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ABSTRACT Online social networks have become extremely important in daily life and can be used to
influence lives in dramatic ways. Two issues are the veracity and provenance of posted information, including
rumors. There is a need for methods for tracing rumors (or any piece of information) to their most likely
source in such networks. We consider the detection problem of single rumor source based on observed
snapshots based on the susceptible-exposed-infected-recovered (SEIR)model. According to the SEIRmodel,
all nodes in the network are formulated into four possible states: susceptible (S), exposed (E), infected (I),
and recovered (R). Given an observed snapshot in the network, from which we can know the relevant graph
topology and all infected nodes, but where nodes in susceptible, exposed, or recovered status cannot be
distinguished, the purpose of our research is to identify the rumor source based on the observed snapshot and
graph topology.We propose the concept of the optimal infection process and derive an estimator for the rumor
source based on this optimal infection process. Subsequently, we prove that this estimator matches the rumor
sourcewith a high probability. The effectiveness of the proposed scheme is validated using experiments based
on regular tree networks with different degrees. We further evaluate the performance of our scheme on two
well-known synthetic complex networks and four real-world networks; the results suggest that our proposed
scheme outperforms the traditional rumor centrality heuristics. The performance analysis on computational
complexity demonstrates that our scheme has advantages in efficiency compared with other rumor centrality
heuristics used in rumor detection methods.

INDEX TERMS Rumor source detection, optimal infection process, susceptible-exposed-infected-recovered
(SEIR) model, information security.

I. INTRODUCTION
The online network has facilitated our daily life but it
also makes people vulnerable to risks [1], [2]. For instance,
rumors can propagate rapidly across networks due to
increases in network connectivity. These misleading infor-
mation would undermine the stability of networks and even
lead to pernicious influence on socity [3]. The intrinsic rea-
son is the fact that anyone can release (false) information.
Therefore, identifying the source is significant to possibly
reduce the damage caused by the rumor [4]. Conventional
techniques, such as stepping-stone detection [5] and IP trace-
back [6], are not efficient to find the actual rumor source since
the source of these received packets is one of the propagation
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participants, not the origin of the rumor [7]. In addition, net-
work topological structure and node properties should affect
the propagation of rumors [8]–[11]. Therefore, it is necessary
to find more practical means to detect information sources
from the logical structure of the network.

In this paper, we use the susceptible-exposed-infected-
recovered (SEIR) model to simulate the state transition of
all nodes in networks. Then we show how to locate the
actual rumor source and ultimately achieve the purpose of
controlling the risks based on a known network snapshot and
the graph topology observed at a certain moment.

A. RELATED WORK
In recent years, a series of epidemic model based meth-
ods to detect propagation sources have been proposed by
researchers [12]. For example, traditional susceptible-infected
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(SI) model is usually used to study the spread of information
in a tree-like network with complete observations [13]–[15].
In these papers, nodes in networks were modeled in two
possible states: susceptible state and infected state. Rumor
centrality was proposed by Shah and Zaman [14] to identify
the rumor source in these references. Shah et al. claimed that
the node with maximum closeness centrality is the rumor
source. Subsequently, some other epidemic models have been
adopted to solve the problem of source detection, such as
the susceptible-infected-recovery (SIR) model [16], [17] and
the susceptible-infected-susceptible (SIS) model [18], [19],
in which infected nodes may recover and will no longer be
infected, or susceptible. Chen et al. [20] and Luo and Tay [21]
extended the method of the rumor centrality heuristic from
a single source problem to a multiple source problem.
Wang et al. [22] extended the method of rumor centrality
heuristic from complete observation to multiple observation
through a breadth-first-search (BFS) technique on a tree-like
topology. However, simulations of the previous work show
that the rumor centrality heuristic has a low detection rate for
identifying the rumor source [23].

Then, many methods for identifying the rumor source have
been proposed for tree-like networks with partial observation.
A sample path based estimator was proposed to estimate the
rumor source by Zhu and Ying [17] and Luo and Tay [18].
They claimed that the optimal sample path has the highest
probability of leading to the observed infection topology and
the root of the optimal sample path, that is, the Jordan Center
is the rumor source. Subsequently, Chen et al. [24] extended
the rumor source detection from a single source to multiple
sources through the Jordan Center technique. In addition,
other observation methods such as sensor observation were
proposed by Pinto et al. [25]. They proposed the central limit
theorem on differences of infection times of sensors. Mean-
while, some researchers extended simulation experiments
from tree-like networks to general networks. With respect
to network partial observation, the Bayesian belief modeling
was proposed by Altarelli et al. [26] to identify rumor source
in general networks. As to sensors observation, Agaskar and
Lu [27] leverage the Monte Carlo algorithm to detect rumor
source in general networks.

In fact, the above work were based on a model with three
states. The models with three states proposed previously are
too simple to fully simulate the state change of nodes in the
network. For example, a computer carrying a virus may be
infected by this virus, or may be recovered due to the different
anti-virus software installed. In another example, the users on
the microblog after receiving a confusing message may hes-
itate to believe this message, and then forward this message
to their friends or delete this message. Therefore, researchers
believed that the node that received a rumor might believe
this rumor and forward it, or it may not believe this rumor
and drop it. In order to solve the problem of detecting
the rumor source in such scenarios, an intermediate state
between susceptible and infected is considered: exposed state
[28]–[30]. A rumor model with the exposed state was

discussed by Xia et al. [31] and used to simulate rumor
propagation in complex social networks. However, the fact
that the exposed nodes can change to the recovered nodes
with a certain probability was not considered by the authors.
Dong et al. [32] and Ran and Ling-Ling [33] adopted SEIR
model to consider rumor spreading in online social net-
works. Liu and Sun [34] used SEIR to investigate the influ-
ence of heterogeneity of the underlying complex networks
and control mechanisms on rumor propagation. However,
the accuracy rates of the SEIR propagation model in the
literature [31]–[34] used to identify rumor sources are not
desirable. Motivated by [31]–[34], we extend SEIR propa-
gation model to investigate the rumor detection problem in
networks.

B. OUR CONTRIBUTIONS
• In this paper, we extend the well-known susceptible-
exposed-infected-recovery (SEIR) model to study the
detection problem of single rumor source according to
an observed snapshot. Traditional SEIR model applied
in the works [31]–[34] cannot accurately detect the
rumor propagation in real networks, because the authors
in [31]–[34] supposed that each infected node propa-
gated the rumor to only one neighbor whose state is
susceptible (S) at each time slot. If the chosen neighbor
is infected (I) or recovered (R), the infected node that
originally propagated the rumor would turn to the recov-
ered state with probability 1. In addition, the authors
assumed that the infected nodes are still likely to become
the hesitant state (the E-state) and believe the same
rumor again in the previous SEIR model hypothesis.
Obviously, it is slightly inconsistent with the rumor
propagation in the scenarios stated above. Therefore,
in our approach, instead of assuming the rumor can be
transmitted to only one neighbor, we consider the fact
that each infected node can infect all S-state neighbors
at a rate in each time slot.Meanwhile, nodes are assumed
not to be infected again by the same rumor, i.e., the
state transition I→E→I is not considered. An example
as shown in Fig. 1 is given to intuitively illustrate the
rumor propagation process based on the SEIR model in
networks.

• We propose the concept of optimal infection process for
identifying the actual rumor source, which represents a
possible infection process with the maximum probabil-
ity of generating the final observed graph topology, and
the source of this optimal infection process is called the
estimator of the rumor source. Subsequently, we show
that this estimator of rumor source is equal to the Jor-
dan infection center, which indicates that a node has
the smallest infection eccentricity, where the infection
eccentricity of a node is defined to be the maximum
distance from the node to the infected nodes. Therefore,
the problem of identifying the rumor source can be sim-
plified to the problem of calculating the Jordan infection
center in the final observed graph topology.
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FIGURE 1. An example of infection process for the SEIR model. Suppose node 0 is the rumor source and the arrows indicate the direction of rumor
propagation. At time t = 1, nodes 2 and 3 change to E-state after receiving the rumor from the node 0, but the node 1 maintains S-state at a given rate.
At time t = 2, after believing this rumor, the node 2 and 3 change to I-state and forward the rumor to state S neighbors, respectively. At time t = 3, The
neighbor node 7 changes to the state E after receiving the rumor from node 2. However, node 6 maintains the state S. Similarly, nodes 1, 8 and 9 change
to state E after receiving the rumor from I-state neighbors.

• We evaluate the time complexity of our proposed
scheme. According to the comparison between our
proposed scheme and the traditional algorithm of
rumor centrality heuristics used to identify the rumor
source, our proposed scheme has the advantage of
lower computational complexity. In addition, we eval-
uate the performance of our scheme based on regu-
lar tree networks with different degrees. Furthermore,
we conduct extensive simulation experiments via vari-
ous networks, including synthetic complex networks and
real-world networks. The simulation results suggest that
our scheme is more efficient to identify the rumor source
than the traditional closeness centrality heuristic and
betweenness centrality heuristic. The average detection
rate of our scheme is about 55% under regular tree
networks, which is superior to other centrality heuristics
based methods (about 30%). In addition, our scheme
outperforms other centrality heuristics in terms of the
error distances in estimation under general networks as
well.

C. ORGANIZATION
The rest of the paper is organized as follows. In Sect. II,
the concept of the SEIR propagation model and the possible
infection process are presented. In Sect. III, we describe in
detail the optimal infection process for rumor propagation
and derive an estimator for rumor source based on this opti-
mal infection process. Then we demonstrate that this estima-
tor of rumor source is equal to the Jordan infection center
through detailed proofs. Subsequently, Sect. IV analyzes the
time complexity of our scheme, and compares it with the
traditional algorithm of rumor centrality heuristics used in
rumor source detection. The effectiveness of the proposed
scheme is evaluated using experiments based on various net-
works in Sect. V. Finally, we discuss the directions for future
work in Sect. VI and conclude our paper in Sect. VII. In addi-
tion, the Appendix shows detailed proofs of our scheme.

