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Despite recent advances in quantifying land-use/cover change (LUCC) transition potential, transition rules are
often not transparent and uncertainty is rarely made explicit. Here, we introduce DoTRules—a dictionary of
trusted rules—as a transparent alternative to calculate transition potential in cellular automata models. Rules
relate LUCC variables to the observed historical changes. Shannon entropy is calculated to assess the uncertainty
of each rule, and the most trusted rules are used to project future LUCC. DoTRules produces rule-level un-
certainty estimates, which can be mapped. In a case study of the Ahvaz region of Iran, the overall accuracy of

LUCC simulation calibrated using DoTRules was very similar to simulations calibrated with the state-of-the-art
random forest, but DoTRules provides a more transparent approach where transition rule information and un-
certainty can be readily accessed and interpreted. The results demonstrate that DoTRules has potential to derive
new insights into LUCC processes.

1. Introduction

Cellular automata (CA) were conceptually established by John von
Neumann (1903-1957) during the 1950s. Due to their simplicity and
capacity to simulate spatial patterns, CA have rapidly gained popularity
as a tool for modelling spatial dynamics of many environmental phe-
nomena such as plant population dynamics (Xu et al., 2010), forest fire
spread (Zheng et al., 2017), slope failure (Liucci et al., 2017), debris
flow (D'Ambrosio et al., 2003; D'Ambrosio et al., 2006), urban sprawl
(Mustafa et al., 2018a; Van Vliet et al., 2009), land-use/cover change
(LUCC) (Hewitt and Diaz-Pacheco, 2017; Hewitt et al., 2014; White and
Engelen, 1997) and more. Though cellular automata can handle very
complex spatial situations for modelling environmental phenomena,
their conceptual basis is straightforward. A cellular automaton consists
of a large number of cells, which can change their state according to
specific rules. In many applications such as modelling fire spread (i.e.
bushfire or forest fire), urban sprawl modelling and specially LUCC
simulation, a set of neighbourhood and suitability values are defined
reflecting the influence of external factors affecting the state transitions
for each cell. Finally, there is a set of rules defining transition potential
of a cell from one state to another.

In terms of LUCC models, the transition demand and the transition
potential are typically the two main requirements (White and Engelen,
1993) for model implementation using cellular automata. First,
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historical rates of land-use change are calculated which are used to
calibrate the total amount of land-use change occurring in each time
step. This is termed transition demand. Second, the spatially explicit
probabilities of land-use change, or transition potential, are calculated.
Transition potential represents the behavioural propensities of the ac-
tors determining land-use change and is defined based on the inferred
logic from a set of transition rules. Transition rules are general structures
that offer an easily understandable and transparent way to find the
most reliable land-use class allocation (Russell et al., 2003). In practice,
transition rules capture the relationships between land-use and a suite
of independent predictor variables. The effectiveness of cellular auto-
mata land-use models in informing land-use planning depends upon the
efficient extraction of reliable and transparent transition rules (Han
et al., 2015; Hewitt et al., 2014).

Numerous machine-learning and statistical methods have been used
to calculate land-use transition rules and map transition potential for
use in cellular automata land-use models (Basse et al., 2014; Berberoglu
et al., 2016; Clarke et al., 1997; Ku, 2016; Liu et al., 2014; Mustafa
et al., 2017, 2018a, 2018b). Methods frequently applied include asso-
ciation rule learning (Al-kheder et al., 2008; Liu and Jiang, 2011), ar-
tificial neural network (Basse et al., 2014; Li et al., 2013), maximum
margin (Rienow and Goetzke, 2015; Yang et al., 2008), instance-based
(Castilla and Blas, 2008; Li et al., 2015), regression (Ku, 2016; Long
et al., 2014), decision tree (Ballestores Jr and Qiu, 2012; Basse et al.,
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2016), and probabilistic (Arsanjani et al., 2011; Vaz et al., 2015)
methods. Others such as evolutionary, deep learning, reinforcement
learning, dimensionality reduction, Bayesian, and regularisation
methods have been used less frequently (Kamusoko and Gamba, 2015;
Li et al., 2015; Verstegen et al., 2014; Zhang et al., 2008). Each of these
methods employs structurally different numerical formulations, which
affect the accuracy and transparency of automata-based LUCC models.
Few of these methods facilitate the transparent extraction of transition
rules and their corresponding uncertainty.

