fiji	contains	18	
species	and	300	sequences.	The	scope	of	the	whole	database	is	shown,	but	analyses	were	limited	to	the	Indo‐Pacific	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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ΦST	 of	 0.028	 (95%	 CI	 0.000–0.076,	 45%	 zeros,	 not	 significant	 at	
p	=	0.28).	The	simple	simulation	of	allopatric	divergence	yielded	ΦST 
values	 ranging	 from	0–0.42	with	 a	median	pairwise	ΦST of 0.023, 
(95%	CI	0.01–0.034,	33%	zeros,	 significantly	greater	 than	 the	me‐
dian	 of	 the	 randomized	 dataset	 at	 p	=	0.003).	 Pairwise	 values	 for	
both ΦST and FST	 are	 available	 in	 Supporting	 Information	 Tables	
S2	and	S3,	and	violin	plots	of	the	full	distribution	of	values	may	be	
found	in	Supporting	Information	Figure	S1.

3.4 | Distance‐based redundancy analysis

In	the	dbRDA	analysis,	21	out	of	52	species	(four	species	had	less	than	
five	sampling	sites	and	were	removed)	rejected	the	null	model	of	no	
spatial	differentiation	(Figure	6).	Six	had	significant	variance	explained	
only	by	regional	structure,	10	had	significant	variance	explained	only	
by	overwater	distance	(mostly	in	the	zonal,	or	east–west	dimension),	
and	 five	 species	had	 significant	variance	explained	by	both	 regional	
structure	 and	 overwater	 distance.	 The	 percentage	 of	 inertia	 con‐
strained	(similar	to	variance	explained)	in	each	model	tested	was	gen‐
erally	less	than	25%.	Plots	of	ΦST	versus	distance	for	all	species	can	be	
found	in	Supporting	Information	Figure	S2.

4  | DISCUSSION

Here	we	conduct	comparative	phylogeographic	analysis	of	over	50	
taxonomically	 and	 ecologically	 diverse	 marine	 species	 distributed	
across	 the	 Indo‐Pacific.	 Novel	 methodology	 in	 a	 model	 selection	
framework	returned	a	diversity	of	results,	as	expected	when	com‐
paring	lineages	separated	by	over	half	a	billion	years	of	evolution,	but	
favoured	regionalization	models	with	fewer	regions.	Approximately	
60%	 of	 the	 species	 examined	 supported	 biogeographic	 partitions	
based	 on	 five	 or	 fewer	 regions	 (Figure	 4:	 Spalding	 et	 al.’s	 Realms,	
Briggs	&	Bowen’s	Provinces	and	Kulbicki	 et	 al.’s	Regions).	This	 re‐
sult, which is not a statistical artefact as indicated by analyses of 
multiple	alternative	criteria	in	Supporting	Information	Text	S2,	sug‐
gests	that	on	the	scale	of	the	entire	Indo‐Pacific	Ocean,	there	is	only	
a	 loose	 relationship	 between	 species	 distributions	 and	 population	
genetic structure, although there can be more concordance at finer 
geographic	scales	(see	DeBoer	et	al.,	2014).	Kelly	and	Palumbi	(2010)	
report	similar	discordance	between	biogeography	and	phylogeogra‐
phy	at	broad	spatial	scales	along	the	west	coast	of	North	America.

Comparative	 phylogeographic	 analyses	 provided	 broad	 sup‐
port	 for	 two	 barriers	 to	 gene	 flow	 that	 are	well	 characterized	 in	 

F I G U R E  3  Heatmap	of	relative	probability	scores	based	on	analysis	of	molecular	variance	(AMOVA)	Bayesian	information	criterion	(BIC)	
estimates	for	each	of	the	eight	regionalization	hypotheses.	Grey	shading	indicates	hypotheses	that	were	not	testable	based	on	available	
samples	for	a	particular	species	and	“k”	indicates	the	number	of	proposed	Indo‐Pacific	biogeographic	regions.	Hypotheses	are	arranged	in	
order of increasing number of regions. Locus abbreviations: CO1 = cytochrome oxidase subunit 1; CR = control region; CYB = cytochrome B; 
ND1	=	Nicotinamide	adenine	dinucleotide	(NADH):	ubiquinone	oxidoreductase	subunit	1;	A68	=	ATPase	6	and	8	region	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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the	literature	(Figure	5).	These	barriers	are	the	relative	isolation	of	
the	Hawaiian	Aarchipelago	(Bowen	et	al.,	2016)	and	the	intermittent	
Indo‐Pacific	Barrier	(Benzie,	1999;	Cannon,	Morley,	&	Bush,	2009;	
Ludt	&	Rocha,	 2014),	which	 is	 located	 along	 the	western	edge	of	 
the	Sunda	Shelf	and	has	strengthened	during	low	sea‐level	stands.	
There	is	also	support	for	a	less	appreciated	barrier	between	the	con‐
tinental	and	uplifted	islands	of	the	Central	Indo‐Pacific	and	the	vol‐
canic	island	arcs	of	the	Eastern	Indo‐Pacific	(Vermeij,	1987).	These	
three	 areas	 of	 concordant	 differentiation	 indicate	 the	 presence	
of	 broadly	 acting,	 pronounced	 filters	 to	 dispersal	 and	 gene	 flow	
(Avise,	2000)	that	likely	contribute	to	diversification	of	Indo‐Pacific	
marine fauna.