II. PROBLEM FORMULATION
A. RUMOR PROPAGATION MODEL
In this section, wemodel the nodes and the edges in a network
as an undirected graph G = {V ,E}. Here, V is defined as a
countably infinite set of nodes, E is defined as a set of edges
for (u, v) ∈ E , u, v ∈ V . Under the SEIR rumor propagation
model, a node in the network can be in any one of the
four possible states: susceptible state (S), exposed state (E),
infected state (I), recovered state (R). Under the discrete time
slot propagation model, we assume that all nodes may change
their own states at each discrete time slot based on their own
states at the previous time slot [40].

At time slot t = 0, we suppose all nodes are in S-state
but only one node s∗ is in I-state, which we call this node
as the rumor source. At the beginning of each time-slot,
all I-state nodes would transmit the rumor to their S-state
neighbors and those S-state nodes who have received the
rumor would change to E-state with probability p1. If some
E-state nodes believe in this rumor message, then they should
forward it to their neighbors with probability p2, and thus
change to the state I. However, after receiving this message,
some E-state nodes may not believe this rumor message
and drop it with probability r2, then we consider them in
R-state. If E-state nodes neither forward it nor drop it after
receiving the rumor, this means these E-state nodes maintain
their state stably with probability 1 − p2 − r2. In addition,
based on the previous state, the I-state nodes can recover
and change to the state R with probability r1 and R-state
nodes would not be infected again (R-state nodes will no
longer receive this rumor message). In addition, in reality, if a
node is infected, the probability of recovery is smaller than
the probability that a node receives this rumor but drops it,
i.e., r1 < r2. Note that S-state nodes become E-state nodes
depending on I-state neighbors, and the state transition of
E→I, E→R and I→R only depend on their own previous
states.

The state transition diagram is shown in Fig.2.
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FIGURE 2. The state transition of SEIR model. S-state nodes who have
received the rumor would change to the state E with probability p1.
If believing and forwarding this rumor to S-state neighbors with
probability p2, then E-state nodes would change to state I. However,
if E-state nodes do not believe and drop it with probability r2, then we
consider them changing to state R. If E-state nodes neither forward it nor
drop it after receiving this rumor, this means these E-state nodes
maintain their state stably with probability 1− p2 − r2. In addition,
the I-state nodes can recover and change to the state R with probability
r1 and R-state nodes would not be infected again.

B. THE POSSIBLE INFECTION PROCESS
1) THE SETTING OF THE OBSERVED GRAPH TOPOLOGY
Weuse the θv to indicate the state of the node v in the observed
snapshot G at the observed time-slot. Note that this observed
time-slot is an unknown value, and we refer to this value to
help study the infection process of each node.

θv =

{
1, v is in state I
0, v is in state S, E, or, R

Here, the reason why θv = 0 when v is in the state S, E,
or, R is that we can only know all infected nodes, and cannot
distinguish other states in the actual observed graph topology.

In addition, we define

2 = {θv|θs∗ , θv1 , θv2 , . . . , θvi , vi ∈ V } (1)

as a set of the states of all nodes in the final observed graph
topology. For instance, if all nodes in the final observed graph
topology are in the non-infected state except for the rumor
source, we have 2 = {θv|1, 0, 0, . . . , 0, v ∈ V }.

2) THE POSSIBLE INFECTION PROCESS FOR
THE STATE OF NODES
In order to facilitate the study of the states transition of nodes
and the process of rumor propagation in networks, we define
the state of the node v at the time-slot t as follows.

ωv(t) =


S, v is in state S
E, v is in state E
I , v is in state I
R, v is in state R

and �(t) = {ωv(t)|ωs∗ (t), ωv1 (t), ωv2 (t), . . . , ωvi (t), vi ∈ V }
denotes by the set of the state of all nodes. For example, at the
time-slot t = 0, we have �(0) = {I , S, S, S, . . . , S}. Here,
�v(0) = Sfor(v ∈ V , v 6= s∗), �s∗ (0) = I .

Next, we define the collection of the infection process
based on the states of all nodes.
Definition 1: For each v ∈ V , an infection process starting

from the node v from the time-slot 0 to T in the network is
defined as follows:

span(0→T )�(t)v = {�(t)v|�(0), �(1), �(2), . . . , �(T ),

0 ≤ t ≤ T } (2)

In order to map the state of the nodes in infection processes
to the state of the nodes in the final observed graph topology,
we define the following function func().

func(ωv(t)) =

{
1, ωv(t) is I
0, ωv(t) is S,E, orR

If the state of all nodes in the final observed snapshot (1)
(Assume that the final observed graph topology is at time-slot
t) coincides with all nodes’ state of an infection process (2),
i.e., func(�(t)) = 2, we claim this infection process is a
possible infection process. In order to understand the above
propagation processes, a simple example is shown in Fig.3.

The left picture shows the network observed graph topol-
ogy 2 observed at a certain moment. It is clear to see that
the red nodes represent the infected nodes, i.e., θ1 = θ3 =

θ4 = 1, and the white nodes represent the nodes in sus-
ceptible, exposed or recovered state since we can only iden-
tify infected nodes in the network observed graph topology.
i.e., θ2 = θ5 = 0. Therefore, the observed graph topology is
2 = {1, 0, 1, 1, 0}.
The picture on the right depicts two possible infection

processes, where the state of the nodes in these two infection
processes coincide with the state of the nodes in the observed
graph topology 2.
The state of the nodes in the first possible infection pro-

cess (A) at time-slot t = 4 is �(4) = {I ,R, I , I , S}, and
func(�(4)) = 2 = {1, 0, 1, 1, 0}. The possible infection
process (A) is

span(0→4)�(4)= {�(0), �(1), �(2), �(3), �(4)}

= {{I ,S,S,S,S},{I ,E,E, S, S},{I , I , I , S, S},

{I ,R, I ,E, S}, {I ,R, I , I , S}}.

In addition, the possible infection process (B) is expressed as
follows:

span(0→5)�(5)

= {�(0), �(1), �(2), �(3), �(4), �(5)}

= {{I , S, S, S, S}, {I , S,E, S, S}, {I ,E, I , S, S},

{I , I , I , S, S}, {I ,R, I ,E,E}, {I ,R, I , I ,E}}.

and it is easy to get �(5) = {I ,R, I , I ,E} and
func(�(5)) = 2 = {1, 0, 1, 1, 0}.

3) THE POSSIBLE INFECTION PROCESS FOR ML ESTIMATOR
We denote our estimator for rumor source as ŝ and assume
each node in the network may be the rumor source. Suppose
that in the network, there is only one rumor source s∗ that has
begun to propagate the rumor to surrounding neighbors when
the time-slot t = 0. Subsequently, we observed a snapshot
G and N infected nodes at a certain time slot. Based on
the knowledge of the network infection snapshot G and the
observed topology graph2, we need to derive an estimator ŝ
for the rumor source s∗.

VOLUME 7, 2019 45243
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FIGURE 3. An example for rumor propagation. The left picture shows an observed graph topology 2 = {1,0,1,1,0} observed at a
certain moment. Note, only infected nodes can be identified, i.e., θ1 = θ3 = θ4 = 1, θ2 = θ5 = 0. The right picture depicts two possible
infection processes, where the state of the nodes in these two infection processes coincide with the state of the nodes in the observed
graph topology 2. The infection process (A) is span(0→4)�(4) = {{I,S,S,S,S}, {I,E,E,S,S}, {I, I, I,S,S}, {I,R, I,E,S}, {I,R, I, I,S}},
and the infection process (B) is span(0→5)�(5) = {{I,S,S,S,S}, {I,S,E,S,S}, {I,E, I,S,S}, {I, I, I,S,S}, {I,R, I,E,E}, {I,R, I, I,E}}.

TABLE 1. The table of notations.

According to the above setup, we consider the maximum
likelihood problem (ML) to identify the rumor source s∗.

ŝ = argmax
v∈V

∑
span(0→T )�(t)v:func(�(t))=2

Pr(span(0→t)�(t)v|s∗ = v) (3)

Here, span(0→T )�(t)v : func(�(t)) = 2 is defined as all pos-
sible infection processes starting from the node v coinciding
with the observed topology graph 2.
Pr(span(0→T )�(t)v|s∗ = v) is the probability of the rumor

spreads along the infection process span(0→T )�(t)v starting
from the rumor source v.
Assuming that the observed time slot t is known, we can

get at least tn possible infection processes based on the total
number of nodes n in the network. Moreover, we need to set
the time of state transition for each node during the infection

process due to each node having four possible states. Similar
to other models [14]–[18], solving the maximum likelihood
problem requires an exponential number of calculations.
To solve the problem of identifying the rumor source, we pro-
pose the concept of optimal infection process to optimize the
above ML problem (3).

The notations used throughout this paper are summarized
in Table 1.

III. THE OPTIMAL INFECTION PROCESS
A. THE OPTIMAL INFECTION PROCESS FOR RUMOR
SOURCE
As stated above, the detection problem of the rumor source
is to identify the source s∗ in the graph topology 2 based

45244 VOLUME 7, 2019



Y. Zhou et al.: Rumor Source Detection in Networks Based on the SEIR Model

on an observed snapshot G. In order to identify the source,
we propose two concepts: the optimal infection process
˜span(0→T ∗v )

�(t)v and the optimal time duration T ∗v respec-
tively as follows.
Definition 2: The optimal infection process is defined as

the infection process that most likely led to the observed
graph topology 2 in all the possible infection processes
span(0→T )�(t)v : func(�(t)) = 2.