Transparent transition rules enable both an enhanced ability to
appreciate the relationships between land-use change (or other similar
environmental phenomena) and predictor variables. This is necessary to
understand model structure. Hence, the inferred logic of model struc-
ture captured in transition rules can be visualised, dissected, and dec-
iphered, and can be generalized and applied to address other similar
problems. This can be invaluable for informing error checking and
enabling model validation. The explicit identification of transition rules
can also help understand the nature of the major land-use transitions
(Tayyebi et al., 2014). Incomplete information about transition rules
and their uncertainty may impede the understanding of land-use
change processes (Koomen and Borsboom-van Beurden, 2012;
Pozoukidou, 2005). However, many approaches have been subject to
limitations in their ability to clearly identify transition rules and have
been criticised as being black-boxes (Islam et al., 2018; Li and Yeh,
2002; Qiu and Jensen, 2004; Waddell, 2002). For instance, Kamusoko
and Gamba (2015) compared cellular automata calibrated using
random forest, support vector machine, and logistic regression. The
higher performance of the random forest model was attributed to the
relatively accurate transition potential maps. However, apart from lo-
gistic regression which is capable of revealing the relative global con-
tribution of each variable to the land-use change process, none of these
methods is capable of implementing accessible and transparent sets of
transition rules at the pixel level. Transparent approaches are more
desirable than black-box approaches for transition rule detection, even
if this preference trades-off some performance (Tseng et al., 2008;
Uzuner et al., 2009). This includes, but is not limited to, LUCC plans
where it is helpful to provide insight into the internal decision-making
process of algorithms for a better interpretation of the result. Similar
requirements also exist for other environmental applications aimed at
improving the quality of management plans in the context of natural
hazards (Lai et al., 2016; Royston et al., 2012; Shadman Roodposhti
et al., 2016), water treatment (Gibert et al., 2010), soil erosion
(Adinarayana et al., 1999), and farming systems (Moore et al., 2014).

Simulated change and persistence in land-use patterns need to be
interpreted and validated via a better understanding of uncertainty
both at the rule level and spatially. While a few studies have success-
fully mapped the spatial distribution of classification uncertainty
(Bryan et al., 2009; Khatami et al., 2017), providing estimates of clas-
sification uncertainty at rule-level (i.e. for each rule) may also provide
complementary insights into land-use change processes. However, ra-
ther than providing uncertainty estimates, land-use modelling studies
typically report on the accuracy of LUCC analyses using global methods
such as confusion matrices and the Kappa index (Congalton, 1991).
Confusion matrices are usually calculated to allow for global measures
of accuracy (i.e. overall accuracy) to be generated but which lack the
ability to quantify the spatial distribution of classification accuracy
(Tsutsumida and Comber, 2015). Similarly, the Kappa index does not
consider the disagreement in classification accuracy (Pontius Jr and
Millones, 2011; Stein et al., 2005). Global measures of accuracy require
ground truth data. However, it is a time-consuming process to prepare
land-use ground truth maps for every simulated map of land-use. In
addition, there is no ground truth for future land-use scenarios and
therefore these methods provide no basis for quantifying confidence in
simulated future land-use maps. Explicit rule-level uncertainty esti-
mates can assist land-use planners and policymakers to understand the
uncertainties associated with major land-use transitions. The mapping
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of these uncertainties can identify locations where simulated land-use
allocation occurs with high confidence or areas of low confidence,
which can both be useful in land-use planning.

Here, we develop a new algorithm, DoTRules—Dictionary of
Trusted Rules—for modelling land-use transition potential for applica-
tion in automata-based LUCC models, which features the transparent
identification of transition rules and quantifies their uncertainty. It also
enables the mapping of corresponding land-use transition uncertainties.
In DoTRules, the uncertainty of transition rules is quantified using
Shannon entropy. Dissecting transition rules and their corresponding
uncertainty enables the better understanding of the core rules governing
major land-use/cover dynamics, which is useful for informing land-use
planning. We also show that the uncertainty values can be applied as an
approximation of simulation accuracy. We describe the DoTRules al-
gorithm and demonstrate its application to the Ahvaz region, Iran. We
quantify the uncertainty of LUCC simulation calibrated using DoTRules
to calculate land-use transition rules and compare the results with si-
mulations based on random forest transition rule detection. We discuss
the advantages and disadvantages of the new approach for LUCC
modelling more generally and the application of DoTRules in the cal-
culation of transition potential maps for LUCC models to broader en-
vironmental processes where it is necessary to understand the direction
and magnitude of state transitions.

2. Description of DoTRules

DoTRules is a moderate-speed rule-based algorithm for calculating
transition potential in LUCC according to a dictionary of trusted rules
where categorical/discrete data are involved. It is similar to the random
forest algorithm (Breiman, 1996, 2001) insofar as rule sets are used to
select the mode response (i.e. most frequent land-use class) among
every available potential response variable. However, instead of gen-
erating random trees, DoTRules operates by constructing many transi-
tion rules within various rule sets derived from a training dataset, with
land-use assigned to the most frequently occurring class. The rule
construction process is fulfilled using concatenation of discrete pre-
dictor variables and the entropy of each rule is then calculated as an
estimate of accuracy. The DoTRules procedure was implemented in R
(R Core Team, 2017) and consists of the following six steps.

2.1. Step 1: assembling the data

Training data is represented by a set of grid cellsI = { iy, iy, ..., in, }.
Each grid cell i in I has a value x; for each of the independent predictor
variables or criteria J = {jy, ja, ..., j"} where in this study there are nine
independent predictor variables (Table 1). Criteria are discretised pre-
dictor variables which can be derived from either native categorical
data (e.g. land-use class) or classified continuous data (e.g. distance to
road). Thus, for each criterion, x; can adopt one of a fixed set of pos-
sible classes specific to that criterion, which we represent as the set H
for every j in J (Table 1). Note that each criterion j will have a different
set of classes H but, for clarity, here we do not index H by j. Each grid
cell i has a corresponding land-use class [; which are also discrete se-
mantic attributes from the set of five land-uses L{u: urban, a: agri-
culture, b: bare lands, r: roads and w: water bodies}.