Despite	 the	clear	presence	of	 filters	 in	 the	 Indo‐Pacific	 region,	
the	distribution	of	pairwise	ΦST	 (Figure	5)	with	 respect	 to	each	of	
these	barriers	was	relatively	low	(in	comparison	to	values	obtained	
for	 terrestrial	 species;	Medina,	 Cooke,	 &	 Ord,	 2018)	 as	 expected	
from	a	fluid	environment	with	high	potential	for	significant	dispersal	
(Riginos,	Crandall,	Liggins,	Bongaerts,	&	Treml,	2016).	Median	values	
ranged	between	0.018	and	0.051	and	many	species	registered	little	
or	no	genetic	turnover	across	each	barrier	(22%	to	45%	with	ΦST = 
0).	However,	three	of	these	median	values	were	significantly	greater	
than	what	would	be	found	if	populations	were	randomly	distributed.	
Typically,	 such	 limited	 genetic	 structure	might	 be	 overlooked	 in	 a	

single‐species	study.	However,	 the	comparative	approach	 taken	 in	
this	study	allowed	emergent	patterns	to	materialize,	highlighting	the	
value	 of	 large	 comparative	 datasets,	 particularly	 in	 high	 dispersal,	
high	gene	flow	systems	[see	Paulay	and	Meyer	(2002)	for	counterex‐
amples	from	marine	species	with	low	dispersal	capability].

4.1 | Origins of discordance between 
biogeography and phylogeography

Although	there	was	modest	concordance	between	phylogeographic	
patterns	and	regionalization	models	with	the	fewest	partitions,	there	
was	substantial	discordance	among	species.	The	biogeographic	clas‐
sifications	comprising	fewer	regions	seem	to	reflect	the	influence	of	
broad‐scale	physical	processes	that	have	separated	geographic	re‐
gions	over	time.	In	contrast,	regionalizations	with	higher	numbers	of	
regions	may	reflect	local‐scale	environmental	differences	that	may	
have	only	manifested	over	recent	time‐scales	or	else	have	affected	
species	differently.	Our	results	indicate	that,	at	least	for	putatively	
neutral	loci	at	a	local	scale,	these	contemporary	environmental	dif‐
ferences	may	 not	 contribute	much	 to	 genetic	 structuring	 in	 Indo‐
Pacific	species	 (Benzie,	1999;	Horne,	2014b,	although	see	DeBoer	
et	al.,	2014),	a	pattern	consistent	with	data	at	the	genomic	scale	as	
well	(Gaither	et	al.,	2015).

F I G U R E  4  Proportional	support	by	species	for	each	regionalization	hypothesis,	with	“k”	indicating	the	number	of	proposed	Indo‐Pacific	
biogeographic	regions.	Colours	depict	the	taxonomic	distribution	for	each	hypothesis—phyla	for	invertebrates	and	families	for	chordates.	
Hypotheses	are	arranged	in	order	of	increasing	number	of	regions	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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Another	explanation	for	the	differences	among	Indo‐Pacific	spe‐
cies	in	the	degree	of	genetic	structure	and	best‐supported	regional‐
ization	could	reflect	the	dynamic	nature	and	geographic	variability	
of	evolutionary	and	ecological	processes,	including	rates	of	species	
origin,	survival	and	export	(Cowman	&	Bellwood,	2013).	For	exam‐
ple,	 the	 shallow	 shelves	 of	 the	 Indo‐Malay‐Philippine	 Archipelago	
that	 Spalding	 (2007)	 breaks	 into	more	 than	20	ecoregions	 experi‐
enced	pronounced	changes	in	sea	level	(Voris,	2000).	These	cycles	
of	 exposure	 and	 flooding	 tend	 to	 homogenize	 the	 distribution	 of	
genetic	 variation	 on	 continental	 shelves	 (Benzie,	 1999;	 Crandall,	

Sbrocco	 et	 al.,	 2012)	 and	 could	 also	 modify	 species	 distributions	
or	drive	local	extinctions	that	impact	biogeographic	regionalization	
models.	Combined,	these	processes	could	result	in	a	decoupling	be‐
tween	contemporary	environments	and	species	distributions	used	
in	 biogeographic	 models	 and	 non‐equilibrium	 patterns	 of	 genetic	
variation.

