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1  | INTRODUC TION

In this time and era where many organisms are facing great environ‐
mental challenges, the need to evaluate the demographics of animal 

populations to guide conservation and management practices is 
high and rising. Mortality rates are among the most important de‐
mographic parameters for understanding population dynamics 
(Caughley, 1977). Probably, the most widely used methodologies to 
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Abstract
As a key parameter in population dynamics, mortality rates are frequently estimated 
using mark–recapture data, which requires extensive, long‐term data sets. As a po‐
tential rapid alternative, we can measure variables correlated to age, allowing the 
compilation of population age distributions, from which mortality rates can be de‐
rived. However, most studies employing such techniques have ignored their inherent 
inaccuracy and have thereby failed to provide reliable mortality estimates. In this 
study, we present a general statistical model linking birth rate, mortality rate, and 
population age distributions. We next assessed the reliability and data needs (i.e., 
sample size) for estimating mortality rate of eight different aging techniques. The 
results revealed that for half of the aging techniques, correlations with age varied 
considerably, translating into highly variable accuracies when used to estimate mor‐
tality rate from age distributions. Telomere length is generally not sufficiently corre‐
lated to age to provide reliable mortality rate estimates. DNA methylation, signal‐joint 
T‐cell recombination excision circle (sjTREC), and racemization are generally more 
promising techniques to ultimately estimate mortality rate, if a sufficiently high sam‐
ple size is available. Otolith ring counts, otolithometry, and age‐length keys in fish, 
and skeletochronology in reptiles, mammals, and amphibians, outperformed all other 
aging techniques and generated relatively accurate mortality rate estimation with a 
sample size that can be feasibly obtained. Provided the method chosen is minimizing 
and estimating the error in age estimation, it is possible to accurately estimate mor‐
tality rates from age distributions. The method therewith has the potential to esti‐
mate a critical, population dynamic parameter to inform conservation efforts within 
a limited time frame as opposed to mark–recapture analyses.
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assess mortality rates in populations are mark–recapture analyses. 
However, mark–recapture analyses tend to require large and long‐
term data sets. For instantaneous, snapshot estimation of mortality 
rates, age distributions within populations serve as an alternative and 
a series of models have been developed to that effect (Supporting 
information Appendix S1). A cited reference search for these models 
and refining by “age” in combination with “mortality” or “survival” 
in Web of Knowledge yielded 2065 studies (date accessed on 10 
October 2018), implying the wide application of deducing mortal‐
ity rate from age distribution. Although this approach bears notable 
promises for cases where urgent assessment of population status is 
required, there has thus far been little consideration of its accuracy 
involving a robust statistical approach.

Almost invariably the underlying age distributions used in the 
calculation of mortality rates are subject to error. Although various 
models assessed mortality rates from age distributions (Supporting 
information Appendix S1), all but Conn, Doherty, Nichols, Ricklefs, 
and Rohwer (2005) assumed that age was estimated without error. 
Thus, the reliability of deduced mortality rates was generally over‐
rated. Conn et al. (2005) used only two age categories, that is, ju‐
venile and adult, numerically investigating the consequences of 
misclassification to these two categories. Their study pointed out 
that substantial errors in mortality rate estimation can potentially 
be made using this approach even if other major assumptions, such 
as that the age distribution across the population under study is sta‐
ble, are being met. Despite its critical importance, a robust statistical 
model to investigate the propagation of errors in age estimation to 
mortality rate estimates from age distributions has, to our knowl‐
edge, not previously been developed.

Birth and survival processes determine the age distribution 
within a population. The birth and survival distributions over time 
are therefore intimately linked with a population’s age distribution. 
Provided that the age distribution of a population can be measured, 
and the birth distribution of that population is known, the survival 
distribution can be estimated, and vice versa. Birth distributions can 
often be assessed with much more ease than survival distributions 
or can alternatively be reasonably assumed (e.g., a uniform distribu‐
tion; that is, a constant average birth rate; Ball, Britton, & Trapman, 
2017; Thornley & France, 2016). The interest therefore primarily lies 
with being able to reliably estimate a survival distribution from a 
population’s age distribution.