2.2. Step 2: calculating Shannon entropy and prioritising criteria

For each criterion j in J, we calculated the frequency of grid cells i
within each criterion class h in H occurring within each land-use class [
in L, represented as Py

ier X = h] (€]

Note that [...] are Iverson brackets where [Q] (quantity) equals 1 if

Py = for V linL, hinH, andjinJ
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Applied variables including cell state (CS), neighbourhood value (NV), suitability value (SV), target variable and validation data along with a description, units, data

source and number of classes (H).

Variable type Description Unit Source Classes (H)
Cell state (CS) Land-use state of cell x,y at times 1985 - Landsat 5
Neighbourhood variables (NV)

ug, Number of neighbouring urban cells for cell x,y (uy, <8) - Landsat 9
any Number of neighbouring agricultural cells for cell x,y (aij <8) - Landsat 9
b,‘(y Number of neighbouring bare lands cells for cell x,y (b,',y <8) - Landsat 9
r{,y Number of neighbouring road cells for cell x,y (r,{,y <8) - Landsat 9
wi, Number of neighbouring water cells for cell x,y (wy, <8) - Landsat 9
Suitability variables (SV)

D,‘(y Distance from drainage networks for cell x,y at time t metre Google Earth 4
R;y Distance from road networks for cell x,y at time t metre Google Earth

s}(y Slope value of cell x,y at time t degrees SRTM DEM 10
U,fy Distance from urban edge for cell x,y at time t metre Landsat 10
Target variable Land-use state of cell x,y at time 2000 - Landsat 5
Validation data Land-use state of cell x,y at time 2015 - Landsat 5

true, and O if false. The term ),
criterion class h.

In information theory, entropy is the quantitative measure of system
disorder, instability, and uncertainty (Shannon, 2001). The Shannon
entropy is the quantitative measure of uncertainty in this study. Here,
we calculate the entropy of land-use class occurrences within each
criteria class h across all criteria j.

i1 [xy = h] is the number of grid cells in

€pj = — Z Pl,hj 1nPl,h,j

leL

(2

The entropy of each criterion was then calculated as the average
entropy of its classes e, ; weighted by the proportion of cells in each
class:

€j= Z ehJ Z [xl]=h]/|I|

heH iel

3)

where |I] is the set of grid cells in the training dataset. The criteria were
then ranked and prioritised according to their average entropy e; with
higher priority criteria being those with the lower entropy, represented
by the ordered set of criteria priority J"

2.3. Step 3: creating a rule set

We then concatenate grid cell criteria values x; as per criteria
priority J’ in order to form a rule set D. The concatenation of two or
more characters is the string formed by them in a series (i.e. the con-
catenation of 12, A7, and 5% is 12A75$). Equation (4) illustrates the
grid cell values for criteria ranked in order of priority (i.e. lowest en-
tropy) concatenated for each grid cell (row) i, thereby creating a unique
rule for each grid cell in the training dataset.

X1 X2 X X7 X1 X2 Xy Xy d
X1 X2 | .| Xy %1711 %1 X2 U X X1 d
D=( Qi & (== = (uf : =& & : =]
Xi1 X | | xy Xl Xi Xia .o Xy Xl d;
Xini) \ X2 Xy X XXz - xyp X dn
4

Note that following the concatenation and extraction of rules, every
rule within the dictionary has maintained its single land-use class[; € L.
We then aggregate duplicate rules where grid cells have exactly the
same values for all criteria, leaving a parsimonious new rule set of
unique rules D’ derived by aggregating D. The frequency of occurrence
of all potential land-use classes [ in L is then calculated for each unique
rule d'in D"
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The land-use class (i.e. u, a, b, r, w from set L) with the highest
frequency (i.e. the mode) is then assigned to each corresponding unique
rule d'

2.4. Step 4: calculating and mapping the uncertainty of land-use prediction

Considering every unique rule d' from our rule set D’, a Shannon
entropy value is then calculated based on the frequencies of each pos-
sible land-use class (Equation (5)) using Equation (2). This can inform
both the spatial distribution of uncertainty in land-use predictions and
provides transparent transition rules for informing land-use planning.
The spatial distribution of uncertainty is quantified and mapped by the
entropy of each unique rule back to the grid cells corresponding to each
rule. Each grid cell is then allocated to the land-use class with the
highest frequency for its corresponding rule.

2.5. Step 5: classify land-use of test dataset according to the dictionary of
trusted rules

Above we describe the process of creating the dictionary of trusted
rules and allocating the most likely land-use class for each rule based on
frequency. The land-use class can now be predicted for the rest of the
study area dataset (i.e. the test dataset). To do this, we follow the same
procedure to set up a rule set for the test dataset. We then match each
test data rule with its equivalent in the dictionary of trusted rules using
many to one matching (i.e. matching many rules concatenated from test
grid cells to individual trusted rules calculated using the training da-
taset) and allocate the most likely land-use to each test data rule. This
can then be mapped back to the grid cell level as each rule in the test
dataset corresponds to a grid cell.

