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Abstract
Severe socioeconomic deprivation (SED) and adverse childhood experiences (ACE) are significantly associated with the devel-
opment in adulthood of (i) enhanced inflammatory status and/or hypothalamic–pituitary–adrenal (HPA) axis dysfunction and (ii)
neurological, neuroprogressive, inflammatory and autoimmune diseases. The mechanisms by which these associations take place
are detailed. The two sets of consequences are themselves strongly associated, with the first set likely contributing to the second.
Mechanisms enabling bidirectional communication between the immune system and the brain are described, including complex
signalling pathways facilitated by factors at the level of immune cells. Also detailed are mechanisms underpinning the association
between SED, ACE and the genesis of peripheral inflammation, including epigenetic changes to immune system-related gene
expression. The duration and magnitude of inflammatory responses can be influenced by genetic factors, including single
nucleotide polymorphisms, and by epigenetic factors, whereby pro-inflammatory cytokines, reactive oxygen species, reactive
nitrogen species and nuclear factor-κB affect gene DNAmethylation and histone acetylation and also induce several microRNAs
including miR-155, miR-181b-1 and miR-146a. Adult HPA axis activity is regulated by (i) genetic factors, such as glucocorticoid
receptor polymorphisms; (ii) epigenetic factors affecting glucocorticoid receptor function or expression, including the methyl-
ation status of alternative promoter regions of NR3C1 and the methylation of FKBP5 and HSD11β2; (iii) chronic inflammation
and chronic nitrosative and oxidative stress. Finally, it is shown how severe psychological stress adversely affects mitochondrial
structure and functioning and is associated with changes in brain mitochondrial DNA copy number and transcription; mitochon-
dria can act as couriers of childhood stress into adulthood.
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Introduction

There is a large body of research demonstrating the existence
of a significant association between severe socioeconomic
deprivation (SED) and adverse childhood experiences
(ACE) and the development of enhanced inflammatory status

and/or hypothalamic–pituitary–adrenal (HPA) axis dysfunc-
tion in adulthood [1–3]. There are also parallel data demon-
strating a positive association between SED andACE in child-
hood and the subsequent development of a wide range of
neurological, neuroprogressive, inflammatory and autoim-
mune diseases [1]. The latter association would seem
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unsurprising given a wealth of data implicating a role for
increased levels of peripheral inflammation and/or HPA axis
dysfunction in the pathogenesis and pathophysiology of sev-
eral of these illnesses [4–6]. Indeed, some form of causal
relationship between the inflammatory burden and HPA axis
transferred from childhood in the aetiology of these illnesses is
suspected [2, 7]. However, such HPA axis dysfunction and
increased inflammatory burden is seen in adults exposed to
SED and ACE and adverse experiences in childhood are seen
in adults with no discernible evidence of pathology [8–10].
This suggests that other factors determine whether these ex-
periences lead to overt pathology or not.

One concept invoked to explain these observations at least
in part is the phenomenon of psychological resilience. Readers
interested in an examination of the evidence for and against
this explanation are invited to consult recent papers by [11, 12].
Another heuristic invoked in an attempt to explain this central
question is the concept of allostatic load and the failure of
adaptive mechanisms (allostasis) leading to allostatic overload
and the subsequent development of pathology in adulthood or
adolescence [13]. Over a lifetime, allostasis and allostatic loads
(or pathophysiology) epigenetically affect both central and pe-
ripheral processes: stressful phenomena, including environ-
mental stressors, major life events, abuse and trauma, can af-
fect the development of stress susceptibility and lead to epige-
netic changes in central neural circuitry and functioning; in
turn, this can feed into perceived stress, in terms of vigilance
and helplessness [13]. This, in turn, is associated with behav-
ioural and physiological responses which mediate allostasis,
leading to adaptation; as a result of, for example, repeated
stress or dysregulated stress responses (that is, allostatic load),
it has been argued that this can lead to pathophysiology [13].

Recent data suggest that the extent of allostatic load appears
to be determined by defects in the responses of the autonomic
nervous system and the HPA axis as well as increasing levels
of lipids and glucose and the extent of inflammation,
nitrosative and oxidative stress and mitochondrial dysfunction
in any given individual [14, 15] (reviewed in [16]).

Genetic and epigenetic elements influence all the elements
comprising allostatic load as discussed above. For example the
weight of evidence indicates that polymorphisms in cytokine
and/or Toll-like receptor (TLR) genes and other variations in
the genome and epigenome may influence the magnitude and
duration of inflammatory responses to cellular stimuli and the
subsequent levels of oxidative stress [17–20]. Abnormalities in
the epigenetic regulation of the activity of these and other
genes can have similar consequences [21]. Epigenetic and ge-
netic factors also influence the performance of mitochondria
[22, 23]. Mitochondrial function also affects lipid and glucose
levels in any given individual (reviewed in [24, 25]).
Mitochondrial dysfunction alone and in combination with
raised lipid and glucose levels can also add to the burden of
inflammation and oxidative stress in the periphery and the

brain [26–28]. Predictably, the response of the neuroendocrine
system and the HPA axis to severe and or prolonged psycho-
social stress is also under genetic and epigenetic influences [13,
29, 30] and the abnormal performance of both systems can
make an independent contribution to whole body increases in
inflammation oxidative stress and indeed mitochondrial dys-
function [1, 31]. It should also be noted that increased levels of
inflammation, oxidative stress and mitochondrial dysfunction
can conspire to provoke epigenetic dysregulation via altered
levels of DNA methylation, histone modifications (such as
acetylation) and microRNA (miRNA) synthesis [23, 32–34].

These are important observations, as high levels of inflam-
mation and oxidative stress can induce tissue damage and the
formation of damage-associated molecular patterns (DAMPs)
which can engage with pattern recognition receptors (PRRs)
on antigen-presenting cells (APCs) with the production of
pro-inflammatory cytokines (PICs) and reactive oxygen spe-
cies (ROS), thus maintaining and indeed amplifying a chronic
state of peripheral inflammation, nitrosative and oxidative
stress and mitochondrial dysfunction [35, 36]. There is also
evidence that such a state in the periphery can lead to the
activation of microglia and astrocytes in the brain leading to
the development of chronic neuroinflammation with increased
levels of ROS in the brain together with a stream of other
neurotoxic consequences such as disturbance to neurotrans-
mission and neuron to glial cell communication known to
contribute to the development of neuropsychiatric and neuro-
degenerative conditions [6, 37]. It should also be noted that
activation of these glial cells and the neuropathology stem-
ming from such activation can be induced by stress-related
increase in glucocorticoid (GC) levels in the CNS even in
the absence of peripheral inflammation [38–40]. This level
of chronic inflammation can inhibit HPA axis activity, which
may also be inhibited more directly by GC resistance, includ-
ing glucocorticoid receptor (GR) methylation [30, 41].

When considered as a whole, there is considerable evi-
dence in support of the proposition that the allostatic load
experienced during childhood can inhibit allostasis leading
to the development of allostatic overload in adulthood in the
context of genetic and or epigenetic vulnerability. There is
also growing evidence that the Bunholy trinity^ of mitochon-
drial dysfunction, nitrosative and oxidative stress and inflam-
mation may well be the most significant contributors to
allostatic load [14]. A detailed consideration of the mecha-
nisms underpinning the origin of this triad in at least some
children subjected to such adverse environmental conditions
and their overall detrimental influence on the other mediators
of allostasis and the persistence of such abnormalities into
adulthood is the main focus of this paper.