Our study has three aims that are being addressed in separate 
sections of the paper: (a) To provide a detailed statistical description 
of the relationship between a population’s birth rate, survival rate, 
and age distributions, we present a statistical model for the analyti‐
cal derivation of mortality rates and their confidence intervals from 
age distributions, taking errors in age estimation into account. (b) To 
evaluate the accuracy of different aging techniques in determining 
age, we next reviewed the accuracy of a range of popular or po‐
tentially promising aging techniques employed in vertebrates. These 
include measurement of telomere length, DNA methylation, sig‐
nal‐joint T‐cell recombination excision circle (sjTREC), racemization, 
otolith ring counts, otolithometry (measurement of otolith mass, 

length, width, and height), age‐length keys, and skeletochronology. 
(c) Finally, we used our statistical model to evaluate the suitability of 
these aging techniques to accurately estimate mortality rates.

2  | MATERIAL S AND METHODS

2.1 | Model description

We here provide a brief outline of the statistical models that are pre‐
sented in more detail, including all assumptions made, in Supporting 
information Appendix S2. To facilitate cross‐referencing between 
the below and Supporting information Appendix S2, we retain equa‐
tion numbers as used is Supporting information Appendix S2.

Consider a well‐defined population for which we want to evalu‐
ate its dynamics and potentially simulate or predict its future devel‐
opment. The development of this population is necessarily stochastic 
and is determined by the survival function 1−FS (s) and the birth time 
density function fT (t) of its members, ultimately resulting in the pop‐
ulation’s age density function fY (y). Here, the subscripts S, T and Y 
denote the survival time, the time of birth, and the age, respectively, 
of a random individual from the population. Furthermore, we follow 
the convention of indicating distribution functions by F and proba‐
bility density functions by f. The relationship between these three 
entities, survival time, time of birth, and age, is given by formula

or equivalently.

Given two of these three entities, the third one is determined. 
In the majority of cases, fT (t) can be assessed in some way or rea‐
sonably assumed. Consequently, an estimate of the survival function 
1−FS (s) , which is of key interest, can be computed via Equation (), 
provided fY (y) can be estimated.

To obtain an estimate of fY (y) , one has to measure the age of 
individuals from a population directly. However, this is almost always 
impossible and one consequently has to rely on measuring other 
variables, so‐called age proxies X, that correlate strongly with age 
Y. In Supporting information Appendix S2, statistical solutions are 
provided for the case where a single (d = 1) or multiple (d > 1) age 
proxies X are described as a function of age Y. In the framework of 
the current study where we wish to review the suitability of spe‐
cific age proxies in isolation, we specifically consider the case d = 1 
with X = X(1), a one‐dimensional age proxy. For d = 1, we assume that 
there exists a strictly monotone, known function g(y), a known pos‐
itive constant σ, and a random variable ε with known density f� (z) , 
distribution function F� (z) , mean E�=0, and variance E�2=1, such 
that

(3)fY (y)=

(
1−FS (y)

)
fT (−y)

∫∞
0

(
1−FS (t)

)
fT (−t)dt

, −∞<y<∞,

(4)1−FS (s)=
fT
(
0
)
fY (s)

fT (−s) fY
(
0
) , −∞< s<∞.

(8)X=g
(
Y
)
+��
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which ultimately (see Supporting information Appendix S2) yields:

Furthermore, for the specific aims of our study we make the clas‐
sic assumption that the monotone function g (y) is linear, that is, that 
there exist known constants α and β with

Thus, the dependence of the age proxy X on the age Y is de‐
scribed via linear regression with normal error.

As outlined in Supporting information Appendix S2, we need not 
necessarily make any assumptions on the class of survival functions 
1−FS (s) and resort to a so‐called nonparametric estimation prob‐
lem to estimate the density function fX (x). However, in such cases 
estimating the density function fY(y) is a so‐called deconvolution 
problem, which is notoriously hard to solve. For these problems, 
convergence rates in n (i.e., the number of age proxies measured) are 
extremely slow, like 

√
ln n; see Carroll and Hall (1988). On the other 

hand, if restriction of the survival function to a parametric class of 
survival functions is justified, estimation of the survival function at a √
n rate becomes feasible.