˜span(0→T ∗v )
�(t)v

= arg max
v∈V ,span(0→T )�(t)v:func(�(t))=2

Pr(span(0→T )�(t)v)

(4)

Accordingly, T ∗v is the optimal time duration of the optimal
infection process starting from the node v. Therefore, we con-
sider the source associated with the optimal infection process
as a candidate for the rumor source.

B. THE OPTIMAL INFECTION PROCESS
FOR REGULAR TREES
In this section, we construct our model based on a regular tree
network with infinite levels in which each node has the same
degree. Since there is no loop and each node has the same
degree in the regular tree network, we first study the structure
characteristics of the optimal infection process.

Our task is to identify the rumor source under the assump-
tion that there is initially only one rumor source in the tree
network. According to the literature [17], we adopt the same
definition of infection eccentricity ˜ecc(v) and the Jordan
infection center as follows:
Definition 3: For nodes v, v′ ∈ V , we define l(v, v′) as the

distance of the shortest path between v and the infected node
v′ given the observed graph topology2. Hence, the infection
eccentricity ˜ecc(v) is defined as the maximum distance from
v to any infected nodes.

˜ecc(v) = max
v∈V ,v′∈I

l(v, v′) (5)

Similarly, the Jordan infection center denotes the nodewith
the minimum infection eccentricity, i.e.,

J = argmin
v∈V
˜ecc(v) (6)

Take the network of Fig.3 as an example, where the graph
on the left is an observed graph topology with 5 nodes. The
maximum distance from node 1 to other infected nodes is 2,
i.e., ˜ecc(1) = 2. Similarly, it is easy to get that ˜ecc(2) = 2,
˜ecc(3) = 3, ˜ecc(4) = 3, ˜ecc(5) = 3. Therefore, we conclude
that the Jordan infection centers are node 1 and node 2 in this
observed graph topology.

Next, we will demonstrate the source related with the opti-
mal infection process is the candidate for the rumor source
and the Jordan infection center is the most likely to be the
rumor source among all the candidates. This conclusion can
be deduced from the following 3 lemmas.

FIGURE 4. Illustration for Lemma1 and Lemma2. The left picture shows
an observed graph topology 2 , where we assume that the node 1 is the
rumor source and ˜ecc(1) = 2. If the rumor propagates from the node 1 to
the node 4, the time duration of infection would be at least 4. The right
picture describes the observed graph topology 2 composed of two parts:
the subtree S−j

i and S−i
j .

1) THE INFECTION ECCENTRICITY AND THE
OPTIMAL TIME DURATION
Lemma 1: Assume the case that the underlying graph G is
a regular tree network with infinite levels, in which the root
node vroot is the rumor source, i.e., ω(vroot ) = I . In addition,
a graph topology 2 at a certain time-slot has been observed,
where exists at least one infected node. We can derive the
following conclusion.
• The time duration tvroot of all the possible infection
processes span(0→T )�(t)vroot : func(�(t)) = 2 starting
from node vroot is

tvroot ∈ [2 · ˜ecc(vroot ),∞) (7)

where ˜ecc(vroot ) is the infection eccentricity of node
vroot , where the infection eccentricity represents the
maximum distance of one node to the other infected
nodes (Definition 3).

• The probability Pr( ˜span(0→T ∗vroot )
�(t)vroot ) is a mono-

tonically decreasing function for tvroot ∈ [2 ·
˜ecc(vroot ),∞). e.g., for the infected time duration 2 ·
˜ecc(vroot ) ≤ T1 < T2, we have

Pr( ˜span(0→T1)�(t)vroot ) > Pr( ˜span(0→T2)�(t)vroot ) (8)

where the probability Pr( ˜span(0→T ∗v )
�(t)v) is the likeli-

hood of the optimal infection process ˜span(0→T ∗v )
�(t)v

starting from v.
• For the graph topology 2, we get the optimal time
duration as follows:

T ∗vroot = 2 · ˜ecc(vroot ) (9)

where T ∗vroot is the optimal time duration in the optimal
infection process ˜span(0→T ∗vroot )

�(t)vroot starting from
node vroot .

Intuition 1: First, Eq.(7) is easily understood based on
the observed graph topology and the definition of infection
eccentricity. Under the discrete time slotmodel, the rumor can
only spread at most one hop from the rumor source at each
time-slot. Therefore, if the rumor source intends to infect the
target node, the time duration is at least equal to 2 · ˜ecc(v).
An example is shown in the left picture of Fig.4, it is an
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observed graph topology 2, where we assume that node 1 is
the rumor source. It is easy to know ˜ecc(1) = 2 according to
the concept of infection eccentricity. If the rumor propagates
from node 1 to node 4, the time duration of infection would
be at least 4. i.e., the time duration t1 ≥ 2 · ˜ecc(1) = 4.

Next, we use the inductive hypothesis to prove the inequal-
ity (8). We construct two optimal infection processes that
originated from the same rumor source vroot , where the time
duration is different. First, suppose that the maximum dis-
tance from the rumor source to other infected nodes is 0 in the
observed graph topology2 , i.e., θ (v) = 0(v ∈ V , v 6= vroot ),
θ (vroot ) = 1, we demonstrate that this inequality monotoni-
cally decreases with the time duration t . Next, we claim that
the inequality (8) is still true when this maximum distance is
equal to n. Finally, we prove that the inequality (8) still holds
in the case of n+ 1 based on the induction hypothesis.

According to the inequality (8), the optimal infection pro-
cess Pr( ˜span(0→T ∗vroot )

�(t)vroot ) has the highest probability
of leading to the observed graph topology when the time
duration is 2 · ˜ecc(vroot ). Therefore, the optimal duration T ∗vroot
is equal to 2 · ˜ecc(vroot ) and Eqs.(9) holds. The detailed proof
is shown in Appendix A.

2) THE OPTIMAL INFECTION PROCESS
According to Lemma 1, we can see that there is a unique
optimal time duration T ∗v for each node v ∈ V . Next, we give
out the lemma 2 as follows:
Lemma 2: Similar to Lemma 1, we assume the regular

tree network with multiple levels, in which the root node
vroot is the rumor source, and the observed graph topology2
contains at least one infected node. For any pair of neighbor
nodes i, j, if T ∗i > T ∗j , we can get the following conclusion.

Pr( ˜span(0→T ∗i )
�(t)i) < Pr( ˜span(0→T ∗j )

�(t)j) (10)

We need the following steps to get the above conclusion.
• In the case of T ∗i > T ∗j , the subtree S−ij must contain
at least one infected node, i.e., S−ij

⋂
I 6= ∅, where the

S−ij represents the subtree rooted at node j which does
not contain the branch from node i. Thus, we have the
following conclusion based on the definition of infection
eccentricity.

˜ecc(i) = ˜ecc(j)+ 1 (11)

• We will show the exposed time of j is 1 and the
infected time of j is 2 on the optimal infection process
˜span(0→T ∗i )

�(t)i starting from node i, i.e., ωj(1) = E ,
ωj(2) = I , tEj = 1, t Ij = 2.

• Given an optimal infection process ˜span(0→T ∗i )
�(t)i,

we can always construct an optimal infection pro-
cess ˜span(0→T ∗j )

�(t)j, T ∗i > T ∗j , whose probability
of ˜span(0→T ∗j )

�(t)j is higher than the probability of
˜span(0→T ∗i )

�(t)i.
Intuition 2: To prove the inequality (10), we consider the

network graph topology 2 to be composed of two parts: the

subtree S−ji and S−ij , as shown in the right picture of Fig.4.
For the Eq.(11), it is easy to understand that the subtree S−ij
contains at least one infected node in the observed graph
topology 2. If the subtree S−ij does not contain at least
one infected node, it means that all the infected nodes are
in the subtree S−ji . According to the definition of infection
eccentricity, we get ˜ecc(i) + 1 = ˜ecc(j) due to the fact that
node i, j are neighbors. Thus, we have T ∗i < T ∗j according to
Eq.(9), which contradicts the assumption that T ∗i > T ∗j .
Next, we can easily see that the furthest infected node (we

denote that this node as z) is on the optimal infection process
˜span(0→T ∗i )

�(t)i from the node imust be in the subtree S−ij (If

z is in the S−ji , it will contradict the fact that ˜ecc(i) = ˜ecc(j)+
1). Assuming that tEj = 1, t Ij > 2 is on this optimal infection
process ˜span(0→T ∗i )

�(t)i, we have T ∗i −t
I
j = T ∗j +2−t

I
j < T ∗j

based on ˜ecc(i) = ˜ecc(j)+ 1 (T ∗i = T ∗j + 2). In other words,
this means that the rumor staring from i cannot reach z in
the subtree S−ij on this optimal infection process. Similarly,
it does not hold when tEv > 1, t Iv > 2. Therefore, we get the
conclusion that tEj = 1, t Ij = 2 on the ˜span(0→T ∗i )

�(t)i.
Finally, given an optimal infection process ˜span(0→T ∗i )

�(t)i,
we can always construct an optimal infection pro-
cess ˜span(0→T ∗j )

�(t)j, T ∗i > T ∗j , whose probability
of ˜span(0→T ∗j )

�(t)j is higher than the probability of
˜span(0→T ∗i )

�(t)i. The detailed proof for Lemma 2 is shown
in Appendix B.