2.6. Step 6: handling null values

Finally, as there is always a possibility of encountering ‘null’ values
using the DoTRules approach where new cells in the test dataset present
combinations of criteria states not encountered in the training data.
Here, using the same training and test sample, we will sequentially
exclude the least informative (i.e. highest entropy and lowest ranked)
independent predictor variables or criteria J’ from our analysis and re-
execute DoTRules step 3 to 5. This generates a second rule set (i.e. a
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Fig. 1. Location and land-use in the study area of Ahvaz, Iran.

sub-rule set) which contains fewer unique rules d’ (in the corresponding
D’) and ‘null’ records as it contains fewer criteria classes. We then re-
peat in developing some new sub-rule sets until all ‘null’ values in our
primary rule set are covered by some corresponding sub-rules among
secondary sub-rule sets. The best sub-rule to replace a null-matching
rule in our test rule set is the one with the lowest entropy while those
rules with higher entropy values (higher than the specified threshold)
are eliminated.

3. Methods
3.1. Study area

The study area was the Ahvaz region of south-west Iran. Ahvaz city
is the capital and largest city of Khuzestan province (Fig. 1). The po-
pulation of Ahvaz increased from 334,399 to 1,338,126, from 1976 to
2015, with attendant growth in urban areas. The Karun River, 850 km
long and Iran's largest, splits the city into western and eastern parts
then joins the Arvand Rood River and continues toward the Persian
Gulf. The climate is semi-arid, with a mean annual precipitation of
252mm and an average annual temperature of 26.9 °C. June is the
driest and warmest month and January is wettest and coolest.

The major land-use transition trends in the study area included the
rapid growth of built-up urban areas (transformed from bare lands and
agricultural lands) and agricultural lands (transformed from bare lands)
from 1985 up to 2015. A minor transition from agricultural lands to
bare lands was also observed. Urban growth was driven by rapid po-
pulation growth. Agricultural production has increased to meet in-
creasing local demand, supported by the abundance of water and fertile
soils. Various agricultural commodities are produced such as wheat,
barley, oilseeds, rice, sugar cane, medicinal herbs, as well as orchard
crops such as palm, citrus, and olives (Rangzan et al., 2008).
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3.2. LUCC simulation process overview

LUCC simulation was implemented in five Phases (Fig. 2). Phase 1
involved data collection, preparation, and pre-processing, including
land-use/cover classification, undertaken using geospatial analysis
software (ENVI and ArcGIS). Neighbourhood analysis, cost-distance
layer preparation, and data discretisation was then done using the raster
package (Hijmans and van Etten, 2014) in R. Phase 2 involved calcu-
lating rates of land-use change between 1985 and 2000 and identifying
major land-use change transitions for specifying land-use change de-
mand (Islam et al., 2018; Kamusoko and Gamba, 2015).

Phase 3 involved the use of DoTRules and random forest (RF) al-
gorithms to calculate LUCC transition potential maps using a training
sample of randomly selected grid cells. In Phase 4, the land-use map of
1985, transition potential maps, and the estimated rates of land-use
change for the primary land-use classes were integrated into a cellular
automata model in R. The CA model was calibrated to apply 30 annual
iterations (one for each year 1985-2015). Finally, in Phase 5, the pre-
dictive accuracy of the simulated land-use maps for 2015 was validated
against the classified land-use map for the same year using 100,000
random points for three simulated land-use classes (i.e. urban, agri-
culture and bare lands). Finally, we then compared the accuracy of
cellular automata land-use change models calibrated using DoTRules
and RF algorithms.

3.3. LUCC modelling variables and data sources

To analyse the trend of change and calculate transition potential
maps, which are required for simulating future LUCC, Landsat images
of the years 1985, 2000 and 2015 were used. The two earlier Landsat
images (i.e. 1985, 2000) were used for land-use change analysis and the
calculation of land-use transition potential maps while the Landsat
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Fig. 2. Schematic representation of methodology implementation in five phases.

image for 2015 was used for validation. Five groups of variables in-
cluding cell state (CS), neighbourhood variables (NV), suitability vari-
ables (SV), a target variable, and validation data were extracted from
the main data sources for LUCC simulation (Table 1).

Note that for the NV, as neighbourhood configuration is known to
affect cellular automata simulation (Fuglsang et al., 2013; Lauf et al.,
2012; Verstegen et al., 2014; White and Engelen, 1993), the optimal
kernel size k = 8 for neighbourhood analysis was selected based on
initial cross-validation. All variables were resampled to the 30-m grid
cell resolution of the Landsat data, totalling 734,328 cells across the
study area. The derivation and use of these variables is described in
detail below.