To satisfy the wish for a parametric class of survival functions, 
we may consider an exponential distribution for the survival time S 
of a newborn (chosen at random) from a population. This means that 
we assume the existence of a positive number � with.

and �=−ln
(
1−m

)
, which implies that the density of S satisfies

Loosely speaking, m is the probability that an individual dies 
within the next time unit. Therefore, m is called the mortality rate 
and 0<m<1 holds.

Although this simplification, which assumes a constant mortality 
rate m with age, is not strictly necessary from a mathematical per‐
spective (i.e., models allowing for much more general or complex 
relationships between survival and age, and thus mortality rate and 
age, are feasible as outlined above and in Section 3 of Supporting 
information Appendix S2), it dramatically reduces the required sam‐
ple size. In many cases, this is also a reasonable assumption for two 
reasons. Firstly, some species do show either a constant mortality 
rate or a roughly constant mortality rate before reaching a very ad‐
vanced age (6 out of 23 vertebrates investigated in Jones et al., 2014). 
Secondly, although in the remaining species the relationship between 
age and mortality rate varies, it often increases exponentially with 
age, resulting in few individuals within wildlife populations living long 
enough to be impacted by a substantially increased mortality rate 
with age. Hence, estimating age‐specific mortality rates often require 

large, long‐term data sets, be it mark–recapture data or population 
age distribution data. Such data are, however, available for very few 
species only (Jones et al., 2014). Most case studies lack sufficient data 
and thus estimate mortality rate based on the assumption of a con‐
stant adult mortality. Given the relatively low number of individuals 
affected by advanced‐age‐related changes in mortality, the potential 
impact on the population dynamics of such assumption may also be 
limited. Finally, this simplification is notably warranted in the present 
case, where the aim of the exercise is primarily focused on evaluating 
the suitability of a range of popular or potentially promising verte‐
brate aging techniques to establish population age distributions with 
the purpose of estimating survival functions.

Next to the value of the age proxy X of sampled individuals, one 
might be able to observe additional information about these individ‐
uals, like their sex and other characteristics. In principle, such covari‐
ates might help in obtaining a more precise estimate of the true age Y. 
However, given the limited availability of such data in the literature, 
we will not pursue this approach any further in this paper.

To simplify further, we assume that the population is completely 
stable, in the sense that fT(t) is the uniform density on [−� ,0] with � 
tending to infinity. In view of Equations () and (), we have

This means that the age Y of an arbitrary individual from the pop‐
ulation has the same exponential distribution as the survival time S 
of a newborn. Next, combination of Equations (10) and (18) shows 
that the density of the age proxy X becomes.

Writing �=��∕ |�| we note that estimation of the mortality rate

is equivalent to estimation of the parameter �, which we propose 
to call proxy coefficient. With Φ (z) denoting the standard normal 
distribution function, Equation (20) can be rewritten in terms of � as

The correlation between the age Y and the age proxy X equals 
1/
√
1+ �2.  So, the smaller the proxy coefficient �, the larger the cor‐

relation between the age and the age proxy.
To estimate the value of m or equivalently of �=−

�(ln(1−m))
|�|  (cf. 

Equation ), we take a random sample of size n from the population 
and determine the values of age‐correlated variable X of the selected 
individuals. Let us denote these values as x1,… ,xn, which are viewed 
as realizations of the independent random variables X1,… ,Xn, with 
density from Equation (23).

(10)fX (x)=
∞∫
0

1

�
f�

(
x−g

(
Y
)

�

)
fY (y)dy.

(19)g (y)=𝛼+𝛽y , y>0.

(15)1−FS,𝜆 (s)=P(S> s)=e−𝜆s= (1−m)s, s≥0,

(16)fS,� (s)=�e−�s, s≥0.

(18)fY,� (y)=
1−FS,� (y)

�∞
0

(
1−FS,� (t)

)
dt

=
e−�y

1∕�
=�e−�y, y≥0.

(20)fX,� (x)=
∞∫
0

1

�
�

(
x−�−�y

�

)
�e−�ydy, x∈ℝ.