3) THE JORDAN INFECTION CENTER
According to Lemma 1 and Lemma 2, we can derive
Lemma 3.
Lemma 3: Consider the situation that the underlying

snapshot G is a regular tree network with infinite levels.
A graph topology 2 observed at a certain time-slot contains
at least one infected node. The Jordan infection center is the
most likely to be the rumor source among all the possible
candidates, which are the source of all optimal infection
processes.

ŝ = argmin
v∈V

˜ecc(v) (12)

Intuition 3: For any pair of non-adjacent nodes i, j and
the infection eccentricity of i is larger than the infection
eccentricity of j. i.e., ˜ecc(i) > ˜ecc(j), we will prove that
there is a path from the node i to the node j, in which the
infection eccentricity of all nodes on this path monotonically
decrease. By applying Lemma 2 repeatedly, we can deduce
the conclusion that the optimal infection process starting from
the node j is more likely to happen than the optimal infection
process starting from the node i. Thus, the optimal infection
process starting from the Jordan infection center ismost likely
to result in the observed graph topology 2 and the Jordan
infection center is the most likely to be the real rumor source.
The detailed proof is shown in Appendix C.

In addition, it is obvious that a tree network exists at most
two Jordan infection centers; however, if the network contains
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two Jordan infection centers, they must be neighbors. The
detailed proof is presented in Appendix D.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, we analyze the computational complexity
of our proposed scheme. According to Lemma 3, we need
to firstly calculate the infection eccentricity of all nodes in
networks in order to identify the Jordan infection center.
According to the RI algorithm [17], we number all infected
nodes based on the infection snapshot and let them broadcast
their IDs to their neighbors. Every node checks the received
IDs of the infected nodes. If an ID has not been received,
the node records the ID and the time t , then forwards it
to neighbors. The above procedure continues until a node
receives all IDs of infected nodes, then this node is considered
as the Jordan infection center. It is easy to verify that the
duration of the above procedure is equal to the minimum
infection eccentricity, which is the Jordan infection center.
For the above description, the maximum number of IDs
transmitted for each edge in networks is |I |. Therefore, it is
obvious that in the worst-case scenario, the time complexity
of identifying the Jordan infection center is O(|I | · |E|).
Here, we analyze other centrality heuristics traditionally

applied to detect rumor source. In graph theory and network
analysis, centrality heuristics is used to identify the critical
vertices in networks. Closeness centrality and Betweenness
centrality are traditional measurement methods used to esti-
mate rumor source and these concepts are defined as follows:

(1) The closeness centrality of a node x is the average
distance of the shortest path between x and all other
reachable nodes in the graph.

CentrC (x) =
n− 1∑

x,y∈V
d(x, y)

where d(x, y) is the shortest distance between node x
and node y. Thus, the computational complexity for the
closeness centrality is O(|I |·|E |) [40].

(2) The Betweenness centrality quantifies the number of
times a node x acts as a bridge along the shortest path
between two other nodes i, j.

CentrB(x) =
∑

x 6=i 6=j∈V

σi,j(x)
σi,j

where σi,j is total number of shortest paths from the
node i to the node j, σi,j(x) is the number of those
paths that pass through x. Note that argmax

x∈V
CentrC (x)

and argmax
x∈V

CentrB(x) indicate that the estimator of the

rumor source is node x in the above case. Similarly,
the time complexity of the betweenness centrality is
O(|I |·|E |) [40].

The comparison of computational complexity for all the
above heuristics is presented in Table 2. Note that the time
complexity of the above showed centrality heuristics are the

TABLE 2. The comparison of computational complexity.

same; however in practice the efficiency of our scheme is bet-
ter than other centrality heuristics since the time complexity
of our scheme reaches O(|I |·|E |) in the worse-case.

V. EXPERIMENTS
We compared the performance of the optimal infection pro-
cesses based estimator (OP) with the following centrality
heuristics based estimators: Closeness centrality (CCE) and
Betweenness centrality (BCE), and performed experiments
over various networks including tree networks with different
degrees, two well-known synthetic complex networks and
four real-world networks. The description of the network
datasets is shown in Table 3.

A. EXPERIMENTS ON REGULAR TREE NETWORKS
This section provides the simulation results on regular trees
with different degrees to compare the performance of OP,
CCE and BCE.

We first generated a graph of regular tree networks based
on specified degree, which ranges from 2 to 6. In regular tree
networks, a node was chosen randomly as the source of rumor
and let this node spread following the model SEIR, in which
the probability of infection processes was chosen uniformly.
i.e., q1 ∈ (0, 1), q2 ∈ (0, 1), r2 ∈ (0,min(q2, 1 − q2)),
r1 ∈ (0, r2). Since there are 4 states in the processes of
infection, we set a smaller probability of recovery to ensure
that there are sufficient infected nodes for our analysis. For
each specified degree, we constructed multiple regular tree
networks containing 200-1000 nodes and repeated the simu-
lation experiment 1000 times, and then evaluated the average
of the rumor detection probability. In order to observe the
effect of different numbers of infected nodes, the duration
t of infection processes was chosen uniformly. Considering
the size of the network, the duration t of infection processes
was chosen uniformly from [3,20] to ensure the full spread of
infection processes.

We defined the detection probability to be the fraction of
experiments in which the estimator coincides with the actual
source. In addition, the distance between the estimator and the
source is defined as the error distance. The detection prob-
ability of the rumor source under the regular tree networks
with different degrees is shown in Fig. 5. The histogram
of average error distance as measured in number of hops
under the regular tree networks of different degrees is shown
in Fig. 6.

From Fig. 5, we can see that the average value of rumor
detection probability of OP is 55% and the rumor detection
rate for CCE and BCE is about 25%. OP is higher than CCE
and BCE by approximately 30%. From Fig. 6, the estimators
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TABLE 3. The description of the network datasets.

FIGURE 5. Rumor detection probability of OP, CCE, and BCE utilized on regular tree networks with different degrees. (a) Regular tree network with the
degree 2. (b) Regular tree network with the degree 3. (c) Regular tree network with the degree 4. (d) Regular tree network with the degree 5. (e) Regular
tree network with the degree 6.

of rumor source identified by OP, CCE and BCE are concen-
trated within 0-2 hops away from the rumor source due to the
relatively small diameter of regular tree networks. Although
CCE and BCE have higher rumor detection probability at
1-2 hops than OP, OP is more efficient to identify the rumor
source (0 error distance for 55% versus 30%).

B. EXPERIMENTS ON SYNTHETIC COMPLEX NETWORKS
Next, we performed simulations under scale-free network and
small-world network. These well-known synthetic networks
were proposed in [35] and [36], where the scale-free net-
works contain 3000 nodes, 11000 edges, and the small-world
networks contain 3000 nodes, and 12000 edges, respectively.
According to the definition of Jordan infection center, it is

easy to find the Jordan infection centers given infection
snapshots of these network topologies. Thus we can view
Jordan infection centers as the possible candidates of the
rumor source. We compared the performance of the OP with
CCE and BCE in these two synthetic networks, i.e., scale-
free network and small-world network. Histograms were
used to show the error distances (or hops) between the three
estimators and the actual source. These experiment settings
were the same as in the previous simulation. We randomly
selected a node as the rumor source and let it spread in the
network, in which the probability of the infection processes
was chosen uniformly. i.e., q1 ∈ (0, 1), q2 ∈ (0, 1), r2 ∈
(0,min(q2, 1−q2)), r1 ∈ (0, r2). The infection duration t was
chosen uniformly from [3, 100]. We chose a smaller recovery
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FIGURE 6. Histogram of average error distances as measured in number of hops of OP, CCE and DCE applied to regular tree networks with different
degrees. (a) Regular tree network with degree 2. (b) Regular tree network with degree 3. (c) Regular tree network with degree 4. (d) Regular tree network
with degree 5. (e) Regular tree network with degree 6.

probability and a longer time duration t in order to ensure that
there were more infected nodes in the infection snapshot for
analysis. Simulation experiments were repeated 2000 times
and the average error distances were recorded.

Fig. 7(a) and Fig. 7(b) show experimental results
of scale-free network and small-world network. For the
scale-free network and the small-world we used, the average
ratio of edges to nodes is 3.5 and 4, respectively. As it can
be seen, the estimators of the rumor source identified by OP,
CCE and BCE in this scale-free network are concentrated
within 1 hop away from the actual source. However, the esti-
mator of rumor source is within 0-5 hops away from the actual
source in the small world network. Due to the power law
degree distributions, the scale-free networks contain many
nodes with high degrees; however, the degrees of nodes in
the small-world network apt to be average.

From Fig. 7(a), we can see that CCE and BCE have higher
detection probability at one hop than OP (80% for CCE, 82%
for BCE versus 48% for OP) in scale-free network. How-
ever, OP is more effective to identify rumor source (0 error
distance) than other heuristics(50% versus 20% for CCE,
14% for BCE). Similarly, we can see from Fig. 7(b) that
estimators of rumor source of BCE and CCE are concentrated
within 1-5 hops. Although CCE andBCE have a higher rumor
detection probability at one hop (16% for CCE, 14% for BCE
versus 9%), OP can effective identify the true rumor source
(0 error distance 52% versus 4% for CCE, 5% for BBC).

C. EXPERIMENTS ON REAL NETWORKS
In this part, four real-world networks are simulated.
We benchmark the performance of the OPwith CCE andBCE
on following real-networks—power grid network, Facebook,
Autonomous systems andWikipedia vote network, which are
described as follows:
• The network topology of power grid is an undi-
rected, unweighted network representing the topology
of the Western States Power Grid of the United States.
Simulation data was compiled by D. Watts and
S. Strogatz, which includes are 4941 nodes and
6594 edges. The average ratio of edges to nodes in power
grid is 1.3 [36].