3.3.1. Landsat archive and image classification

Image pre-processing involved normalization for the region of in-
terest. Land-use/cover maps of the study area were then classified using
a support vector machine classifier with geospatial analysis software
(ENVI and ArcGIS), achieving an overall accuracy of =85%. During this
process, all grid cells were allocated to one of five land-use/cover
classes: urban area, agricultural land, bare land, roads, and water
bodies for the 1985, 2000 and 2015 images (Fig. 3).

3.4. Land-use change analysis to compute transition demand

The rate of simulated land-use change, or transition demand, in
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cellular automata models needs to be calibrated to observed rates by
quantifying the historical amount of change for each land-use type
(Hewitt and Diaz-Pacheco, 2017; Kamusoko et al., 2009; Kamusoko and
Gamba, 2015; Pastor et al., 1991). We calculated transition demand
based on the Landsat-derived land use/cover maps for 1985 and 2000
(Fig. 3). The type and frequency of land-use change between 1985 and
2000 were cross-tabulated. The time interval used for calibration for
the 1985-2000 transition matrix was 15 years. Land-use transition
probabilities were calculated as average annual rates of change fol-
lowing previous studies (Hewitt and Diaz-Pacheco, 2017) in order to
take account of annual change demand for each cellular automata
iteration.

3.5. Computation of land use/cover transition potential maps

In constructing a training dataset for calculating transition potential
maps, we selected 300,000 grid cells randomly from the major
1985-2000 land-use change categories of “bare lands to urban”,
“agriculture to urban”, “bare lands to agriculture”, “agriculture to bare
lands” and “no change” (that is, areas which remained unchanged as
urban, agriculture, bare lands and water bodies). Independent predictor
variables were then calculated for the initial year t = 1985 including
the cell state (i.e. land-use map), along with neighbourhood and suit-
ability variables (Table 1). We then computed the transition potential
map for 1985 using DoTRules and the random forest algorithm as
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Fig. 3. Landsat-derived land-use/cover maps of the study area for (a) 1985, (b) 2000 and (c) 2015.

implemented in the randomForest package (Liaw and Wiener, 2002)
available in R. CS, NV, and SV were recalculated each year based on the
simulated land-use and used to update the land-use transition potential
map each year.

3.6. CA-based land-use change simulation

In traditional cellular automata models, the evolution of the future
cell state is determined by the following formula (Al-shalabi et al.,
2013; Martinez et al., 2012; Wu, 1998):

SI+1 — St . t , wt
N f( o ’““J ®)
where, S}, represents the land-use state for a cell at location (x,y) at
time t. pfcyis composed of a set of suitability measures for the cell at time
t.wygis the state of neighbouring cells at time t, andfis a transition
function.

Three datasets, (1) the initial land use/cover map (1985); (2) the
transition potential maps (1985-2000); and (3) the transition demand,
were used to simulate land use/cover up to 2015 using a cellular au-
tomata (Hewitt et al., 2013). Transition demand, calculated via the
land-use change analysis, determined the amount of land-use change in
each simulated year, while the land-use transition potential determined
the location and type of change (Yang et al., 2016). For each simulation
year, land-use was allocated by finding the grid cell with the maximum
transition potential. If the new land-use was less than that demanded
then the change was made. The cell with the next highest transition
potential was then found and the change made if the new land-use was
less than that demanded. This process was repeated until all land-use
demands were met for that year (Yang et al., 2016). This whole process
was repeated for 30 annual iterations to simulate land-use from 1985 to
2015 where a new land-use map is produced at the end of each itera-
tion.

3.7. Comparing DoTRules with random forests

To quantify DoTRules' performance in calculating land-use transi-
tion potential, we implemented the same CA-based LUCC simulation
scheme but using the RF algorithm (Kamusoko and Gamba, 2015) to
calculate transition rules. The RF algorithm provides an appropriate

benchmark for assessing the performance of the DoTRules scheme be-
cause of the high performance typically found in predictive modelling
(Caruana and Niculescu-Mizil, 2006). RF is also computationally effi-
cient and suitable for large training data (Mahapatra, 2014). We com-
pared the overall accuracy of both DoTRules and RF-based cellular
automata simulation of LUCC for the Ahvaz study area.

4. Results
4.1. Variable importance and transition rules

A major product of DoTRules is calculated Shannon entropy values,
which are used for prioritising criteria before assembling transition
rules. Criteria are ranked and prioritised according to their average
entropy e; (Equation (3)) with higher priority criteria being those with
the lower entropy (Table 2). In our case study, 24,437 transition rules
were assembled and applied for the purpose of LUCC simulation. Here,
every single rule/sub-rule is defined by a unique string which re-
presents criteria values, along with a frequency distribution of potential
land-use class labels, rule-exclusive hit ratio, rule-exclusive entropy
value, and mode land-use label (Fig. 4).

The transparency of DoTRules opens up information contained in
the transition rules for critical observation or examination. For ex-
ample, retained information in the following rules of Fig. 4 can be
dissected and retrieved once the variable priority is clarified. Here, both
rules have the same value for cell state, neighbouring agricultural cells,
distance to road, distance to drainage, and neighbouring water and
road cells. However, the rules have different values for neighbouring
bare land cells, distance from urban, neighbouring urban cells, and
slope. The two rules have the same mode label but different un-
certainties and hit ratios.