(22)m=1−exp (−�)=1−exp (− |�|�∕�)

(23)fX,� (x)=
�

�
exp

(
1

2
�2−�

�

|�|
x−�

�

)
Φ

(
�

|�|
x−�

�
−�

)
.
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In Supporting information Appendix S2, it is shown that the 
Fisher information for proxy coefficient �equals.

and that the asymptotically efficient estimator 𝜇̂n of � can be de‐
fined as

with �/Φ (z) written as short hand for �(z)/Φ (z) . “Asymptotically 
efficient” means that the estimator has approximately a normal dis‐
tribution for large sample sizes n with the true value � as mean and 
the smallest possible variance, namely 1

nJ(�)
.

In view of Equations (15) and (22), the corresponding efficient 
estimator m̂n for m equals.

By taking many samples of size n from the set of numbers {x1,… ,xn

}, computing the corresponding estimates of m, and estimating in this 

way the distribution of m̂n,we may construct a bootstrap confidence 
interval for m.

As an alternative 95% confidence interval for m, we mention.

where the function.

is evaluated at m̂n.Here, J (�)is as in Equation (32) and I (m)is the 
Fisher information for m. The 95% confidence range (CR) may be cal‐
culated by deducting the lower limit from the upper limit and equals

We define the empirical 95% error percentage as.

which estimates the theoretical 95% error percentage.

with m the true value of the mortality rate. We used EEP(95) to as‐
sess the accuracy of mortality rate estimation from age distributions 
with large values indicating high variation and thus lower accuracy.

2.2 | Review of aging techniques

To obtain a general impression of the performance of each aging tech‐
nique when assessing mortality rate using age distributions, we re‐
viewed eight aging techniques for vertebrates including measurement 
of telomere length, DNA methylation, sjTREC, racemization, otolith 
ring count, otolithometry, age‐length keys, and skeletochronology. 
These eight aging techniques were reviewed because they are well‐
known indicators that to some extent correlate with age (i.e., telomere 
length, otolith ring count, otolithometry, age‐length keys, and skel‐
etochronology) or are promising indicators in determining age with low 
errors (i.e., DNA methylation, sjTREC, and racemization). We reviewed 
these techniques in terms of the animal classes to which they have 
been applied, their accuracy in predicting age and factors other than 
age (e.g., environmental factors, health status) influencing their suitabil‐
ity as age estimators (background details of the eight aging techniques 
are presented in Supporting information Appendix S3). To evaluate 
their accuracy as age predictors in vertebrates, we selected 218 data 
points from 123 case studies, extracted the relationship between age 

(32)J (�)=
1

�2
−1−�2+� ∫

∞

−∞

� (z)

Φ (z)
� (z+�)dz

(36)𝜇̂n=

(
1+

1

Ĵn

)
𝜇̄n−

1

nĴn

∑n

i=1

𝜑

Φ

(
𝛽

|𝛽|
Xi−𝛼

𝜎
− 𝜇̄n

)

(37)m̂n=1−exp

(
−
|𝛽| 𝜇̂n
𝜎

)
.

(39)

⎡
⎢⎢⎢⎣
m̂n−

1.96�
n I

�
m̂n

� , m̂n+
1.96�
n I

�
m̂n

�
⎤
⎥⎥⎥⎦
,

(38)I (m)=
�2J

(
−

�

|�| ln
(
1−m

))

�2(1−m)2

(42)
CR

(
95

)
=

3.92√
nI
(
m̂n

) .

(43)EEP
�
95

�
=
CR

�
95

�
m̂n

×100%=
392√
n

×
1

m̂n

�
I
�
m̂n

� %,

(44)EP
�
95

�
=

392√
n

×
1

m
√

I (m)
%,

F I G U R E  1   Lookup plot for the basic factor in the error percentage. 
Lookup plot for 1

m

√
I(m)
, the basic factor in the error percentage EP(95) 