• Facebook data was collected from survey partici-
pants using Facebook App, and it was anonymized
by replacing the Facebook-internal ids for each user
with a new value. It contains 4039 nodes and
88234 edges. The average ratio of edges and nodes
is 21.8 [37].

• The network for Autonomous Systems (AS) peering
information was obtained from Oregon route-views,
it consists of 10670 nodes and 22002 edges. The average
ratio of edges and nodes is 2.1 [38].

• Wikipedia vote network contains all Wikipedia voting
data from inception, which contains 7115 nodes and
103689 edges, and the average ratio of edges and nodes
is 14.5 [39].
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FIGURE 7. Histogram of error distances as measured in number of hops of OP, CCE and DCE applied on synthetic
complex networks. (a) Scale-free network, (b) small world network.

FIGURE 8. Histogram of error distances as measured in number of hops of OP, CCE and DCE applied on real-world
networks. (a) Power grid network. (b) Facebook. (c) Internet Autonomous Systems network. (d) Wikipedia vote
network.

These experiment settings were the same as in the previous
simulation, in which the probabilities of infection and recov-
ery were chosen uniformly. i.e., q1 ∈ (0, 1), q2 ∈ (0, 1),
r2 ∈ (0,min(q2, 1− q2)), r1 ∈ (0, r2). A node was randomly
selected as the rumor source and the rumor spreads in the
network. The infection duration t was chosen uniformly from
[3, 100]. Simulation experiments were repeated 2000 times
and the average error distances were recorded.

Fig. 8(a) and Fig. 8(b) show experimental results of the
power grid network and the Facebook social network, respec-
tively. As we can see, for the power grid network, the estima-
tors of the rumor source identified by OP, CCE and BCE are

within 7 hops from the actual rumor source. However, for the
Facebook, the estimators of rumor source is within 3 hops
from the actual rumor, which is on the account of the fact that
the degrees of nodes in the power grid network coinciding
with small world networks are relatively average, and the
Facebook social network coinciding with scale-free networks
have many nodes with high degrees.

From Fig. 8(a), we can see that CCE and BCE in the
power grid network achieve higher detection probability at
one hop than OP (23.5% for CCE, 24% for BCE versus
20% for OP). However, the estimators of rumor source for
OP is more accurate (0 error distance, 32% versus 7% for
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CCE and 8% for BCE). From Fig. 8(b), we can see that the
detection probability of the rumor source drops due to the
many 88234 edges in Facebook. The ratio of edges to nodes
in this network (21.8) is larger than the ratio of edges to nodes
in other networks. But we can clearly see that the estimators
of the rumor source identified by OP is higher than CCE and
BCE within 1 hop away from the actual rumor source. OP
has a higher rumor detection probability at 1 hop (61% versus
43% for CCE, 42% for BCE). Moreover, OP can effectively
identify the actual rumor source(0 error distance, 17% versus
4% for CCE, 3% for BCE).

Fig. 8(c) and Fig. 8(d) describe results of rumor source
identification on Internet Autonomous Systems network and
Wikipedia network, which shows the histogram of error dis-
tances for three different rumor source estimators: OP, CCE
and BCE. From Fig. 8(c), our heuristic OP correctly identifies
the rumor source than other centrality heuristics(81% versus
70% for CCE, and 74% for BCE, respectively). For the
Internet Autonomous Systems network, similar to the power
grid network and the small world network, the average ratio of
edges to nodes is 2.1 and the average degree of nodes is small.
Thus it can be explained why OP has a higher rumor iden-
tification than other centrality heuristics. For the Wikipedia
network, it is obvious that OP is more capable of detecting
rumor source than CCE and BCE (0 error distance, 14%
versus 9% for CCE and BCE, respectively). The reason can
be attributed to the fact that the Wikipedia network consists
of 7115 nodes and 103689 edges, andmany high degree hubs,
which is similar to the Facebook and scale free networks.

VI. DISCUSSION
In this paper, we developed the optimal infection process
to solve the rumor source identification issue under the
SEIR model, where the optimal infection process represents
a possible infection process with the maximum probability
of leading to the observed graph topology. We compute an
estimator for the rumor source according to the optimal infec-
tion process. Subsequently, we proved that this estimator of
rumor source is equal to the Jordan infection center through
detailed proofs. Therefore, rumor source identification can be
simplified to the problem of identifying the Jordan infection
center based on the final observed graph topology. The time
complexity of our approach is O(|I |ąď|E|), which is equal
to closeness centrality heuristic and betweenness central-
ity heuristic used widely in rumor source detection in the
worse-case, thus our approach performs better than other
centrality heuristics. Next, simulations are performed on
various networks, including regular networks with different
degrees, two well-known synthetic complex networks, and
real networks. Experimental results suggest that our proposed
scheme improves the estimation accuracy for rumor source
compared to other centrality heuristics. The average value
of rumor detection probability for OP is higher than CCE
and BCE by approximately 25% under regular tree networks.
For the synthetic complex networks and real-world networks,
more than 80% of the estimators of the rumor source for OP

are within two hops away from the actual source. Moreover,
simulations suggest that our OP heuristic performs well for
rumor identification probability on synthetic complex net-
works and real-world networks compared with the previous
centrality heuristics.

However, it can be seen that in the scenario with a large
number of nodes, such as Facebook and Wikipedia networks,
the estimation accuracy of our heuristic still needs to be
improved. Due to the large average degree of nodes in these
networks, and there are many high degree hubs in them,
the spread of rumors in these networks is more rapid, and
so, it is more difficult to track the actual source. One pos-
sible practical means of addressing this problem is effec-
tively filtering the unrelated nodes in networks with many
high degree nodes. In addition, MCMC methods [41], [42]
should be considered to fully explore the uncertainty of rumor
source location for improving the accuracy in our future
work. In addition, identification of multiple rumor sources
remains an attractive future direction. Assume that there are n
rumor sources in the network, and each rumor source infects
all S-state neighbors at the same time. Our goal is to infer
the most likely n estimators of rumor sources based on one
observed infection snapshot. We can firstly divide all nodes
in the observed snapshot into n subsets by using the method
from the literature [43], and then we can derive an estimator
of rumor source in each subset based on the proposed optimal
infection process. Finally, n estimators for the actual rumor
source could be derived.

VII. CONCLUSION
In this paper, we addressed the detection problem for one
single rumor source based on the observed snapshot under the
SEIRmodel. We obtained an estimator of the rumor source in
online networks through our proposed optimal infection pro-
cesses (OP), and demonstrated that the estimator of the rumor
source equals to the Jordan’s infection center using induction
hypotheses. Subsequently, we evaluated the performance of
rumor source detection of OP over various networks, includ-
ing regular tree networks, two well-known synthetic complex
networks and four real-world networks. Based on the simula-
tion results, the rumor identification probability of our heuris-
tic is higher than closeness centrality heuristic (CCE) and
betweenness centrality heuristic (BCE) traditionally adopted
in rumor source detection. Through performance analysis of
computational complexity, we showed that our heuristic has
advantages in efficiency compared with the previous rumor
centrality heuristics. We believe our work forms an important
theoretical basis towards more effective ways of detecting
rumor sources, which is crucial given the impact that false
or misleading piece of information (e.g., rumors) can have
in society, especially with large and growing social media
networks today and in the future.

APPENDIX
This section shows all detailed proofs for the Lemma 1-4.
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PROOF OF THE LEMMA 1
For Lemma 1, we will show the probability Pr( ˜span(0→T ∗vroot )
�(t)vroot ) of the optimal infection process is the monotoni-
cally decreasing function for tvroot ∈ [2 · ˜ecc(vroot ),∞) in
the graph topology 2. In the observed graph topology 2,
It is obvious that the rumor that propagates from the source
vroot to the farthest infected node requires at least 2 · ẽ(vroot )
time-slots due to the rumor can only spread at most one hop
at each time-slot. Therefore, the infection duration tvroot is at
least 2 · ẽ(vroot ).
Firstly, we assume there are two optimal infection pro-

cesses with one time difference in the observed topology 2:
˜span(0→T ∗vroot )

�(t)vroot and ˜span(0→T ∗vroot+1)
�(t)vroot , we

will show

Pr( ˜span(0→T ∗vroot )
�(t)vroot ) > Pr( ˜span(0→T ∗vroot+1)

�(t)vroot )

(13)

According to definition of the optimal infection process (Def-
inition 2), the inequality (13) can be expressed as follows:

max
span(0→T )�(t)vroot :func(�(t))=2

Pr(span(0→T )�(t)vroot )

> max
span(0→T+1)�(t)vroot :func(�(t))=2

Pr(span(0→T+1)�(t)vroot )

(14)

Next we use the induction hypothesis to prove above inequal-
ity (14). First, we define {2k} as the collection of the possible
observed topology2, where k is the largest distance from root
vroot to an infected node. For example, {20} is the collection
of a possible observed topology 2, in which this observed
topology 2 only contains one infected node when we are
observing. This infected node is the rumor source due to
k = 0.

A.
when k = 0, vroot is the only infected node and all the pos-
sible infection processes follow observed graph topologies
2 ∈ {20}.

Pr(span(0→T )�(t)vroot )

= Pr(ω(t)vroot = I , 0 ≤ t ≤ T )

·

∏
u∈C(vroot )

Pr(span(0→T )�(t)vroot , S
−vroot
u )|ω(t)vroot = I )

(15)

= (1− r1)T

·

∏
u∈C(vroot )

Pr(span(0→T )�(t)vroot , S
−vroot
u )|ω(t)vroot = I )

(16)

Here, (span(0→T )�(t)vroot , S
−vroot
u ) represents the infection

process span(0→T )�(t)vroot from time-slot 0 to T in the sub-
tree S−vrootu . In addition, C(vroot ) represents a collection of
children of node vroot . (1 − r1)T means vroot maintains its
own state I throughout the infection process.