Much of the early research in this area has been focused on
the bidirectional interaction between peripheral inflammation
resulting from PIC release by APCs in the periphery as part of
an evolutionary response to environmental stressors and the
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neuroendocrine system. Hence, we will consider such research
in the first section before going on to consider more recent
findings regarding the importance of oxidative stress in the brain
and mitochondrial dysfunction. First, however, it seems appro-
priate to review the quality and quantity of evidence demonstrat-
ing an association between the experience of SED and other
ACE in childhood and the development of neuropsychiatric,
neurodegenerative and autoimmune illnesses in adulthood.

Childhood SED and/or ACE
and the Development of Illnesses
in Adulthood

Overview

There is a large and accumulating body of evidence demon-
strating an association between adverse socioeconomic or
caregiving experiences in childhood and increased risk of
morbidity and mortality from non-communicable chronic
health problems in adulthood [42–44], including rheumatoid
arthritis (RA), systemic lupus erythematosus (SLE), Sjögren’s
syndrome, cardiovascular disease, diabetes, hypertension,
chronic fatigue syndrome (CFS) fibromyalgia, Alzheimer’s
disease (AD), Parkinson’s disease, amyotrophic lateral sclero-
sis (ALS), major depressive disorder (MDD), anxiety, cancer
and all causes of premature mortality [43, 45–51]. It is also
noteworthy that many authors have reported that such an as-
sociation persists even in the face of significant increases in
the quality of life experienced by individuals during adoles-
cence and adulthood [52, 53].

SED, ACE and the Development of Chronic
Inflammation

Several, mainly cross-sectional, studies have demonstrated that
environmental and socioeconomic adversity in childhood is
associated with significantly increased levels of systemic in-
flammation in both childhood [54–56] and adulthood [9, 31,
57–59]. It seems worthy of note that lower education and in-
come appear to be particular factors associated with the devel-
opment of an inflammatory burden in adulthood [8, 57,
60–62]. Such inflammatory activity is evidenced by signifi-
cantly elevated levels of the inflammatory markers C-reactive
protein (CRP) [63, 64], IL-6 [60, 61, 65], TNF-α [57, 65], IL-2
[57, 65] and NF-κB [66, 67]. Unsurprisingly, recent studies
using a life course approach identified inflammation markers
as at least in part explaining social differences in health [68,
69]. Additional studies revealed that both early life and adult
adverse socioeconomic circumstances have the potential to
alter inflammation status [70, 71]. It should be emphasised
however that the results in this area are heavily influenced by
study design as we will now move on to consider.

Study Design Effects Regarding SED, ACE
and Increased Risk of Adult Illness

Socioeconomic status (SES) is a mediator, marker and mod-
erator of diverse other operative variables [72]. Prospective
studies investigating correlations between low SES in child-
hood and increases in single markers of inflammation in adult-
hood have reported weakly significant or non-significant as-
sociations following adjustment for other variables such as
ethnicity, adult SES, body mass index or educational status
[49, 72–74]. However, a longitudinal study performed by
Castagne and fellow workers examining the levels of a wide
range of cytokines and chemokines using multiplex technolo-
gy reported a significant association between low childhood
SES and adult inflammatory status, although the increases in
cytokine and chemokine levels compared with adults who had
a benign childhood economic status were modest [2]. This
association has been confirmed in the prospective Brazilian
Longitudinal Study of Adult Health (ELSA-Brasil) involving
13,371 civil servants [75]. These authors reported a linear
increase in the inflammatory marker CRP with an increasing
number of adverse socioeconomic circumstances throughout
the individual’s life course [75]. These findings were replicat-
ed in the Jerusalem Perinatal Family Follow-Up Study by [76]
involving follow-up examinations of 1,132 offspring of all the
births in Jerusalem between 1974 and 1976. The authors
established that adult and childhood economic status were
independent contributors to adult inflammatory status [76].
A similar pattern emerged from studies investigating the rela-
tionship between other childhood stressors such as maltreat-
ment and adult inflammatory status. A meta-analysis of 60
retrospective cross-sectional studies examining this phenom-
enon involving 16,870 participants conducted by Baumeister
and fellow workers concluded that childhood mistreatment
was significantly associated with a modest increase in CRP,
TNF-α and IL-6 levels, although the association with in-
creased CRP was stronger than for the cytokines [77]. This
supported the conclusions of an earlier prospective study con-
ducted over 20 years which demonstrated that childhood mal-
treatment was independently associated with modestly in-
creased levels of CRP, IL-6 and TNF-α in adulthood [63].

SED, ACE and the Development of HPA Axis
Dysfunction in Adulthood

Evidence Associating SED, ACE and Dysfunction
of HPA Axis Activity

There is a considerable body of evidence indicating that chil-
dren from disadvantaged backgrounds experiencing environ-
mental stressors such as low SES and poor housing conditions
are significantly more likely to display evidence of persistent
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HPA axis dysregulation [78–81]. In addition, the weight of
evidence suggests that the aggregate effect of SED and
ACE, rather than the impact of individual risks, is determinis-
tic of pathological outcomes (reviewed in [3]). A comprehen-
sive meta-analysis of 26 cross-sectional studies examining the
association between SES and cortisol levels conducted by
Dowd and fellow workers concluded that a slightly blunted
pattern of diurnal cortisol secretion in association with lower
SES was the most consistent observation, although overall
there was no consistent association between SES and cortisol
levels [82]. Several prospective studies have examined longi-
tudinal changes in HPA axis function in consort with changes
in SES over time and have generally reported a negative as-
sociation between SES and concentrations of cortisol present
in hair samples [83–85]. There is a growing consensus that the
measurement of hair cortisol levels is the most appropriate
method for measuring aggregate concentrations of this mole-
cule over time [86].

HPA Axis Dysfunction and the Development of Adult
Diseases

HPA axis hypofunction in particular is found in illnesses such
as RA [87–89], Sjögren’s syndrome [90, 91], CFS [92], SLE
[93, 94], multiple sclerosis (MS) [95, 96] and MDD [97].
Blunted or deregulatedHPA axis activity is also seen in people
suffering from chronic pain (reviewed in [98]), chronic fatigue
[99] and chronic insomnia [100]. There is also a large body of
evidence supporting the concept that severe early-life experi-
ences result in HPA axis dysfunction in adulthood and the
development of peripheral inflammation [77]. The HPA axis
is also a powerful modulator of inflammatory activity and is in
turn modulated by inflammatory processes [7, 30, 101]. The
mechanisms underpinning such a bidirectional relationship go
some way to explaining how HPA axis dysfunction might
contribute to the development of inflammatory diseases in
adulthood and hence will be the subject of the next section
of the paper.

Mechanisms Enabling Bidirectional
Communication Between the Immune System
and the Brain

Overview

Bidirectional communication between the immune system
and the CNS involving highly complex signalling pathways
plays an indispensable role in restraining immune and inflam-
matory responses in physiological and pathological conditions
[102]. This communication is facilitated at the level of im-
mune cells by several mechanisms, such as the expression of
surface receptors for several different neurotransmitters,

allowing the brain to modulate the immune response [103,
104]) and the secretion of opioids and immunomodulatory
catecholamines such as noradrenaline (norepinephrine) and
adrenaline (epinephrine) and by acetylcholine [103, 105].
Peripheral mononuclear blood cells (PMBCs) also express
receptors for a wide array of ligands such as corticosteroids,
prolactin, insulin, somatostatin, growth hormone (GH), testos-
terone, oestrogen, ghrelin, leptin, opioids, neuropeptide Yand
vasoactive intestinal peptide (VIP) [106].