Another	 potential	 source	 of	 discordance	 are	 sampling	 biases.	
There	 is	 a	 clear	 lack	of	 co‐sampling	among	 the	disparate	 research	
groups	that	contributed	data.	Figure	2	shows	clear	hotspots	in	inves‐
tigator	effort,	a	pattern	previously	highlighted	by	Keyse	et	al.	(2014).	

F I G U R E  5  Median	and	95%	bootstrapped	confidence	intervals	for	pairwise	ΦST calculated between each of six regions of the merged 
regionalization.	Also	depicted	are	the	same	values	for	1,000	datasets	simulated	under	a	scenario	of	allopatric	divergence	starting	10,000	
generations	ago,	as	well	as	a	randomized	dataset	in	which	population	samples	were	randomly	allocated	to	one	of	two	regions.	Each	putative	
barrier	between	regions	is	drawn	as	a	black	line	on	the	map,	with	solid	lines	depicting	barriers	with	median	ΦST that is significantly greater 
than	random	expectation

n n n n n n n1,000
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As noted above, average genetic structure was relatively low, requir‐
ing	comparison	of	large	numbers	of	taxa	to	elucidate	regional	con‐
cordance.	Given	variation	in	sampling	effort	across	the	Indo‐Pacific	
region,	it	is	possible	that	increased	sampling	(and	increased	sample	
sizes)	 could	 result	 in	more	 support	 for	more	highly	 subdivided	 re‐
gionalizations.	Similarly,	there	is	a	sampling	bias	in	Indo‐Pacific	phy‐
logeography	 toward	 widely	 distributed	 taxa	 with	 planktotrophic	
larvae, and our analysis strengthened that bias by tending to select 
well‐sampled	species	with	large	ranges.	More	geographically	distrib‐
uted	data	are	needed	from	species	with	limited	dispersal	capability	
(e.g.	Meyer,	Geller,	&	Paulay,	2005).

Rather	than	being	a	sampling	artefact,	simulated	allopatric	diver‐
gence	scenarios	over	10,000	generations	(Figure	5)	suggest	that	the	

absence	 of	 stronger	 concordance	 between	 biogeographic	 regional‐
izations	 and	 phylogeographic	 patterns	may	 simply	 be	 a	 function	 of	
genetic drift. These simulations yielded ΦST distributions similar to 
empirical	data	observed	across	each	putative	barrier,	 including	33%	
of the iterations measuring ΦST = 0. This result suggests that, given 
realistic	coalescent	effective	sizes	for	Indo‐Pacific	species	of	100,000	
individuals	or	more	(Crandall,	Frey	et	al.,	2008;	Crandall,	Jones	et	al.,	
2008),	genetic	drift	is	often	too	weak	to	establish	much	genetic	struc‐
ture	over	the	time‐scales	of	historical	environmental	fluctuations	that	
are	 several	 orders	 of	magnitude	 smaller	 than	 the	 effective	 sizes	 of	
Indo‐Pacific	species	(Pillans,	Chappell,	&	Naish,	1998).

When	genetic	drift	does	establish	genetic	 structure,	 there	can	
be enormous variance in magnitude. The simulated values of ΦST 

F I G U R E  6  Proportion	of	constrained	inertia	in	ordinated	pairwise	ΦST	values	that	can	be	attributed	to	either	overwater	distance	(zonal	or	
meridional	components)	or	to	putative	barriers	to	gene	flow	hypothesized	by	the	merged	regionalization.	Results	are	only	shown	for	species	
that	rejected	the	null	model	of	no	relationship	between	ΦST	and	distance	and	barriers.	Silhouettes	of	taxa	were	traces	by	P.	F.	Cowman	from	
photos	found	on	reeflifesurvey.com,	sealifebase.org	and	fishesofaustralia.com.au	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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ranged	from	0	to	0.42,	providing	further	insight	into	the	overall	lack	
of	concordance	in	our	AMOVA	results.	For	populations	of	any	given	
Indo‐Pacific	species	that	have	been	allopatrically	isolated	for	10,000	
generations, ΦST	can	range	between	0	and	almost	0.5,	with	a	high	
probability	that	it	will	be	0.	Marine	genetic	structure	is	blurred	by	the	
stochasticity	of	genetic	drift	(Hellberg,	2009).	These	results	highlight	
the	challenge	of	identifying	biogeographic	processes	and	patterns	in	
marine	systems	using	single‐species	studies,	and	the	power	of	large‐
scale	comparative	phylogeographic	meta‐analyses.