Next, u ∈ C(vroot ) has three possible states : S, E or R.
Based on (16), we obtain the following analyses.

(1). If u is susceptible and ωu(T ) = S: u maintains the
susceptible state throughout the T time-slots and vroot cannot
infect u. we obtain

Pr(span(0→T )�(t)vroot , S
−vroot
u )|ω(t)vroot = I )= (1−q1)

T (17)

(2). If u is in the exposed state and ωu(T ) = E: u was
exposed and turned to E(S→E) in a certain time-slot but it
can maintain its own state and was not infected until time-slot
T . We denote by tEu its exposed times, so we have

Pr(span(0→T )�(t)vroot , S
−vroot
u )|ω(t)vroot = I )

= (1− q1)t
E
u −1q1(1− q2 − r2)T−t

E
u

=
q1

1− q1
(

1− q1
1− q2 − r2

)t
E
u (1− q2 − r2)T (18)

where the probability (1− q1)t
E
u −1q1(1− q2 − r2)T−t

E
u indi-

cates that the node u changes to the E state at time-slot tEu
and maintains its own state E until the T time-slots. Next,
if 1−q1

1−q2−r2
> 1, this probability (18) is maximum when tEu

equals to T , we have

max(Pr(span(0→T )�(t)vroot ,S
−vroot
u )|ω(t)vroot = I ))

= (1−q1)T−1q1

or if 1−q1
1−q2−r2

< 1, then when tEu = 1(u was exposed at
time-slot 1), this probability (18) is maximum

max(Pr(span(0→T )�(t)vroot , S
−vroot
u )|ω(t)vroot = I ))

= q1(1− q2 − r2)T−1

(3). If u is in the recovered state, ωu(T ) = R. Due to the
infection processes of the node u have two possibilities: u
was exposed to the state E from the state S and has not been
infected, finally it recovered within T time-slots (S→E→R);
or uwas exposed to the state E and was infected at some time-
slots, it recovered at another time-slots (S→E→I→R). The
infected time, exposed time and recovered time are defined
as tEu ,t

I
u and t

R
u respectively.

(3.1). The processes of states transition of u: S→E→R.
The probability (16) can be expressed as follows.

Pr(span(0→T )�(t)vroot , S
−vroot
u )|ω(t)vroot = I )

= (1− q1)t
E
u −1q1(1− q2 − r2)t

R
u−t

E
u −1r2

≤ q1 · r2 (19)

Here, tEu − 1 ≥ 0 and tRu − t
E
u − 1 ≥ 0, the maximum value

of (19) can be achieved when tEu = 1, tRu = 2, i.e., node u
was exposed at the first time-slot and recovered at the next
time-slot, Hence, ωu(T ) = R.
(3.2). The processes of states transition of u: S→E→I→R.

Pr(span(0→T )�(t)vroot , S
−vroot
u )|ω(t)vroot = I ) (20)

= (1− q1)t
E
u −1q1(1− q2 − r2)t

I
u−t

E
u −1

·q2(1− r1)t
R
u−t

I
u−1r1

·

∏
w∈C(u)

Pr(span(0→T )�(t)vroot , S
−u
w )|tEu , t

I
u, t

R
u ) (21)
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Here, the infinite subtree S−uw exists at least one nodeµ ∈ S−uw
such that µ is either susceptible or exposed, and its parent
node ν is recovered. e.g., µ = w and parent node ν = u.
In addition, we denote the set of nodes S−uw \ S

−ν
µ that nodes

are in the subtree S−uw but not in the subtree S−νµ .

• If µ is susceptible, we denote by t Iν , t
R
ν node ν

infected and recovered time. The probability (21) can be
expressed

Pr(span(0→T )�(t)vroot , S
−u
w )|tEu , t

I
u, t

R
u ) (22)

= Pr(span(0→T )�(t)vroot , S
−u
w \S

−ν
µ )|tEu , t

I
u, t

R
u )

·Pr(span(0→T )�(t)vroot , S
−ν
µ )|t Iν , t

R
ν )

= Pr(span(0→T )�(t)vroot , S
−u
w \S

−ν
µ )|tEu , t

I
u, t

R
u )

·(1− q1)t
R
ν −t

I
ν ≤ (1− q1)t

R
ν −t

I
ν ≤ (1− q1) (23)

where the probability (23) is established due to
tRν − t

I
ν ≥ 1.

• If µ is in exposed state, denoting by tEµ its own exposed
time. We can get

Pr(span(0→T )�(t)vroot , S
−u
w )|tEu , t

I
u, t

R
u )

= Pr(span(0→T )�(t)vroot , S
−u
w \S

−ν
µ )|tEu , t

I
u, t

R
u )

·Pr(X ([0, t], S−νµ )|tEµ , t
I
ν , t

R
ν )

= Pr(span(0→T )�(t)vroot , S
−u
w \S

−ν
µ )|tEu , t

I
u, t

R
u )

·(1− q1)
tEµ−t

I
ν−1q1(1− q2 − r2)

T−tEµ (24)

≤ q1(1− q2 − r2)
T−tEµ ≤ q1 (25)

where the probability (24) is established due to tEµ − t
I
ν−

1 ≥ 0. The maximum value of (24) can be achieved
when tEµ = 3, t Iν = 2, i.e., node ν was infected at
the 2 time-slots and its child µ was exposed at the next
time-slots.

Hence, the probability (21) can be expressed as follows∏
w∈C(u)

Pr(span(0→T )�(t)vroot , S
−u
w )|tEu , t

I
u, t

R
u )

≤ max{(1− q1)|C(u)|, q
|C(u)|
1 } (26)

According to the above formulation, the probability (16) can
be expressed as

Pr(span(0→T )�(t)vroot , S
−vroot
u )|ω(t)vroot = I )

= (1− q1)t
E
u −1q1(1− q2 − r2)t

I
u−t

E
u −1q2(1− r1)t

R
u−t

I
u−1r1

·

∏
w∈C(u)

Pr(span(0→T )�(t)vroot , S
−u
w )|tEu , t

I
u, t

R
u )

≤ q1 · q2 · r1 ·max{(1− q1)|C(u)|, q
|C(u)|
1 } (27)

This probability (27) is maximized when tEu = 1, t Iu = 2,
tRu = 3, i.e.,u was infected to E at the first time-slot and
turn to I at the next time-slot, then recovered in the third
time-slot.

In summary, according to the definition of the optimal
infection process below,

Pr( ˜span(0→T ∗vroot )
�(t)vroot )

= max
span(0→T )�(t)vroot :func(�(t))=2

Pr(span(0→T )�(t)vroot )

(28)

The probability (15) can be expressed as follows.

If T = 0, Pr( ˜span(0→T )�(t)vroot ) = 1

If T = 1, Pr( ˜span(0→T )�(t)vroot )

= (1− r1)
∏

u∈C(vroot )

maxPr{(1− q1), q1}

If T = 2, Pr( ˜span(0→T )�(t)vroot )

= (1− r1)2
∏

u∈C(vroot )

maxPr{(1− q1)2, (1− q1)q1,

q1(1− q2 − r2), q1 · r2}

If T ≥ 3, we have

Pr( ˜span(0→T )�(t)vroot )

= (1− r1)T
∏

u∈C(vroot )

maxPr{(1− q1)T , (1− q1)T−1q1,

q1(1− q2 − r2)T−1, q1 · r2,

q1q2r1 ·max{(1− q1)|C(u)|, q
|C(u)|
1 }}. (29)

Here, if 1−q1
1−q2−r2

> 1, it is easy to see that (1 − q1)T−1q1 >

q1(1−q2−r2)T−1, if
1−q1

1−q2−r2
< 1, we obtain (1−q1)T−1q1 <

q1(1 − q2 − r2)T−1. Note that t = T is fixed and this
probability (29) is monotonically decreasing of t .

For example, the optimal infection process (28) when
1− q1 > q1 and

1−q1
1−q2−r2

> 1 can be expressed as follows.

Pr( ˜span(0→1)�(t)vroot ) = (1− r1)(1− q1)|C(vroot )|

Pr( ˜span(0→2)�(t)vroot )

= (1− r1)2
∏

u∈C(vroot )

maxP{(1− q1)2, (1− q1)q1, q1r2}

Pr( ˜span(0→3)�(t)vroot )

= (1− r1)3
∏

u∈C(vroot )

maxP{(1− q1)3, (1− q1)2q1,

q1q2r1(1− q1)|C(u)|, q1r2}

Since |C(u)| ≥ 1 and r2 > r1, we are easy to
get Pr( ˜span(0→1) �(t)vroot ) > Pr( ˜span(0→2)�(t)vroot ) >

Pr( ˜span(0→3)�(t)vroot ). In a similar way, the same procedure
can be easily adapted to obtain that Pr( ˜span(0→1) �(t)vroot ) >
Pr( ˜span(0→2)�(t)vroot ) > Pr( ˜span(0→3)�(t)vroot ). In sum-
mary, Pr( ˜span(0→T )�(t)vroot ) is a monotonically decreasing
function for t when k = 0.

B.
Assume this inequality (13) holds for k ≤ n, then we
consider k = n + 1, i.e., the distance from the vroot
to the farthest infected node is n + 1 in the observed
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graph topology 2. Therefore, all the possible infection pro-
cesses span(0→T )�(t)vroot follow observed graph topologies
func(�(t)root ) = 2 ∈ {2n+1

}.
It is obvious that time duration t needs to satisfy t ≥ 2(n+

1) ≥ 1 for each infection process span(0→T )�(t)vroot in order
to infect the farthest node.