4.2. Simulation performance

Following the simulation procedure based on the transition poten-
tial maps as calculated by DoTRules and RF, the results are mapped and
then validated by a 100,000 validation test points of 2015 land-use data
map (Fig. 5).

This comparison is done only for simulated land-use classes in-
cluding urban, agriculture and bare lands. Considering the fact that

Table 2

Sorted variables of LUCC model from Table 1 along with their priority value (mean entropy e;).
Variable CS b;ry U:‘cy a}(y RJtry ll;y DJtry W;f;y V;f;y s;y
Priority 1st 2nd 3rd 4th 5th 6th 7th 8th gth 10th
] 0.815 0.956 1.001 1.005 1.009 1.028 1.070 1.099 1.113 1.142
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Fig. 4. Samples of low uncertainty (a, left) and high uncertainty (b, right) rules extracted using DoTRules. The string of numbers highlighted in grey is represents
concatenated class labels from the 10 variables from Table 1 prioritised by their predictive ability as shown in Table 2.

land-use map of 2015 was not involved in the preparation of transition

potential maps, the overall accuracy of the LUCC simulation using
DoTRules (75.4) was very similar to that based on RF (75.8). Although

both algorithms demonstrate broad spatial similarities, LUCC simula-

tion results of the Ahvaz study area for the target year of 2015 also

display localised differences. Land-use simulation of both DoTRules and
RF were promising in identifying, retaining, and preserving the spatial

DoTRules

details of the 2015 land-use/cover maps.

4.3. Uncertainty of major land-use transitions

A key advantage of DoTRules is that all major transitions can be
identified and dissected,

enabling the analysis of major trends of

change/persistence along with their corresponding information such as

Land-use 1985 Land-usg 2000 Land-use 2015

T .

RF

DoTRules

a0 i
,

Land-use 1985 Land-use 2000 Land-use 2015

Fig. 5. Simulated land-use/cover map of Ahvaz for the year 2015 using DoTRules (a) and random forest (b). The sub-plots demonstrate the local differences of the
two algorithms against validation data. Dashed border represents Landsat-derived land-use maps for that year.
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Table 3
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Estimated frequency and entropy of major land-use transitions.

From-To Frequency Average entropy Uncertainty of rules in percent of total
e<0.2 0.2<e<0.6

Urban-Urban 2218 0.483 43.61 11.21
Agriculture-Agriculture 4293 0.491

Agriculture-Urban 3028 0.351

Agriculture-Bare lands 3780 0.542

Bare lands-Bare lands 3539 0.341

Bare lands-Agriculture 2108 0.361

Bare lands-Urban 1794 0.387

uncertainty and frequency (Table 3). In terms of land-use change/per-
sistence transitions and their uncertainty values, ‘bare lands to bare
lands’ persistence had the lowest transition rule uncertainty, while
‘agriculture to urban’ change was the most uncertain land-use transi-
tion. Transition rules indicating land-use persistence tended to have
lower uncertainty than did rules indicating a change from one land-use
to another.

4.4. Rule-level spatial uncertainty

The DoTRules spatial uncertainty product can facilitate the better
understanding of uncertainty of transition rules in the mapped land-use
predictions. As there will be one uncertainty map for every simulation
year, it helps to understand where LUCC simulation results are less or
more reliable for each iteration. Considering the results of LUCC si-
mulation using DoTRules, the mean uncertainty maps (for 30 iterations)
demonstrates a large extent of low (L), very low (VL) and extremely low
(EL) uncertainty classes (i.e. class labels) characterised by a low un-
certainty estimate may be observed within the inner boundaries, where
LUCC is less active. Patches of high (H), very high (VH) and extremely
high (EH) uncertainty occurred where LUCC is more active, particularly
those areas located at the interface between urban and agricultural
lands (Fig. 6).

4.5. Uncertainty and accuracy

In this study, 24,437 unique rules were detected for the primary rule
set where their relevant hit ratio is measured using available test data of
2015. Uncertainty was closely related to hit ratio (i.e. percent of cor-
rectly assigned land-use labels for a rule) of transition rules where the
hit ratio of transitions exponentially decreases with increasing un-
certainty (R? = 0.89). Thus, low uncertainty transitions are associated
with a higher hit ratio (Fig. 7). Lower uncertainty means there is an
obvious land-use class (mode land-use class label) for a rule, while high
uncertainty reflects that there are several candidate land-use classes for
that rule, which results in less accurate land-use prediction.

5. Discussion
5.1. DoTRules for LUCC simulation

The method used to calculate transition potential maps greatly af-
fects the performance of automata-based LUCC models (Charif et al.,
2012; Mas et al., 2014; van Vliet et al., 2016). Transparency and un-
certainty of the transition rules are important for providing a better
understanding of the model structure and of the nature of land-use
transitions. Here, we introduced and applied a competent and trans-
parent algorithm for the calculation of LUCC transition potential maps
for use in cellular automata modelling of land-use change. As a pre-
dictive algorithm, DoTRules represents a new way to extract transition
rules and map transition potential for use in LUCC simulation models
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while also enabling the mapping of uncertainty values at both pixel and
rule levels. This makes uncertainty explicit and opens up the informa-
tion contained in the transition rules to better model scrutiny and to
better-informed land-use planning and policymaking. The potential of
DoTRules is demonstrated here for the Ahvaz study area, and more
applications and experiments are now required in different geographic
contexts to fully explore the general applicability of DoTRules as a land-
use transition rule detection algorithm. Below we discuss expand on the
advantages and limitations of using DoTRules for cellular automata-
based LUCC simulation.