4.2 | Distance or barriers?

Our	results	from	dbRDA	demonstrate	that,	while	there	is	much	stochas‐
ticity	in	pairwise	ΦST	values,	distance	is	the	most	important	predictor	of	
genetic	differentiation	at	the	scale	of	the	Indo‐Pacific	based	on	the	vari‐
ables	that	we	included	in	our	models.	Overall,	only	40%	of	species	that	
we tested rejected the null model of no effect of distance or barriers, and 
only	29%	included	distance	 in	the	best	dbRDA	model.	This	may	seem	
low,	given	that	species	dispersal	via	pelagic	larvae	should	be	expected	to	
conform	to	a	model	of	isolation‐by‐distance	(IBD),	but	it	is	comparable	
to	the	proportion	of	species	demonstrating	IBD	across	all	marine	spe‐
cies	(c. 33%;	Selkoe	&	Toonen,	2011;	Selkoe	et	al.,	2016).	It	may	be	that	
mtDNA	is	not	well	suited	to	detection	of	IBD	due	to	rampant	selection	
along	its	non‐recombining	length	(Teske	et	al.,	2018),	or	the	relationship	
may	simply	be	obscured	by	genetic	drift	as	discussed	above.

While	dbRDA	is	able	to	deal	with	non‐independence	in	genetic	
and	geographic	distances,	it	appears	to	sacrifice	some	power	to	do	
so,	as	there	were	several	species	that	displayed	trends	in	ΦST versus 
overwater	distance	but	did	not	reject	the	null	model	(see	Supporting	
Information	Figure	S2).	While	distance	was	the	most	important	vari‐
able,	there	were	still	21%	of	species	for	which	the	merged	amalgama‐
tion	of	the	Briggs	&	Bowen	and	Spalding	regionalizations	constrained	
some	proportion	of	model	inertia.	This	indicates	that	physical	barri‐
ers	(such	as	the	Sunda	Shelf)	or	environmental	barriers/filters,	while	
potentially	important	locally,	may	play	a	more	limited	role	in	genetic	
differentiation	across	the	broader	Indo‐Pacific.

4.3 | Conclusions

In	 conclusion,	 our	 large‐scale	 phylogeographic	 survey	 of	 the	 Indo‐
Pacific	 yields	 inconsistent	 support	 for	 various	 biogeographic	 hy‐
potheses,	 with	 most	 species	 supporting	 relatively	 coarse‐grain	
biogeographic	divisions.	A	simple	interpretation	of	this	result	would	be	
that	 the	 Indo‐Pacific	 is	well	connected	by	propagule‐mediated	gene	
flow	 (Mora	et	 al.,	 2012).	However,	our	 simulation	 results	 show	 that	
F‐statistics	are	often	an	unreliable	 indicator	of	divergence	processes	
when	the	effective	size	of	a	species	significantly	surpasses	the	time‐
scale	of	divergence.	In	other	words,	most	species	in	the	Indo‐Pacific	
are	likely	out	of	equilibrium	with	respect	to	gene	flow	and	genetic	drift	
(Hellberg,	2009),	with	the	broad	similarities	in	allele	frequencies	across	
the	 region	 likely	 reflecting	historical	processes	 including	extinction–
recolonization	dynamics	(Horne,	2014b),	or	ongoing	gene	flow	that	is	
evolutionarily	significant	but	not	ecologically	relevant	(Crandall,	Treml,	

&	Barber,	2012;	Crandall,	Toonen,	ToBo	Laboratory,	&	Selkoe,	2019;	
Matias	&	Riginos,	2018).	Hence,	there	may	be	more	isolation	among	
Indo‐Pacific	reefs	than	is	indicated	in	our	results.