First, we divide the set of subtrees S = {S−vrootu |u ∈
C(vroot )} into two subsets:

S j = {S−vrootu |u ∈ C(vroot ), 2(S−vrootu ) ∩ I=∅} (30)

S i = S\S j (31)

where S j is a set of subtree that does not contain infected
nodes, and S i is a subset of S that excludes the set S j. Note
that infection processes are mutually independent.

(1). Considering the set of S j ⊂ S−vrootu , we can follow the
conclusion (29) for k = 0.
• If T ≥ tRvroot ≥ 1, we have

Pr( ˜span(0→T )�(t)vroot , S
−vroot
u |tRvroot )

= maxPr{(1− q1)
tRvroot , q1(1− q2 − r2)T−1

(1− q1)
tRvroot−1q1(1− q2 − r2)

T−tRvroot , q1 · r2,

q1q2r1 ·max{(1− q1)|C(u)|, q
|C(u)|
1 }}. (32)

where tRvroot is the recovered time of node vroot .

• If T < tRvroot , then we have

Pr( ˜span(0→T )�(t)vroot , S
−vroot
u |T Rvroot )

= maxPr{(1− q1)T , q1(1− q2 − r2)T−1, q1r2
(1−q1)T−1q1, q1q2r1 ·max{(1− q1)|C(u)|, q

|C(u)|
1 }}.

(33)

In short, we can get the conclusion that Pr( ˜span(0→T )
�(t)vroot , S

−vroot
u |tRvroot ) in the subtree S

j is monotonically
decreasing in t given any tRvr .

(2). For the set of S i ⊂ S−vrootu , given a optimal
infection process ( ˜span(0→T+1)�(t)vroot , S

−vroot
u ), an infec-

tion process (span(0→T )�(t)vroot , S
−vroot
u ) with a higher prob-

ability can be constructed. We represent tEu as the time at
which the state of u changes to E in the infection process
(span(0→T )�(t)vroot , S

−vroot
u ), and similarly t̃Eu is the time at

which the state of u changes to E in the optimal infection
process ( ˜span(0→T+1)�(t)vroot , S

−vroot
u ).

• If t̃Eu > 1, we let t̃Eu = tEu +1, i.e., in the optimal infection
process ˜span(0→T+1)�(t)vroot , u changed to E was one
time-slot later than in the process span(0→T )�(t)vroot .
Furthermore, we assume that these two infection pro-
cesses are the same after node u receives the rumor.
So we can get

Pr( ˜span(0→T+1)�(t)vroot , S
−vroot
u )

= (1−q1)t̃
E
u−1q1 · Pr( ˜span(0→T+1)�(t)vroot , S

−vroot
u |t̃Eu )

(34)

and

Pr(span(0→T )�(t)vroot , S
−vroot
u )

= (1−q1)t
E
u−1q1 · Pr(span(0→T )�(t)vroot , S

−vroot
u |tEu )

(35)

where Pr( ˜span(0→T+1)�(t)vroot , S
−vroot
u ) and

Pr(span(0→T )�(t)vroot , S
−vroot
u ) are probabilities of

node u receiving the rumor in the infection pro-
cess ˜span(0→T+1)�(t)vroot and the infection process
span(0→T )�(t)vroot .
Sincewe assume that the two infection processes of node
u after receiving the rumor are the same, i.e.,

Pr( ˜span(0→T+1)�(t)vroot , S
−vroot
u |t̃Eu )

= Pr(span(0→T )�(t)vroot , S
−vroot
u |tEu ) (36)

Therefore, according to (34) and (35), we obtain

Pr(span(0→T )�(t)vroot , S
−vroot
u )

> Pr( ˜span(0→T+1)�(t)vroot , S
−vroot
u ) (37)

where t̃Eu = tEu + 1.

• If t̃Eu = 1, we let t̃Eu = tEu = 1, we have

Pr( ˜span(0→T+1)�(t)vroot , S
−vroot
u )

= q1(1−q2−r2)t̃
I
u−1−1q2

·

∏
w∈C(u)

Pr( ˜span(0→T+1)�(t)vroot , S
−u
w )) (38)

and

Pr(span(0→T )�(t)vroot , S
−vroot
u )

= q1(1− q2 − r2)t
I
u−1−1q2

·

∏
w∈C(u)

Pr(span(0→T )�(t)vroot , S
−u
w )) (39)

Here, since S i ⊂ S−vrootu and the subtree S−vrootu must
contain infected nodes, the node u will be infected at a
certain time-slot. Respectively, we denote the infected
time of node u by t̃ Iu in ˜span(0→T+1)�(t)vroot and t

I
u in

span(0→T )�(t)vroot . In addition, the node w is the child
node of u.

According to conclusion of the Step 1 and the induction
hypothesis, the subtree S−uw satisfies the condition k ≤ n,
2(S−uw ) ∈ {2m

}, m ≤ n, so we have

maxPr(span(0→T )�(t)vroot , S
−u
w )

> maxPr(span(0→T+1)�(t)vroot , S
−u
w )

where (span(0→T )�(t)vroot , S
−u
w ) : func(�(t)root , S−uw ) =

2(S−uw ). Then, according to (38) and (39), we can obtain

maxPr(span(0→T )�(t)vroot , S
−vroot
u )

> maxPr( ˜span(0→T+1)�(t)vroot , S
−vroot
u )

In summary, we can always construct an infection
process (span(0→T )�(t)vroot , S

−vroot
u ) whose probability
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Pr(span(0→T )�(t)vroot , S
−vroot
u ) is larger than the probability

Pr( ˜span(0→T+1)�(t)vroot , S
−vroot
u ) of a given optimal process

( ˜span(0→T+1)�(t)vroot , S
−vroot
u ).

Therefore, Pr( ˜span(0→T )�(t)vroot , S
−vroot
u ) is the monoton-

ically decreasing function for t when k = n+ 1.

C.
Consider the recovered time of vroot , we define t̃Rvroot as the
recovered time of vroot in ˜span(0→T+1)�(t)vroot , and define
tRvroot as the recovered time in a constructed infection process
span(0→T )�(t)vroot .
Here, according to the t̃Rvroot in different situations, we con-

struct the following different tRvroot .
• If t̃Rvroot > T + 1, then we let tRvroot > T .
• If t̃Rvroot ≤ T , we let t̃

R
vroot = tRvroot .

• If t̃Rvroot = T + 1, we choose tRvroot = T .
According to step 2, it can easily see that the likelihood

of the infection process span(0→T )�(t)vroot is larger than the
likelihood of ˜span(0→T+1)�(t)vroot . Therefore, the original
inequality (13) is established under the condition k = n+ 1.
Based on the inductive hypothesis, for any k the inequality
(13) holds.

D.
To repeatedly apply the inequality (13), we can get the
conclusion that the minimum time required is T ∗vroot in the
optimal infection process Pr( ˜span(0→T )�(t)vroot ) based on
the observed topology2. Therefore, t∗vr is twice the infection
eccentricity starting from vroot , i.e.,

T ∗vroot = 2 · ˜ecc(vroot )

Thus, Lemma 1 holds.

PROOF OF THE LEMMA 2
Supposed an infinite tree network with multiple levels,
the root is the rumor source and 2 is the observed infection
topology. In addition, this network topology exists at least
one infected node. For the adjacent nodes i, j, i.e., (i, j) ∈ E ,
if T ∗i > T ∗j , we will show

Pr( ˜span(0→T ∗i )
�(t)i) < Pr( ˜span(0→T ∗j )

�(t)j) (40)

Here, ˜span(0→T ∗i )
�(t)i is the optimal infection process start-

ing from i, and the optimal infection process ˜span(0→T ∗j )
�(t)j

starts from j.
Step 1:Wewill show the subtree S−ij must contain infected

nodes in the observed topology 2. i.e., S−ij
⋂
I 6= ∅.

If S−ij
⋂
I = ∅, it means that all infected nodes are in the

subtree S−ji . Since the node j can only infect nodes in S−ji
through the edge (i, j), thus we have ˜ecc(j) = ˜ecc(i) + 1 and
˜ecc(j) > ˜ecc(i), this contradicts the condition T ∗i > T ∗j and
˜ecc(i) > ˜ecc(j). Therefore, S−ij

⋂
I 6= ∅.

Step 2:
• If S−ji

⋂
I 6= ∅, ∀a ∈ S−ji

⋂
I

l(i, a) = l(j, a)− 1 ≤ ˜ecc(j)− 1

∀b ∈ S−ij
⋂
I , we have

l(i, b) = l(j, b)+ 1 ≤ ˜ecc(j)+ 1

Therefore, we can obtain

˜ecc(i) = max
i′∈I

l(i, i′) ≤ ˜ecc(j)+ 1

Note that ˜ecc(j) < ˜ecc(i) ≤ ˜ecc(j) + 1. Hence, we can
get

˜ecc(i) = ˜ecc(j)+ 1

• If S−ji
⋂
I = ∅, it means that all infected nodes are in the

subtree S−ij , obviously ˜ecc(i) = ˜ecc(j) + 1, so we have
T ∗i = T ∗j + 2.

Step 3: Nextly, we will show tEj = 1, t Ij = 2 on the
optimal infection process ˜span(0→T ∗i )

�(t)i. Firstly, according
to ˜ecc(i) = ˜ecc(j) + 1, we can easily to know that the
furthest infected node from the node i must be in S−ij in the

observed topology. (If the furthest infected node is in S−ji ,
it will contradict ˜ecc(i) = ˜ecc(j)+1 ), i.e., there is a node z in
the subtree S−ij , ∃z ∈ S−ij , l(i, z) = ˜ecc(i) = ˜ecc(j) + 1, thus
l(v, z) = ˜ecc(v).
Then, if tEj = 1, t Ij > 2 on the optimal infection process
˜span(0→T ∗i )

�(t)i, we have

T ∗i − t
I
j = T ∗j + 2− t Ij < T ∗j (41)

According to the definition of the optimal infection
process, the node j needs at least time duration T ∗j
to infect the furthest infected node z along opti-
mal infection process ˜span(0→T ∗i )

�(t)i. Thus, according
to the (41), node j cannot infect z within the time
duration T ∗i − t

I
j .