The CNS responses to increased immune activity or the
development of inflammation are largely mediated via neuro-
nal and hormonal pathways. The neuronal route is mediated
via the autonomic nervous system inflammatory reflex, where-
by stimulation of the vagus nerve as an example leads to cho-
linergic interaction with the α7 subunit of the nicotinic acetyl-
choline surface receptor (α7 nAChR) of splenic macrophages,
in turn leading to inhibition of inflammatory cytokine release
by these T cells [107–109] (see Fig. 1). Neuroendocrine sig-
nalling between the immune system and the CNS is mediated
by several discrete axes of interactions such as the HPA, hy-
pothalamic–pituitary–thyroid (HPT), hypothalamic–pituitary–
gonadal (HPG) and hypothalamic–pituitary–growth hormone
axes, with the HPA axis being the most important [106, 110].

The Role of Peripheral Inflammation in the Activation
of the HPA Axis

Inflammatory signals can reach the brain via humoral and
neural routes to activate the HPA axis [5]. The humoral route
involves direct or indirect cytokine signalling either via direct
access to the brain via regions where the integrity of the blood-
brain barrier (BBB) is compromised or absent, such as the
choroid plexus or other circumventricular organs (CVOs)
[37], or by direct entry via saturable transport systems in the
BBB or an indirect induction of cytokines and other inflam-
matory mediators such as prostaglandins and their subsequent
release into the CNS parenchyma, or via provocation of an
increase in BBB permeability [111, 112]. The neural route
involves direct stimulatory action of PICs on peripheral affer-
ent neurones of the vagus nerve [113, 114]. A broad array of
cytokines such as TNF-α, IL-1, IL-6, IL-2 and IFN-γ can
induce and regulate the HPA axis and, as will be discussed,
their levels in turn are also heavily influenced by secretion of
GCs [104].

Mechanisms Involved in the Regulation of HPA Axis
Activity

In physiological conditions, HPA axis activity is regulated by
a multitude of afferent parasympathetic, sympathetic and lim-
bic circuits such as the hippocampus, amygdala and medial
prefrontal cortex which innervate the paraventricular nucleus
(PVN) of the hypothalamus via a number of direct or indirect
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routes (reviewed in [97]). The PVN in turn integrates a
number of stimulatory serotonergic, glutamatergic and cat-
echolaminergic and inhibitory GABAergic signals, thereby
representing a crucial hub in the regulation of HPA axis
activity [115–117]. The activation of the HPA axis occurs
following the indirect or direct stimulation of secretory
neurones in the medial parvocellular region of the PVN or
via the reduction of inhibitory inputs. The increased activity
of these neurones leads to the release of corticotrophin-
releasing hormone (CRH) and arginine vasopressin (AVP)
into, respectively, the portal circulations of the anterior and
posterior pituitary gland [7]. CRH in turn provokes the re-
lease of adrenocorticotrophic hormone (ACTH) into the
systemic circulation by pituitary corticotropes. ACTH then
ultimately induces the synthesis and secretion of GCs main-
ly by the zona fasciculata, and to a lesser extent by the zona
reticularis, of the suprarenal (adrenal) cortex, followed by
their systemic release [118, 119].

Mechanisms Underpinning the Anti-inflammatory
Responses of HPA Axis Activation

The release of GCs results in termination of HPA axis activa-
tion, in the absence of pathology, based on negative feedback
achieved by the action of GCs on two main receptors, namely
the cytosolic GR and the mineralocorticoid receptor (MR)
which translocate to the nucleus following ligation [120,
121]. TheMR has been described as a Bpromiscuous receptor^
as, in humans, it binds to the mineralocorticoids aldosterone
and 11-deoxycorticosterone, the GCs cortisol, 11-
deoxycortisol and corticosterone, and the sex hormone pro-
gesterone (reviewed in [7]). MRs have a far greater affinity for
GCs than do GRs (some ten times higher) [122] and are con-
sidered to be the principal regulator of circadian cortisol levels
[123]. GRs, on the other hand, are considered to play a major
role in regulating peak morning cortisol levels owing to their
high affinity for dexamethasone and, crucially from the

Fig. 1 The circuit of the anti-
inflammatory reflex is enabled by
signals carried by the afferent and
efferent branches of the vagus
nerve. The afferent branch is
activated in response to the
presence of PICs, DAMPs and
PAMPs in peripheral tissues. The
efferent signal is communicated
via the coeliac ganglion and
activates splenic adrenergic
neurones inducing the release of
noradrenaline (norepinephrine)
near acetylcholine secreting T
cells. Released acetylcholine then
transverses the marginal zone
before entering the red pulp and
activating α7 nAChR expressed
on PIC-secreting macrophages
and dendritic cells which then
suppresses the release of these
and other pro-inflammatory
molecules
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perspective of this paper, their role in anti-inflammatory and
stress responses (reviewed in [124]).

Binding of a GC to a GR leads to the dissociation of mo-
lecular chaperones from the GR. The GC-GR complex then
translocates to the cell nucleus where gene expression is reg-
ulated by interaction with glucocorticoid response elements
and via protein–protein engagement with a range of other
transcription factors, such as activator protein 1 (AP-1), nu-
clear factor-κB (NF-κB), nuclear factor of activated T cell
(NFAT) and signal transducer and activator of transcription
(STAT) [125–127] (see [128]). The main anti-inflammatory
properties of GCs are mediated via the contact-driven suppres-
sion of NF-κB, AP-1 and STAT [129]. However, there is a
mutually antagonistic relationship between GRs and these in-
flammatory transcription factors and there are data demon-
strating that NF-κB, STAT and AP-1, which are elevated in
inflammatory conditions, can in turn inhibit GR function
[101]. The sensitivity of GRs to the action of GCs is also
determined by a range of other factors, including GR function,
GR number and GR affinity [129, 130].

Mechanisms Underpinning the Association
Between SED, ACE and the Genesis
of Peripheral Inflammation

Low SES and the resultant multiplicity of chronic stressors in
childhood effect epigenetic changes, particularly in the meth-
ylation status of DNA, leading to the production of a pro-
inflammatory phenotype in macrophages and in turn causing
an exaggerated inflammatory response to the presence of mi-
crobial antigens such as bacterial lipopolysaccharide (LPS) in
childhood and adulthood [31, 131, 132]. There is also a grow-
ing body of evidence suggesting that chronic stressors stem-
ming from SED affect the methylation status of GRs, acces-
sory functional proteins and a range of genes regulating HPA
axis activity [1, 31] (reviewed in [133]). Miller and fellow
workers reported that exposure to chronic stress and associat-
ed changes inmethylation lead to a decrease in transcription of
proteins involved in GR signalling and an increase in the
expression of transcripts with response elements for NF-κB
governing pro-inflammatory signalling in monocytes [134].
Other research teams have reported very similar findings
[135, 136]. Miller and colleagues reported an increase in
monocyte pro-inflammatory activity but reported no changes
in GR function or sensitivity, although they also noted a de-
crease in the transcription of proteins enabling GR function
[137]. Changes in gene methylation patterns by chronic GC
exposure are well documented (reviewed in [138]), but there
is considerable debate regarding the persistence of environ-
mentally induced epigenetic changes over a lifespan
(reviewed in [139]). There is also evidence that the methyla-
tion status of a GR promoter gene is confounded by adult

experiences [140]. In addition, there are a number of prospec-
tive studies demonstrating that the association between low
economic status and significantly increased susceptibility to
immune- or inflammation-mediated diseases is a result of per-
sistent immune dysregulation [141, 142]. On the other hand,
while compromised GR function could certainly play a role, a
study of chronic stress in the caregivers of family members
suffering from the aggressive brain tumour glioblastoma
multiforme did not show any significant change in GR func-
tioning compared with control subjects who were assessed as
not having experienced major stressors during the previous
year [137]. The question arises however as to how such im-
mune dysregulation provoked by extreme childhood stressors
persists into adulthood and why such a universally observed
phenomenon leads to the development of pathology in some
individuals but not others. We now move on to suggest a
mechanism which might underpin this phenomenon based
on individual genetic and epigenetic variance.