5.1.1. Transparency of transition rules

Depending on the method used to extract transition rules, some rule
sets may be omitted which impairs the quality of the transition po-
tential map and subsequent LUCC simulation. For instance, in applying
black-box algorithms such as RF to calculate LUCC transition potential,
it is difficult, if not impossible, to interpret the derived relationships
between future land-use and predictor variables such as cell state,
neighbourhood, and suitability variables. As a result, we cannot gain a
clear understanding of the problem at hand due to the lack of an ex-
planatory capability to provide insight into the characteristics of the
target dataset (Qiu and Jensen, 2004). The aim of developing and ap-
plying DoTRules for LUCC simulation was to improve the quality of
urban planning by identifying reliable and accessible land-use transi-
tion rules. DoTRules provides an opportunity to uncover model struc-
ture by adding more clarity to implemented transition rules and re-
vealing information such as rules component priority order and values,
frequency distribution of potential matching land-use labels for every
rule, and rule-exclusive hit ratio and uncertainty (Fig. 4). It can also
identify simplified sub-rule sets compromising only the more in-
formative variables. For instance, considering major types of land-use
change/persistence, DoTRules identifies the rules governing the most
common change/persistence patterns within the study area. Land-use
planners and policy makers can explore alternative possibilities for
land-use if past transparent and well-understood land-use transition
rules continue into the future. A transparent set of land-use transition
rules can also help uncover model structure hidden by other black-box
algorithms and aid model verification and error identification (Bauer
and Steinnocher, 2001; Tseng et al., 2008). Although most LUCC
modellers are aware of the shortcomings and the limited accuracy of
their input data, very little is known about the propagation of such
errors in LUCC models (Dong et al., 2015).

5.1.2. Uncertainty of transition rules

We have demonstrated DoTRules' ability to quantify the frequency
and uncertainty of land-use transition rules (Table 3; Fig. 4). It is
beneficial to gain reliable information corresponding to the function-
ality of those rules including their uncertainty and their corresponding
hit ratio (Fig. 4). Regardless of the fact that a rule is indicating the
change or persistence of land-use in a grid cell, the rule-level un-
certainty values provide a strong indication of prediction hit ratio and
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Fig. 6. Uncertainty map of DoTRules for three major land-use classes including (a) urban, (b) agriculture, (c) bare lands, during 30 years of simulation (up to 2015) in

the study area.
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Fig. 7. The hit ratio versus uncertainty value from every unique rule for
DoTRules. Here, bubble size shows the frequency of rules with a same un-
certainty value.

can be applied as a filter to remove low accuracy portions of a LUCC
map derived from unreliable transitions.
The uncertainty of rules belonging to primary land-use transitions
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(Table 3) is also useful for the prior exploration of potential accuracy
values (i.e. accuracy estimate) and can reduce or eliminate the need for
post-hoc validation. This can be done for the primary rule set or a sub-
rule set extracted from training data focusing on some specific land-use
variables forming land-use transition potential maps. DoTRules' rule-
level uncertainty product contains detailed information about the
multiple specific land-use transitions in a study area, which provide
landscape and urban planners with the opportunity to better under-
stand the nature of future land-use transitions and the level of con-
fidence in their prediction. For instance, considering the results of un-
certainty assessment for LUCC simulation (Fig. 6 and Table 3), the land-
use transition between urban and agriculture/bare lands is more un-
certain than simulated land-use transitions between agricultural lands
and bare lands. By specifying uncertainty thresholds, land-use transi-
tions in which we are most confident or least confident can be identi-
fied, and these can be made explicit in mapped planning outputs to
guide decision-making. Thereby, uncertainty thresholds may be applied
to any type of transitions for reducing the rule population to include
only the most trusted (i.e. those below a specific uncertainty value). The
high degree of correspondence between uncertainty and hit ratio means
that planners can use DoTRules' uncertainty products as an indicator of
land-use simulation accuracy. For example, if the uncertainty threshold
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of 0.2 is applied, then planners can be confident that the hit ratio of all
the remaining rules should be high (i.e. above 90%) (Fig. 7).