Similarly, it does not hold when tEj > 1, t Ij > 2.
Therefore, tEj = 1, t Ij = 2 on the optimal infection process
˜span(0→T ∗i )

�(t)i.
Step 4: Given the optimal infection process
˜span(0→T ∗i )

�(t)i, we can construct an infection process
¯span(0→T ∗j )

�(t)j whose probability is higher than the prob-
ability of ˜span(0→T ∗i )

�(t)i.
Firstly, we divide the given infection process ˜span(0→T ∗i )

�(t)i into two parts: S−ji and S−ij . According to tEj = 1,
t Ij = 2, we have

Pr( ˜span(0→T ∗i )
�(t)i)

= q1q2 · Pr(( ˜span(0→T ∗i )
�(t)i), S

−i
j )|tEj = 1, t Ij = 2)

·Pr(( ˜span(0→T ∗i )
�(t)i), S

−j
i ) (42)

where q1 is the probability that j changed to exposed at the
first time-slot, q2 is the probability that j was infected at the
next time-slot.

Next, we construct a possible infection process ¯span(0→T ∗j )
�(t)j starting from j, where we assume that i changes to the
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exposed state at the first time-slot and is infected at the next
time-slot in the subtree S−ji , i.e., tEi = 1, t Ii = 2.

Pr( ¯span(0→T ∗j )
�(t)j)

= q1q2 · Pr((( ¯span(0→T ∗j )
�(t)j), S

−j
i )|tEi = 1, t Ii = 2)

·Pr(( ¯span(0→T ∗j )
�(t)j), S

−i
j ) (43)

Now we analyze the properties of equation (42) (43).
(1). According to tEj = 1, t Ij = 2 for the subtree S−ij in the

given optimal infection process ( ˜span(0→T ∗i )
�(t)i), a partial

infection process ( ¯span(0→T ∗j )
�(t)j, S

−i
j ) can be constructed,

where this partial process equals to ( ˜span(0→T ∗i )
�(t)i, S

−i
j )

except for the first two time-slots. So we have

( ¯span(0→T ∗j )
�(t)j, S

−i
j ) = ( ˜span(2→T ∗i )

�(t)i, S
−i
j )

then

Pr( ¯span(0→T ∗j )
�(t)j, S

−i
j )

= Pr(( ˜span(0→T ∗i )
�(t)i, S

−i
j )|tEv = 1, t Iv = 2) (44)

Here, since T ∗i = T ∗j + 2 (Step 1), equation (44) holds.

(2). For the S−ji , we can construct the infection process
( ¯span(0→T ∗j )

�(t)j, S
−j
i |t

E
i = 1, t Ii = 2) as follows.

( ¯span(0→T ∗j )
�(t)j, S

−j
i |t

E
i = 1, t Ii = 2)

∈ argmaxPr(span(0→T ∗j )
�(t)j, S

−j
i |t

E
i =1, t

I
i = 2)

where (span(0→T ∗j )
�(t)j, S

−j
i ) : func(�(t)j) = 2(S−ji ).

According to the Lemma 1, we have

Pr( ¯span(0→T ∗j )
�(t)j, S

−j
i |t

E
i = 1, t Ii = 2)

= maxPr(span(0→T ∗j )
�(t)j, S

−j
i |t

E
i = 1, t Ii = 2)

= maxPr(span(0→T ∗i −2)
�(t)j, S

−j
i |t

E
i = 1, t Ii = 2)

= maxPr(span(0→T ∗i )
�(t)j, S

−j
i )

= Pr( ˜span(0→T ∗i )
�(t)i), S

−j
i ) (45)

Therefore, according to (44) (45), we have constructed an
infection process ¯span(0→T ∗j )

�(t)j rooted at j whose prob-
ability is higher than the probability of a given process
˜span(0→T ∗i )

�(t)i, thus the Lemma 3 holds.

PROOF OF THE LEMMA 3
Now we will show there will be infection process from a cer-
tain node to Jordan center, in which the infection eccentricity
of nodes on this process will be monotonically decreased.

A.
First, assuming the tree network exists only one Jordan center
u, we can find an infected node µ ∈ I as follows.

l(u, µ) = ˜ecc(u) = η

Step 1: we will show that l(u, ν) ≥ l(u, µ) − 1, where
ν = arg max

v∈I ,v 6=µ
l(u, v) and node ν is not on the path from u

to µ. Suppose l(u, ν) ≤ l(u, µ)− 2, we have

˜ecc(k) = max(l(k, µ), l(k, ν))

= max(l(u, µ)− 1, l(u, ν)+ 1)

= l(u, µ)− 1 = η − 1

< ˜ecc(u)

where k is a neighbor of u on the path from u to µ. Since the
assumption l(u, ν) ≤ l(u, µ) − 2, we can find it contradicts
the fact that u is the Jordan infection center with minimum
infection eccentricity. Thus, l(u, ν) ≥ l(u, µ)− 1 holds.
Step 2: Suppose a certain infected node ui is not on the

infection process from the Jordan infection center u to µ, and
we assume l(u, ui) = λui , it is easy to see

˜ecc(ui) = ˜ecc(u)+ λui = η + λui > ˜ecc(u)

When a certain node ui is on the path from u to µ

as [u, ui, ui+1, ui+2, ui+3, . . . , µ], we will show ˜ecc(ui) <
˜ecc(ui+1) on this path. Suppose ˜ecc(ui) ≥ ˜ecc(ui+1), we will
have

˜ecc(ui+1) ≥ l(ui+1, ν) = l(u, ui+1)+ l(u, ν)

= l(u, ν)+ λui+1

From Step 1, we can get

˜ecc(ui+1) ≥ l(u, ν)+ λui+1
≥ l(u, µ)− 1+ λui+1
= l(u, µ)+ λui = η + λui
≥ ˜ecc(ui)+ λui
> ˜ecc(ui)

It is obvious that it contradicts the assumption ˜ecc(ui) ≥
˜ecc(ui+1). Hence, we can have ˜ecc(u) < ˜ecc(ui) < ˜ecc(ui+1)
on the infection process.

B.
Next, we suppose that nodes u and v are two adjacent
Jordan infection centers in the network, and assume that
˜ecc(u) = ˜ecc(v) = η.
Step 1: It is obvious that ∀o ∈ S−vu ∩ I , we have

l(u, o) ≤ η − 1 (46)

If l(u, o) > η−1, then l(v, o) = l(u, o)+1 > η, it contradicts
the fact that v is the Jordan infection center.
Now we will show that there exists an infected node

o′ ∈ S−vu ∩ I , which makes l(u, o′) = η − 1 holds.
We assume l(u, τ ) ≤ η − 2 for all the infected nodes

τ ∈ S−vu ∩ I , it implies that

l(v, τ ) = l(u, τ )+ 1 ≤ η − 1 (47)

Furthermore, we can find one infected node τ̃ ∈ S−uv ∩ I
based on (46).

l(v, τ̃ ) ≤ η − 1 (48)
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According to (47)(48), ∀τ ∈ I , we have

˜ecc(v) = max l(v, τ ) = η − 1

It contradicts the fact that ˜ecc(v) = η.
Therefore, the subtree S−vu contains an infected node o′

and l(u, o′) = η − 1. (Furthermore, we can derive a same
conclusion that there exists a node o′′ ∈ S−uv ∩ I , such that
l(v, o′) = η − 1.)
Step 2: We can find a certain infected node α ∈ S−vu and

assume l(u, α) = λ, then we can have

l(α, β)= l(α, u)+ l(u, v)+l(v, β) ≤ λ+1+ η − 1 = λ+ η

where β ∈ S−uv ∩ I .
Similarly, we can find an infected node γ ∈ S−vu ∩ I

l(α, γ ) ≤ l(α, u)+ l(u, γ ) ≤ λ+ η − 1

Hence, we have

˜ecc(α) = λ+ η

Therefore, we get the conclusion that the infection eccen-
tricity will decrease monotonically along the infection pro-
cess from a certain infected node α to the Jordan infection
center.

PROOF OF THE LEMMA 4
Firstly, we assume that the nodes i, j are two non-adjacent
Jordan infection centers and ˜ecc(i) = ˜ecc(j) = η, the node k
is a neighbor of i on the path from i to j, i.e., l(i, k) = 1.
If subtree S−ki

⋂
I = ∅ and ∀p ∈ I , we have

l(k, p) = l(i, p)− 1 < l(i, p) ≤ ˜ecc(i)

It contradicts the fact that i is a Jordan infection center with
the minimum infection eccentricity.

If subtree S−ki
⋂
I 6= ∅ and ∀q ∈ S−ki

⋂
I

l(k, q) = l(j, q)− l(j, k) < l(j, q) ≤ ˜ecc(j)

Therefore, ∀o ∈ V
⋂
I , l(k, o) < η, it is contrary to the

fact that i, j are the Jordan infection centers with theminimum
infection eccentricity. Therefore, we get the conclusion that
all Jordan infection centers must be adjacent. Furthermore,
if there are n > 2 Jordan infection centers in the tree network,
these Jordan infection centers would form a clique. There-
fore, this situation is impossible in a tree network, thereby
Lemma 4 holds.
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