Factors Involved in Influencing the Duration
and Magnitude of an Inflammatory Response

Genetic Factors

Several research teams have adduced evidence demonstrating
that genetic factors strongly influence the intensity and dura-
tion of the immune response and the levels of inflammation
produced by the activation of enzyme systems such as mitogen
activated protein (MAP) kinases and Janus kinase (JAK)/
STAT [143–147]. The most common source of genetic varia-
tion examined in connection to this area is that of functional
single nucleotide polymorphisms (SNPs) [145, 146]. For ex-
ample, in a large study involving 700 participants, Li and col-
leagues [148] reported a strong impact of genetic hereditability
on the levels of cytokine production by PMBCs including
monocytes. Pertinently, there is a considerable body of evi-
dence indicating that SNPs in the genes encoding IL-1, IL-6
and TNF-α, which are all known to be elevated in people
suffering from the effects of SED, influence the performance
of the immune system [149–151]. It would also seem worthy
of note that the composition of the microbiota also determines
the levels of cytokines produced by the activation of immune
and inflammatory pathways [152]. This may be relevant as
exposure to chronic stressors can provoke dysbiosis and in-
creased gastrointestinal permeability, thus allowing the trans-
location of commensal antigens into the peripheral circulation
and provoking immune activation via the activation of TLRs
on macrophages and dendritic cells [153, 154].

The significance of these findings extend to the observation
that prolonged or excessive activation of immune and inflam-
matory pathways can induce tissue damage, leading to the for-
mation of immunogenic DAMPs [35, 36]. These may activate
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TLRs on APCs leading to increased activity and levels of
NF-κB and further increases in PIC levels. Increased levels of
PICs can lead to still further increases in NF-κB production
[155] and increased levels of NF-κB can stimulate the produc-
tion of yet higher levels of PICs as well as cyclooxygenase-2,5-
lipoxygenase and inducible nitric oxide synthase (iNOS), there-
by driving a cellular environment of chronic oxidative and
nitrosative stress (reviewed in [156, 157]). Increasing levels of
PICs together with increasing levels of ROS and reactive nitro-
gen species (RNS) can induce further damage to tissues and
macromolecules leading to increased DAMP formation and
TLR engagement, ultimately producing higher levels of PICs
and free radical species [36]. Increased levels of PICs ROS,
RNS and NF-κB can also combine to drive a self-sustaining
cellular environment of chronic inflammation and oxidative
stress by modulating epigenetic mechanisms, notably DNA
methylation and histone acetylation, responsible for governing
the performance of immune and inflammatory pathways during
and after activation, as we will now discuss [158, 159].

Epigenetic Factors

Effect of PICs, ROS, RNS and NF-κB on DNAMethylation Levels

DNAmethylation levels of CpG islands (DNA sequences with
a high frequency of CpG sites) in promoter regions regulates
the transcription of cytokine-encoding genes either directly or
via regulating the activity of transcription factors such as
STAT-1, NF-κB andNFAT-1 [160, 161]. These in turn regulate
the production of these inflammatory mediators in response to
the activation of numerous cellular stimuli such as the activa-
tion of PRRs on APCs by invading pathogens, the presence of
DAMPs or increased levels of oxidative stress [161,
162](reviewed in [163]). In general, hypomethylation and in-
creases in the production of these transcription factors result in
increased levels of PICs, but the same effect can result from
hypermethylation and reduced activity of molecules which in-
hibit PIC production such as the suppressors of cytokine syn-
thesis (SOCS) [164]. PICs in turn affect the methylation status
of genes involved in the regulation of immune and inflamma-
tory activity by the suppression of methyltransferases and
methylases which govern levels of gene DNA methylation
[165, 166]. For example, high levels of PICs suppress the
activity of DNA methyltransferase 1 (DNMT-1) leading to
hypomethylation of the IL-1B promoter and a hundredfold
increase in the serum levels of this cytokine [166]. DNAmeth-
ylation levels also determine the magnitude and duration of
immune and inflammatory responses by regulating the activity
of macrophages and dendritic cells as well as regulating the
activation and differentiation patterns of T cells [167, 168].
This is a brief outline of the interdependency between levels
of gene methylation and the activity of immune and inflamma-
tory pathways and readers interested in more details are invited

to consult an excellent review by [169]. Increased levels of PIC
production, ROS and RNS can cause changes in histone acet-
ylation patterns in promoter regions of genes governing in-
flammatory signalling, which may also contribute to maintain-
ing, if not amplifying, inflammation and oxidative stress via a
positive feedback loop which we will now discuss.

Effects of Increased PICs, ROS, RNS and NF-κB on Histone
Acetylation

Increased levels of inflammation, in the guise of elevated
TNF-α and ROS, induce widespread hypomethylation and
activation of a wide range of inflammatory transcription fac-
tors including NF-κB [170, 171]. Oxidative stress also in-
duces hyperacetylation of NF-κB leading to increased DNA
binding capacity [32]. Increased levels and transcriptional ac-
tivity of NF-κB can induce the expression of co-inflammatory
mediators via the activation of intrinsic histone acetyl trans-
ferase (HAT) activity and inhibition of histone deacetylases
(HDACs) [170]. This is part of the complex effects of NF-κB
on chromatin remodelling which drive the expression of genes
and other transcription factors involved in regulating a pleth-
ora of inflammatory pathways [172, 173]. The activation of
NF-κB also results in increased production of PICs and ROS,
once again potentially contributing to the development of self-
sustaining inflammation and oxidative stress [36].

Effect of PICs, ROS, RNS and NF-κB on miRNA Activity

miRNAs are small non-coding RNA molecules with roles in
post-transcriptional regulation of gene expression and RNA
silencing. Several miRNAs are induced by PICs, ROS, RNS
and NF-κB [33, 174]. Furthermore, the weight of evidence
indicates that the activities of PICs and miRNAs are strongly
intertwined, as levels of miRNA expression change in re-
sponse to stimulation by a range of cytokines, and cytokine
gene expression is in turn regulated by changes in the activity
of miRNAs and cytokine stimulation [175], while cytokine
expression is regulated by miRNAs [176, 177]. Elevated
levels of PICs and NF-κB can induce the production of
microRNA-155 (miR-155) in macrophages, monocytes and
myeloid dendritic cells [21, 176, 178]. Once activated, miR-
155 increases the transcription of NF-κB, leading to increased
production of PICs [179]. Similarly, NF-κB engages in a pos-
itive feedback loop with miR-181b-1 [179]. Briefly, NF-κB
activation leads to increased levels of IL-6 which induces the
phosphorylation of STAT-3 which transactivates miR-181b-1
which in turn transactivates NF-κB, providing yet another
mechanism enabling self-sustaining levels of inflammation
and oxidative stress [180, 181].