5.1.3. Mapping uncertainty

In addressing the limitations of widely used accuracy measures and
indices, using the DoTRules algorithm, we can also map and apply lo-
calised uncertainty values within different classification stages as an
estimate of accuracy. Thus, a strength of DoTRules in LUCC modelling
is its demonstrated ability to quantify the uncertainty of simulated land-
use patterns at pixel level, regardless of test data availability.
Uncertainty maps can be produced as an estimate of prediction accu-
racy even for future land-use change scenarios which lack ground truth
data. This enables the most recent data to be used in model-building
rather than model validation, which should produce more reliable land-
use simulation further into the future, yet still providing an estimate of
uncertainty. Spatially-explicit uncertainty also assists landscape and
urban planners to foresee the degree of susceptibility to prediction error
for specific localities. Rule-level uncertainty maps are created for every
LUCC iteration (30 iterations in the present study), as every pixel cor-
responds to one transition rule for every iteration. The mean un-
certainty of these transition rules allocated to a single grid cell may be
calculated, mapped and analysed for one or many iterations.
Uncertainty values vary over time for LUCC simulation for each pixel
and this can be graphed over time. This helps landscape and urban
planners to keep track of LUCC modelling uncertainty and/or hit ratio
at pixel level at different time steps of a LUCC model. Other indicators
of uncertainty may also be produced including the maximum,
minimum, or median; each of which may be useful, depending on the
planning application.

5.2. Broader application to environmental modelling

DoTRules quantifies the level of correspondence between each
predictor variable and response variable (Table 1) through the calcu-
lation of entropy values (Equation (3)). In addition, it also extracts the
transparent rules, each with a quantified frequency and entropy, which
provides insight into the observed dynamics (Table 3). In this paper, we
have applied DoTRules for calculating transition potential in cellular
automata models of land-use/cover change. Nonetheless, the con-
ceptual framework of DoTRules can be applied to other applications of
automata models such as plant population dynamics, forest/bush fire
spreading, slope failure, debris flow, and urban sprawl where transition
potential mapping is required and where it is necessary to understand
the direction and magnitude of state transitions with greater transpar-
ency. For instance, in terms of bushfire simulation using cellular au-
tomata, a same set of transition rules should be determined to form a
transition potential map (Quartieri et al., 2010) while different set of
predictor variables such as bush density, flammability, land height and
wind (Li and Magill, 2001). Simultaneously, the application of rule-base
methods such as DoTRules-for a better understanding of dynamic en-
vironmental phenomena is not limited to automata models (Amini
et al., 2010; Luo et al., 2017; Moore et al., 2014) and it involves a
broader range of environmental models. The authors are currently
trialling DoTRules in other critical applications such as image classifi-
cation and landslide susceptibility zonation.

5.3. Limitations of DoTRules

The major limitation of DoTRules corresponds with the calculated
entropy value for low-frequency rules where, in calculating Shannon
entropy values, some rules may be attributed a low-uncertainty value
by chance, due to a very low-frequency value. For instance, if the en-
tropy value of two different rules is equal, they would be attributed the
same uncertainty class. Nonetheless, they may be different in terms of
frequency values (Fig. 8). In this regard, among the rules with the same
entropy values, those with higher frequency would be more reliable as
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Potential labels for rule (20454)
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W

Fig. 8. Different rules with the same uncertainty measure (entropy value = 0)
and different frequency values. Here, letters above the circles represent land-
use/cover types such as U): urban, A): agriculture, B), bare lands, R): roads and
W): water.

they occurred more often. A subjective thresholding approach may be
beneficial to deal with this problem. Thus, those low-frequency rules
should be ignored if they belong to a frequency value lower than a
threshold defined by the user.

6. Conclusion

Cellular automata have long been used to capture the complex dy-
namics of LUCC processes. We have presented a new and innovative
algorithm called DoTRules—Dictionary of Trusted Rules—for calcula-
tion of transition rules and transition potential maps for use in CA-based
simulation models. We have then presented an application of the pro-
posed approach in the context of LUCC simulation where cellular au-
tomata models are increasingly popular. DoTRules enables land-use
allocation to be implemented with a new level of transparency and
transition rule characteristics are accessible and can be monitored.
DoTRules also enables the spatial exploration of LUCC prediction un-
certainty. These estimates can assist urban planners in avoiding risky
land-use predictions where rules are not reliable. Assessing rule in-
formation also enables the detection of trends and understanding pro-
cesses of land-use change in a study area. The performance of automata
simulation based on DoTRules transition potential calculation was very
similar to simulation based on the state-of-the-art random forest
method. Hence, we conclude that DoTRules is a promising approach for
extraction of transition rules and providing transition potential maps
for CA-based simulation due to its predictive ability, transparency, and
ability to produce multiple uncertainty products. These capabilities can
enhance the utility of automata-based simulation as a tool for end-users
and improve the quality of the resultant decision-making process. More
experiments in different environmental applications with a different set
of variables are now required to verify the broader utility of DoTRules
as a CA calibration tool. The application of DoTRules as a transparent
rule-based approach to other environmental modelling applications
should also be explored.

6.1. Software availability

The following software has been used in this study for spatial data
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preparation and processing, land-use simulation and map creation.
DoTRules script is implemented in R v. 3.5.0.

e ENVI 5.2 (Harris Geospatial, Broomfield, Colorado, United States)
® Rv. 3.5.0 (R Foundation for Statistical Computing, Vienna, Austria)
® ArcGIS v.10.2 (ESRI Inc., Redlands, USA)

Note: No specific software component has been developed for this
study.
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