Despite	leveraging	the	largest	phylogeographic	dataset	to	date,	our	
analysis	was	somewhat	hampered	by	a	lack	of	taxonomic	coordination	
and	overlap	among	sample	locations	(Keyse	et	al.,	2014).	Future	studies	
in	the	region	would	profit	from	a	coordinated	sampling	strategy,	wherein	
principal	 investigators	agree	to	co‐sample	a	fixed	set	of	taxa	through‐
out	the	Indo‐Pacific,	including	the	collection	of	extensive	georeferenced	
metadata	to	accompany	each	sample.	Future	seascape	genetic	studies	in	
the	Indo‐Pacific	will	also	benefit	from	the	addition	of	thousands	of	loci	
generated	by	massively	parallel	methods	 (Gaither	et	al.,	2015;	Saenz‐
Agudelo	et	al.,	2015),	which	can	be	used	with	analyses	based	on	coales‐
cent	simulations	and	linkage	equilibrium	in	addition	to	allele	frequencies	
to	 resolve	 genetic	 structure	 over	much	 shorter	 time‐scales	 (Crandall	 
et	al.,	2019;	Crandall,	Treml	et	al.,	2012;	Matias	&	Riginos,	2018).

The	current	dataset	forms	the	core	of	the	Genomic	Observatories	
Metadatabase	 (GeOMe;	 Deck	 et	 al.,	 2017),	 which	 facilitates	 coor‐
dinated	 sampling	 strategies	 and	 metadata	 collection	 and	 curation.	
GeOMe	creates	a	permanent	 link	between	occurrence	metadata	and	
genetic	sequences	(both	FASTA	and	FASTQ	formats)	submitted	to	the	
International	Nucleotide	Sequence	Database	Collaboration	(i.e.	National	
Center	 for	 Biotechnology	 Information,	 NCBI;	 European	 Molecular	
Biology	Laboratory,	EMBL;	DNA	Data	Bank	of	Japan,	DDBJ).	GeOMe	is	
a searchable database thereby allowing researchers to determine sam‐
ple	coverage	in	terms	of	both	taxonomy	and	geography.	We	also	make	
available	 our	 analysis	 pipeline	 (https://github.com/DIPnet/popgenDB)	
in	support	of	multispecies	comparative	phylogeography	initiatives.
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Figure 3.
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Nerita albicilla—blotched	nerite
Crandall,	 E.	 D.,	 Frey,	 M.	 A.,	 Grosberg,	 R.	 K.,	 &	 Barber,	 P.	 H.	 (2008).	

Contrasting	 demographic	 history	 and	 phylogeographical	 patterns	
in	two	Indo‐Pacific	gastropods.	Molecular	Ecology,	17(2),	611–626.	
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Crandall,	 E.	 D.,	 Frey,	 M.	 A.,	 Grosberg,	 R.	 K.,	 &	 Barber,	 P.	 H.	 (2008).	
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in	two	Indo‐Pacific	gastropods.	Molecular	Ecology,	17(2),	611–626.	
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Crandall,	 E.	 D.,	 Jones,	 M.	 E.,	 Muñoz,	 M.	 M.,	 Akinronbi,	 B.,	 Erdmann,	

M.	 V.,	 &	 Barber,	 P.	 H.	 (2008).	 Comparative	 phylogeogra‐
phy	 of	 two	 seastars	 and	 their	 ectosymbionts	 within	 the	 Coral	
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Cheng,	S.	H.,	Anderson,	F.	E.,	Bergman,	A.,	Mahardika,	G.	N.,	Muchlisin,	Z.	

A.,	Dang,	B.	T.,	…	Barber,	P.	H.	(2014).	Molecular	evidence	for	co‐oc‐
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complex	in	the	Indian	and	Indo‐West	Pacific	Oceans.	Hydrobiologia,	
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Periclimenes soror—commensal	shrimp
Crandall,	 E.	 D.,	 Jones,	 M.	 E.,	 Muñoz,	 M.	 M.,	 Akinronbi,	 B.,	 Erdmann,	

M.	 V.,	 &	 Barber,	 P.	 H.	 (2008).	 Comparative	 phylogeogra‐
phy	 of	 two	 seastars	 and	 their	 ectosymbionts	 within	 the	 Coral	
Triangle.	 Molecular	 Ecology,	 17(24),	 5276–5290.	 https://doi.
org/10.1111/j.1365‐294X.2008.03995.x

Panulirus penicillatus—pronghorn	spiny	lobster
Iacchei,	M.,	Gaither,	M.	R.,	Bowen,	B.	W.,	&	Toonen,	R.	J.	(2016).	Testing	
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Stenopus hispidus—banded	coral	shrimp
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