Another pro-inflammatory miRNA which is upregulated
by PICs and NF-κB is miR-146a [21, 182, 183]. Unlike the
case of miR-181b-1, however, the activation of this miRNA
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species does not lead to the transactivation of NF-κB but rath-
er acts to inhibit this transcription factor via a somewhat com-
plex negative feedback mechanism [179]. However, the up-
regulation of miR-146a has profound pro-inflammatory con-
sequences and is involved in the development and propaga-
tion of neuroinflammation in illnesses such as MS and AD
[184–186]. This miRNA was originally detected following
LPS activation of monocytes but its greatest density is found
in astrocytes and microglia. It might therefore be involved in
the development and maintenance of low-grade neuroinflam-
mation subsequent to the peripheral inflammation driven by
prolonged SED and ACE [21, 187]. Given the information
above, it seems reasonable to suggest that there are mecha-
nisms which could at least partially explain how the activation
of immune and inflammatory pathways in an individual ex-
posed to SED or profound ACE could become chronic. We
now move on to consider how genetics and epigenetics,
chronic inflammation, as well as nitrosative and oxidative
stress, could affect the activity of the HPA axis in childhood
after showing that this effect could persist into adulthood.

Factors Involved in Regulating HPA Axis
Activity

Genetic Factors

In adults, the inflammatory response to socioeconomic and oth-
er stressors is determined by genetic and epigenetic factors,
with GR polymorphisms and GRmethylation status both being
involved [188]. GR and MR polymorphisms also play an im-
portant role in determining the magnitude and duration of HPA
responses to the presence of environmental or internal stressors
[189–191]. GR polymorphisms are associated with an in-
creased risk of developing Crohn’s disease [192], metabolic
syndrome, cardiovascular disease, neurological disease and
neuroprogressive illnesses such as MDD [193–195].
Interestingly, GR polymorphisms are predictive of a significant-
ly increased risk of developing post-traumatic stress disorder
(PTSD) independently of childhood trauma. Polymorphisms
in genes encoding proteins involved in regulating GC availabil-
ity, such as the multidrug resistance transporter complex, 11
beta-hydroxysteroid dehydrogenase and corticosteroid-
binding globulin, are also associated with an increased risk of
developing AD, type 2 diabetes mellitus and a number of other
inflammatory illnesses [130, 196–200]. It is also interesting that
the performance of each of these proteins can be stimulated by
immune activation [199]. At the very least, these data suggest
that the levels of inflammation and immune activation experi-
enced by individuals following SED can be significantly influ-
enced by variability in genes regulating the activity of the HPA
axis. The situation is rendered even more complex by data
revealing that epigenetic factors also regulate the activity of

the HPA axis [139] and data discussed above suggesting that
an environment of chronic inflammation and oxidative stress
leads to dysregulation of DNAmethylation, histone acetylation
and miRNA production, which could also drive abnormalities
in HPA axis function.

Epigenetic Factors

A growing number of research teams have proposed that meth-
ylation of genes involved in the regulation of GR function or
expression within the HPA axis might be an important vehicle
enabling changes in GC regulation in response to prolonged
SED and/or ACE [139, 201, 202]. Indeed, the association be-
tween SED, ACE andNR3C1 or FKBP5methylation has been
established in several recent studies and systematic reviews
[139, 201, 203, 204]. However, thus far, only the methylation
of NR3C1, FKBP5 and HSD11β2 has been examined in direct
relation to an increased risk for the development of any human
illness, with the vast bulk of research being focused on the
methylation status of alternative promoter regions of NR3C1
[139, 201, 202]. Therefore, the effects of SED or ACE on
methylation levels and clinical outcomes of the POMC,
ACTH, ACTH-R, AVP, CRH, CRH-R1/2 or CRH-BP genes,
which are all involved in the regulation of GC levels and ac-
tivity by the HPA axis, are currently unknown [205]. There is
also some doubt regarding the biological importance of the
changes in methylation levels reported by the authors listed
above. For example, Palma-Gudiel and colleagues reviewed
23 papers investigating methylation changes in the NR3C1
gene induced by ACE and concluded that the absolute differ-
ences in methylation levels are slight, with the majority of
authors reporting group differences of less than 5%, which is
currently close to the limit of sensitivity of the methylation
detection assays utilised [133, 206]. These are important find-
ings as there is a considerable body of evidence indicating that
changes in the overall methylation levels of any gene of 10%
may not be biologically relevant [207, 208] and changes of 5%
or less should be treated with extreme caution [209].

In addition, it has been suggested that slight changes in gene
methylation levels can be the product of failure to stratify results
to take account of confounding variables such as age, sex, cur-
rent SES and cell tissue type [210, 211]. The latter point may be
especially relevant as recorded changes in methylation changes
may ultimately originate from a small percentage of the cellular
population, often described as marginal cellular subsets, leading
to insignificant transcriptional changes. This is of interest from
the perspective of SED- and/or ACE-induced methylation
changes and the ultimate effect on HPA axis functionality as
authors have reported a lack of association betweenmethylation
of FKBP5 or NR3C1 and increases in protein levels [212] or
changes in GC regulation [213]. In addition, the concept that
SED and ACE can induce methylation changes in HPA axis
genes in the absence of genetic predisposition is under
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challenge, as several research teams have reported that changes
in FKBP5 andNR3C1methylation inMDD and PTSD patients
with a history of SED and or ACE are only seen in people with
acknowledged risk genotypes, which does not seem to be the
case with SED- and ACE-induced changes in the methylation
status of genes involved in the activation and regulation of
peripheral immune genes [206, 214–216]. Finally, a review of
32 studies investigating the association between SED and or
ACE on HPA axis gene methylation patterns by Argentieri and
colleagues concluded that the vast bulk of studies are of cross-
sectional or case control design and thus incapable of determin-
ing whether the methylation changes might be a cause or a
product of pathology, which is a significant observation as such
changes could be induced by the presence of inflammatory
mediators, as discussed above [205]. However, this area is cur-
rently the subject of intense research and debate and it would be
unwise to reach any firm conclusions based on current data.
Readers interested in an in-depth examination of data
appertaining to small changes in the methylation of genes and
possible changes in the cellular proteosome are invited to con-
sult an excellent review by Leenen and others [213]. For the
sake of completeness, it should be noted that the performance of
the HPA axis is also regulated by levels of histone acetylation
[217, 218] and the activity of several miRNAs, such as miR-18
and miR-124 [219, 220], which may be dysregulated following
exposure to prolonged stress [220, 221]. There is little evidence
regarding the persistence of these changes, however, or any
evidence of an association with human diseases or any associ-
ation with a history of SEDs or ACE, and hence, theywould not
seem to be relevant to this review.

Chronic Inflammation

There is a large and accumulating body of evidence confirming
the rapid downregulation of HPA axis activity in an environ-
ment of chronic systemic inflammation [222, 223]. This down-
regulation is largely mediated by PICs via a number of differ-
ent mechanisms [224–226]. PICs such as TNF-α and IL-1β
can inhibit the activity of CRH-secreting neurones and andro-
gen synthesis in the suprarenal (adrenal) cortex, which may go
some way to explaining the low basal levels of cortisol evident
in several autoimmune, neurological and neuroprogressive ill-
nesses [227, 228]. High levels of PICs also seem to have the
capacity to attenuate stimulatory effects of CRH and ACTH on
the suprarenal cortex and pituitary gland (see Fig. 2) [229].
Chronically elevated levels of PICs also appear responsible
for HPA axis downregulation as a result of GR dysfunction
leading to GC resistance. Cytokines such as TNF-α and IL-
1β provoke GR dysfunction via several routes such as
inhibiting the transcription of GRs and inhibiting their nuclear
translocation [230]. There are also data indicating that IL-1β in
particular inhibits GR function by activation of the p38/MAPK
(MAP kinase) pathway [108].

A range of other enzymes and transcription factors upreg-
ulated by PICs such as JAK transcription factors, NFAT, AP-1
and NF-κB have the capacity to inhibit GR function [231,
232]. The mechanisms underpinning such inhibition include
dysregulation or disruption of GR translocation to the nucleus,
in a similar manner to the effect of PICs, and interference with
GR-DNA binding via a series of protein–protein interactions.
NF-κB, AP-1, IL-1, TNF-α, IL-6 and other inflammatory me-
diators such as cyclooxygenase (COX) can also disrupt the
activity of crucial GR cofactors as well as provoke changes
in the phosphorylation status of GRs [101, 233, 234]. Finally,
there is also a body of evidence suggesting that chronic expo-
sure to PICs changes the relative abundance of the two GR
isoforms, with an increase in the dominant negative beta iso-
form and a decrease in the alpha isoform leading to a marked
decrease in GR efficiency, which may be the major mecha-
nism underpinning GC resistance in chronic inflammatory
conditions such as RA [110, 235].

Chronic Nitrosative and Oxidative Stress

An environment of chronic nitrosative and oxidative stress in
the brain disrupts normal HPA axis function via several mech-
anisms including increased glutamate toxicity and reduced
levels of RNA synthesis, RNA stability, mitochondrial func-
tion and activity of redox-sensitive kinases. This is a complex
area and readers interested in a detailed treatment of this area
are invited to consult the work of Spiers and others [236]. GC
receptors are also under redox control and elevated concentra-
tions of ROS exert detrimental effects on several aspects of
GR function, such as translocation to the nucleus, leading to
impaired feedback following HPA axis activation [237]
(reviewed in [238]). High levels of nitrosative stress and con-
sequently elevated levels of nitric oxide (NO) lead to a down-
regulation of GR expression [239, 240].

NO regulates a plethora of interactions between
neuroimmune and neuroendocrine systems in physiologically
normal and pathological conditions and neuronal nitric oxide
synthase (nNOS) acts as a major modulator of processes
governing the development of learning [241]. NO is involved
in the regulation of corticosterone secretion and nNOS inhibits
the activity of GR in the hippocampus resulting in the modu-
lation of HPA axis activity [241, 242]. NO, in tandem with
prostaglandins, plays a major role in enabling and regulating
the activation of the HPA axis by CRH [243] (reviewed in
[244]) and high NO levels exert broadly inhibitory effects
[245]. Activation of the HPA axis leads to a profound inflam-
matory response and a significant increase in NO levels as
well as increased levels of PICs and prostanoids [241] .

The downstream effects of NO and PICs are different how-
ever, and while CRH release, and consequent stimulation of
ACTH secretion from the anterior pituitary, involves the syn-
thesis and release of IL-1, IL-6 and TNF-α, NO released in the
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PVN modulates signal transduction pathways governing cor-
ticosterone release from the suprarenal (adrenal) gland [241].
NO also engages in Bcrosstalk^ with GRs [246] and can up-
regulate these receptors to produce broadly anti-inflammatory
effects [247]. However, at higher levels, NO inhibits GR bind-
ing [248, 249], offering another mechanism bywhich elevated
nitrosative and oxidative stress compromises the anti-
inflammatory capability of the HPA axis. In this context, it is
noteworthy that loss of GR activity can produce aberrant GR-
NO crosstalk leading to loss of neuroprotective functions con-
ferred by astroglia in response to immune activation in the
periphery [246]. There would appear to be ample evidence
demonstrating that chronically upregulated levels of PICs,
ROS and RNS can provoke dysfunction of the HPA axis.
However, there is also evidence that stress-upregulated PICs,
ROS and RNS in the periphery and the brain experienced
during childhood can induce persistent and potentially patho-
logical consequences in adulthood other than via detrimental
effects on the neuroendocrine system, and we now turn to
consideration of the evidence in this domain.

Other Putative Pathological Consequences
of Elevated PICs, RNS and ROS

ACE and the Development of Oxidative Stress

Authors investigating the effects of social adversity in rodents
have reported neuropathological consequences induced in part

by increased levels of ROS and RNS coupled with reduced
enzymatic and non-enzymatic anti-oxidants in the periphery
and in areas of the brain such as the hippocampus forebrain
striatum and cortex. Individual findings include reduced levels
of superoxide dismutase (SOD) and catalase and widespread
disruption of the glutathione (GSH) system such as a reduced
GSH/GSSG ratio and depleted levels of glutathione peroxi-
dase (GPx) [250–252]. These results are mirrored in human
studies such as those examining the relationship between the
extreme adverse social experiences during wartime relating to
the development of neuropathology such as PTSD in general
and Gulf War syndrome in particular, as we now go on to
describe.

Once again, accumulating data indicate that increased brain
oxidative stress stemming from war experiences is an impor-
tant factor [253]. For example, excessive increases in cerebro-
spinal fluid (CSF) and CNS levels of NO/peroxynitrite is a
reproducible finding in Gulf War veterans, whether or not
such individuals suffered from PTSD, and appear to correlate
with the extent of structural changes in the brain [253]. In
addition, PTSD observed in American soldiers returning from
Iraq has been associated with ROS-mediated brain changes
[254]. In Gulf War veterans affected by PTSD, elevation in
the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and the
induction of 3-nitrotyrosine in the CSF have been reported; 8-
OHdG is a biomarker of oxidative DNA damage [255]. Some
research teams have also reported a putative association be-
tween the prolonged psychological stress of divorce and the
development of significantly increased oxidative stress in the

Fig. 2 Bidirectional communication between the immune and
neuroendocrine systems. PICs released by PMBCs can activate the
HPA axis at the level of the pituitary, the paraventricular nucleus of the
hypothalamus and the suprarenal (adrenal) cortex, stimulating the
synthesis and secretion of GCs. The latter act on the surface or
cytoplasmic receptors of PMBCs to suppress the transcription and

translation of pro-inflammatory BTh1^ cytokines such as IL-1 and IL-6
and increase the production of anti-inflammatory BTh2^ cytokines such as
IL-4 and IL-10, thus promoting a downwards shift in the immune
response. ACTH release also exerts an independent direct
immunosuppressive effect mediated via the melanocortin system
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brains and periphery of adults and children [256]. This profile
also appears to be dominated by a denuded cellular antioxi-
dant system and thus reduced resistance to the corrosive ef-
fects of ROS and RNS [257].

The association between childhood sexual abuse and the
development of persistent oxidative stress and inflammation is
difficult to assess despite the existence of a plethora of studies
investigating the subject. Some authors have reported an in-
crease in both parameters in the short term but not in the long
term while other authors have reported no difference com-
pared with age- and sex-matched children with no history of
such experiences [258, 259] (reviewed in [260]). The relation-
ship between childhood maltreatment and the development of
persistent oxidative stress appears to be much clearer however
despite the difficulties in consistently defining the term [259,
261–263]. For example, do Prado and others reported that
childhood maltreatment was associated with oxidative stress
as shown by increased protein carbonylation, higher SOD
levels and reduced GPx levels when compared with adoles-
cents who had not undergone childhood maltreatment [261].
Very similar results have been reported in a more recent study
by Morares and others who reported that various dimensions
of childhood maltreatment such as physical abuse or neglect
are associated with increased oxidative and nitrosative stress
evidenced by the presence of lipid peroxidation, protein car-
bonylation and abnormalities in cellular enzymatic and non-
enzymatic antioxidant levels [259]. These results have also
been replicated by the same team of authors in an even more
recent study [263]. In the latter instance, this research group
also reported that the extent of lipid peroxidation and depleted
antioxidant systems was predictive of the development and
the severity of affective disorders which developed in later life
[263].

The study conducted by Boeck and others is also of particular
interest as these authors reported that childhood maltreatment
was associated with increased oxidative stress as a result of in-
creased mitochondrial ROS production secondary to increased
activity in these organelles. Moreover, these authors also noted
that such an elevation of ROS production and mitochondrial
activity correlated positively with the release of PICs by
PMBCs and depleted serum levels of lysophosphatidylcholines
highly suggestive of increased levels of inflammasome activation
[262].

Oxidative Stress and the Development of Generalised
Neuropathology

There is evidence to suggest that the source of oxidative stress
seen in the brains of children and adults exposed to extreme
and/or protracted life stress is activated NADPH oxidase
(NOX) isoforms, most notably NOX-2 [264, 265]. This is
perhaps unsurprising as NOX is upregulated in activated mi-
croglia and is the primary source of ROS production by these

glial cells in this state [266, 267]. Once activated, NOX plays a
major role in maintaining microglial activation and influences
microglial polarisation towards the neurotoxic M1 phenotype
[268].

The relationship between activated or ramified microglia
and upregulated NOX-induced ROS production is of interest
as severe or protracted psychological stress and the develop-
ment of persistent peripheral inflammation known to activate
microglia would go some way to explaining the relationship
between severe life experiences and oxidative stress in the
brain as discussed above [37, 111, 269, 270] (reviewed in
[271]). It should be noted that stress-induced elevation of
GCs in the brain increases microglial activation, priming and
the development of a pro-inflammatory phenotype indepen-
dently of the existence of peripheral inflammation [38–40].
Chronic and/or protracted stress also leads to Bprimed^ mi-
croglia, which is a state which renders these cells exquisitely
sensitive to further activation by even trivial peripheral stimuli
such as minor infections or minor social stressors [272, 273].
This inherent sensitivity makes individuals more susceptible
to the detrimental effects of Blife experiences^ and hence
microglial priming could potentially provide a vehicle for
conveying the effects of early-life stressors to adulthood and
increases the chances of developing the neuropathology asso-
ciated with neuropsychiatric and neurological conditions
[274].

Early-life stressors may have a more direct effect on the
later development of neuropathology, however, as the weight
of evidence suggests that severe or protracted psychological
stress may disrupt the normal bidirectional signalling between
microglia, astrocytes and neurones with potentially devastat-
ing effects on brain function and brain development [275]
(reviewed in [276]). Severe stress also has a direct and detri-
mental effect on levels of GABA, dopamine, serotonin, nor-
adrenaline (norepinephrine) and glutamate neurotransmitters
and various structures involved in neurotransmission mediat-
ed by each of these molecules, which could also play a role in
communicating the effects of childhood psychological stress
into adulthood (reviewed in [277]). For example, increased
microglial ROS production mediates the development of glu-
tamate toxicity, leading to mitochondrial damage and NMDA
receptor upregulation, leading to further increases in ROS and
the development of self-amplifying pathology [278, 279].

In addition, animal and human studies have demonstrated
that psychological stress also increases glutamate levels and
excitotoxicity in various regions of the brain including the
prefrontal cortex, hippocampus and amygdala [280]
(reviewed in [281]). Several research teams have reported that
such changes in glutamatergic neurotransmission are induced
directly by elevated GC levels [282, 283]. Activation of mi-
croglia and astrocytes via the existence of peripheral inflam-
mation or increased levels of CNS GRs also has a detrimental
effect of glutamatergic neurotransmission, as resting
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astrocytes play an indispensable role in glutamate uptake and
the receptors that enable this activity are significantly down-
regulated or even absent on the membranes of these glial cells
in the activated state [38–40, 111, 156]. Chronic glutamate
upregulation also increases the expression of type 1 metabo-
tropic glutamate receptors [284]. This is also of pathological
relevance as upregulation and engagement of these receptors
in the VPN inhibits the HPA axis stress response [285].

Finally, there is accumulating evidence from animal studies
that genetic and epigenetic variation in the components of
various neurotransmitter systems may go some distance to
explaining the phenomenon of resilience (reviewed in
[286]). For example, genetic variability in GABA receptors
is associated with increased susceptibility or resilience to the
effects of short term psychological stress while differences in
the epigenetic regulation of serotonin receptors produces very
similar consequences [287, 288]. This is clearly not the main
focus of this paper and readers interested in the area are re-
ferred to an excellent and very recent review by Schiele and
Domschke [289].We now turn to the final section of the paper
which examines mitochondrial dysfunction as vehicle for con-
veying multisystem dysregulation caused by ACE into
adulthood.

Mitochondria as Couriers of Childhood Stress
into Adulthood

ACE and the Development of Mitochondrial
Dysfunction

A recent meta-analysis of 23 studies concluded that protracted
and/or severe psychological stress is associated with profound
and detrimental changes in mitochondrial performance, struc-
tural integrity, morphology and dynamics in the periphery and
in the brain [290]. The most commonly reported indices of
impaired mitochondrial function and respiration appear to be
decreased complex I and IV activity, impaired complex I di-
rected respiration, decreased membrane potential and in-
creased permeability transition pore sensitivity [291–293].
Several research teams have also reported evidence of ultra-
structural damage and altered morphology with increased lip-
id peroxidation, organelle swelling, loss of cristae and reduced
matrix density [294, 295]. Psychological stress is also associ-
ated with reduced mitochondrial DNA (mtDNA) copy num-
ber in the rodent brain and changes in mtDNA transcription.
For example, Liu and Zhou reported a 60% reduction in
mtDNA copy number in corticosterone-treated rats in the hip-
pocampus and striatum, with a slightly lower reduction in rats
subjected to chronic unpredictable mild stress, while
Roosevelt and others reported decreased transcription of
mtDNA sequences coding for proteins involved in the struc-
ture of complex I of the electron transport chain (ETC) [291,

296]. Other authors have reported that psychosocial stress
adversely influences global mitochondrial gene transcription
[297, 298]. It is also noteworthy that there is some evidence
that genetic variation in mtDNA may influence the suscepti-
bility of mitochondria to the effects of psychological stress
[299]. In addition, the use of metabolomics has revealed sig-
nificant changes in the production and secretion of mitochon-
drial metabolites in the brain and blood of animals in a state of
stress compared with unstressed controls [300, 301].
Furthermore, several authors utilising proteomic technology
have reported strikingly similar results with significant chang-
es in the protein composition of mitochondria during stressed
versus unstressed conditions [302, 303]. The mechanisms
whereby psychosocial stress exerts such a plethora of patho-
logical effects on mitochondrial performance and physiology
are the subject of intense research and may in part result from
oxidative damage to mtDNAwhich is known to induce tran-
scriptional abnormalities and organelle dysfunction [304,
305].

Consequences of Mitochondrial Dysfunction

This is of prime importance as the weight of evidence sug-
gests that variations in mtDNA sequences and/or expres-
sion influence the neuroendocrine, metabolic, inflammato-
ry and transcriptional response to stress [15]. Moreover,
mitochondrial dysfunction evidenced by dysregulated
mtDNA expression or otherwise can have detrimental ef-
fects on the autonomic nervous system and the HPA axis as
well as increasing levels of inflammation, lipids and glu-
cose, which in total are regarded as being the main contrib-
utors to increased allostatic load and allostatic overload,
which is predictive, at least to some extent, of the devel-
opment of pathology as discussed above [14, 306]
(reviewed in [16]).

The mechanisms whereby mitochondrial dysfunction can
have detrimental effects on other harbingers of allostatic load
are well documented and straightforward. For example,
allostasis is an energy requiring process and environmental
stressors provoke a significant increase in energy generation
(reviewed in [290]). Similarly, mitochondrial dysfunction in
adipocytes and insulin responsive tissues is a major, if not the
main, driver of systemically elevated lipids and hyperglycaemia
via well-established pathways (reviewed in [24, 25]). However,
the mechanisms whereby mitochondrial dysfunction can have
detrimental effects on the HPA axis and the neuroendocrine and
transcriptional responses to stress appear to be under-discussed
and hence are worthy of further consideration.

Epigenetic regulation of gene transcription, which plays a
vital role in enabling allostasis as discussed above, is depen-
dent on metabolites derived from the tricarboxylic acid cycle
or produced elsewhere within mitochondria (reviewed in
[23]). Importantly, this dependence relates to the addition

Mol Neurobiol (2019) 56:5866–5890 5877



and removal of epigenetic modifications. For example, cyto-
plasmic acetyl coenzyme A, derived from citrate exported
frommitochondria, is an indispensable substrate enabling his-
tone acetylation [307], and thus, at least a basal level of mito-
chondrial metabolism is needed to enable optimum histone
acetylation [308]. Histone and DNA demethylation also de-
pend on physiological levels of the citric acid cycle interme-
diate α-ketoglutarate and hence this process also requires op-
timum mitochondrial metabolism [309]. The precise relation-
ship between compromised mitochondrial function and im-
paired genetic machinery is not fully understood but there is
some evidence to suggest that it is facilitated by retrograde
mitochondria to nucleus signalling [310], which also probably
provides the vehicle whereby mitochondrial metabolism in-
fluences or regulates the expression of more than 50% of
human genes [311].

Mitochondria are also the site of synthesis for GCs and all
other steroid hormones and hence mitochondrial dysfunction
could lead to significantly reduced GR production leading to a
denuded anti-inflammatory response and impaired HPA axis

feedback [312] (reviewed in [313]). GRs can also influence
mitochondrial function following translocation into the organ-
elles, probably via binding with GC response elements on
mtDNA [314, 315]. Crucially, the weight of evidence suggests
that chronic and/or excessive GR exposure during severe or
protracted psychological stress dysregulates mitochondrial
Ca2+ homeostasis, decreases mitochondrial respiration, dam-
ages enzymes of the ETC, reduces membrane potential and
increases mitochondrial ROS production [316–318]. The ac-
tions of other stress hormones, notably the catecholamines
noradrenaline and adrenaline (epinephrine), can also have det-
rimental effects on mitochondrial function and integrity in the
periphery and the brain by inducing deletions in mtDNA [319,
320]. Finally, and perhaps predictably, there are accumulating
data suggesting that the other effector molecule of the auto-
nomic nervous system response to stress, namely acetylcho-
line, can also induce significant damage to mitochondria in all
body compartments via engagement with the nAChRs on the
outer membranes of these organelles [321]. Such engagement
appears to disturb mitochondrial calcium homeostasis by

Fig. 3 In this model, persistent peripheral inflammation caused by
prolonged psychosocial stress in the guise of elevated PICs is
transmitted to the brain via a number of well documented routes which
then acts alone or in tandem with raised GCs to activate microglia and
astrocytes. Their activation exerts a plethora of neurotoxic consequences
such as the release of ROS, RNS and PICs and failure of astrocytic
glutamate reuptake mechanisms, leading to glutamate excitotoxicity,
increased activity of type 1 metabotropic glutamate receptors and
NMDA receptor dysfunction. The ROS, RNS and PICs secreted by
activated glial cells can also induce widespread dysregulation in

GABAergic, serotoninergic, noradrenergic and dopaminergic
neurotransmission as well as inhibiting the HPA axis via several
mechanisms. Microglia and astrocytes may also be activated by
elevated CNS GCs and prolonged or severe psychosocial stress in the
absence of peripheral inflammation; elevations of these molecules can
independently produce the same detrimental effects on glutamate
excitotoxicity, NMDA dysfunction and other neurotransmitter systems
as glial cell-derived ROS RNS and PICs. The development and
persistence of peripheral and central inflammation are influenced by
genetic and epigenetic factors (see text)
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inhibiting voltage-dependent anion channel (VDAC)-regulat-
ed Ca2+ uptake from the cytoplasm, opening the permeability
transition pore resulting in the release of cytochrome c and
activation of the PI3K/Akt signalling pathway [321, 322]. The
sum of these effects can result in a potentially catastrophic fall
in adenosine triphosphate production and, in the extreme, cell
death via apoptosis or necrosis, with the latter having signifi-
cant pro-inflammatory consequences [321, 322] (reviewed in
[323]).

This is of importance as research teams have reported that
under conditions of psychological stress damaged or dysfunc-
tional mitochondria can release mtDNA and other mitochon-
drial DAMPs into the cytoplasm and circulation, leading to
the development of systemic inflammation, immune activa-
tion and inhibition of the HPA axis [324, 325]. The mecha-
nisms involved stem from the fact that mtDNA is a potent
DAMP (also known as mitochondrial alarmin), owing to its
close resemblance to bacterial DNA, and hence is able to
activate AIM2 (absent in melanoma 2), NLRP3 (NOD (nucle-
otide-binding oligomerisation domain), leucine-rich repeats
and pyrin domain-containing protein 3) inflammasomes and
TLR-9 and provoke a type 1 interferon response [326]
reviewed in [327]. Moreover, the presence of mtDNA in the
systemic circulation can contribute to the development of sys-
temic oxidative stress and further exacerbate systemic inflam-
mation via the activation of NF-κB and the subsequent in-
crease in levels of ROS, RNS and PICs [328, 329]. There is
also evidence to suggest that the inflammation and oxidative
stress invoked by mtDNA can inflict further damage on mito-
chondria leading to a feedforward loop of increasing inflam-
mation and oxidative stress [326]. Such a scenario has the
potential to cause oxidative and peroxidative damage to pro-
teins and lipids and to provoke conformational changes which
can also render these molecules immunogenic and capable of
activating PRRs, thereby providing another route for self-
amplifying inflammation and oxidative stress [35, 36]. It
should also be noted that increased systemic levels of saturat-
ed fatty acids and hyperglycaemia, which can both result from
mitochondrial dysfunction, can also potentially make an inde-
pendent contribution to the development of systemic inflam-
mation and oxidative stress [27, 28, 330].Mechanistically, this
is achieved via the activation of TLR-4 by free fatty acids [27,
331] and RAGE (receptor(s) for advanced glycation end prod-
ucts) by glycated proteins [28, 332]. It is also noteworthy that
systemic inflammation either induced by Bescaped^ mtDNA
or otherwise is known to activate microglia and hence could
also account for data demonstrating increased levels of oxida-
tive stress in the brain of animals and individuals exposed to
severe psychosocial stress [37, 111]. In addition, it would
seem that the sensitivity of microglia to developing a primed
phenotype is dependent on genetic and epigenetic mecha-
nisms [333]. The mechanisms discussed above are represent-
ed in Fig. 3.

Conclusion

We have shown that there is strong evidence that childhood
SED and/or ACE is associated with the development of adult
HPA axis dysfunction and neuropsychiatric, neurodegenera-
tive and autoimmune illnesses. Important contributors to the
allostatic load experience during childhood include mitochon-
drial dysfunction, nitrosative and oxidative stress and inflam-
mation, which in turn affect the regulation of HPA axis activ-
ity, including via epigenetic factors. We have also seen how
PICs, RNS and ROS can have other pathological, including
neuropathological, consequences and how mitochondria can
act as couriers of childhood stress into adulthood. The latter is
of importance as changes in mtDNA sequences and/or expres-
sion can influence the endocrine, metabolic, inflammatory and
transcriptional response to stress. These findings provide
pointers to future research and to potential therapeutic
interventions.
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