(calculated as the 95% confidence range divided by the expected 
mortality rate m using Equation  for various combinations of mortality 
rate (m; y‐axis) and aging parameter (|�∕�|; x‐axis). � and � represent 
the slope and standard deviation of the error in a linear regression 
of age against age markers estimated by different aging techniques, 
respectively. The absolute value of �∕�, |�∕�|, is the key variable 
representing the accuracy of aging techniques in the estimation of age 
and thus the estimation of mortality rate. Shadings range from black 
(poor performance) via gray to white (good performance), where black 
shading on the left‐hand corner indicates combinations of m and |�∕�| 
which yield proxy coefficient μ > 8. For such cases, 1

m

√
I(m)

 is large and 
the computation of its exact value is unreliable. We thus considered 
techniques yielding low |�∕�| values that result in μ > 8 as performing 
very poorly and unable to accurately estimate mortality rate.
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estimators and true age, and obtained�∕� the crucial indicator for the 
variation in estimated mortality rate (see Equations  and ) and the R2 
for each study (data are presented in Supporting information Appendix 
S4). Specifically, we conducted a Web of Knowledge search using the 
key words “age estimation” or “age determination” or “age assessment” 
or “estimat* age” or “assign* age” combined with the name of each aging 
technique. From these studies and the relevant studies cited therein, 
we selected only those investigating long‐lived (maximum age esti‐
mated ≥2 years) vertebrates, with a sample size larger than five, includ‐
ing both laboratory‐ and field‐based studies. Moreover, we excluded 
cases investigating the correlation of age proxy and real age in diseased 
individuals. Only a small proportion of these studies provided raw data 
that we could directly use to calculate R2 and �∕�. In the remaining 
cases where only data distributions were provided, we used bootstrap‐
ping over 10,000 iterations to generate data and subsequently calcu‐
late a mean R2 and �∕�. To evaluate the performance of the various 
aging techniques within animal classes, for each of these groups the 
median and range of R2 and �∕� were calculated.

To evaluate the performance of the reviewed aging techniques 
when assessing mortality rate using age distributions, we constructed 
a lookup plot (Figure 1) for 1

m
√

I(m)
,the basic factor in the 95% error per‐

centage EP(95) (see Equation (44) with the absolute value of �∕� or |�∕�| 
ranging from 0.01 to 75 (range of observed |�∕�|, the upper limit 75 is 
the second largest observed value of|�∕�|, the largest value infinite) and 
the mortality rate m ranging from 0.01 to 0.99. Using Equation (44), we 
also constructed a lookup table (Table 1) to assist determining the min‐
imum sample size n required to estimate mortality rate with a specific 
accuracy (i.e., with a desired 95% error percentage EP(95)) for various 
combinations of |�∕�| and expected mortality rate m.

3  | RESULTS

In our statistical approach, the accuracy of the aging technique |�∕�|,  
the sample size n, and the expected mortality rate m are the three de‐
terminant parameters for the variation in the estimated mortality rate. 

m

|β/σ|

0.1 0.2 0.5 1 2 5 10

EP (95) = 5% 0.1 9,813 6,682 5,738 5,584 5,542 5,530 5,528

0.2 23,431 9,150 5,650 5,105 4,953 4,907 4,900

0.3 51,048 14,055 5,821 4,690 4,376 4,278 4,263

0.4 90,927 22,168 6,244 4,321 3,806 3,644 3,618

0.5 139,059 33,378 6,935 3,981 3,238 3,005 2,967

EP (95) = 10% 0.1 2,454 1671 1,435 1,396 1,386 1,383 1,382

0.2 5,858 2,288 1,413 1,277 1,239 1,227 1,225

0.3 12,762 3,514 1,456 1,173 1,094 1,070 1,066

0.4 22,732 5,542 1561 1,081 952 911 905

0.5 34,765 8,345 1734 996 810 752 742

EP (95) = 20% 0.1 614 418 359 349 347 346 346

0.2 1,465 572 354 320 310 307 307

0.3 3,191 879 364 294 274 268 267

0.4 5,683 1,386 391 271 238 228 227

0.5 8,692 2087 434 249 203 188 186

EP (95) = 30% 0.1 273 186 160 156 154 154 154

0.2 651 255 157 142 138 137 137

0.3 1,418 391 162 131 122 119 119

0.4 2,526 616 174 121 106 102 101

0.5 3,863 928 193 111 90 84 83

EP (95) = 40% 0.1 154 105 90 88 87 87 87

0.2 367 143 89 80 78 77 77

0.3 798 220 91 74 69 67 67

0.4 1,421 347 98 68 60 57 57

0.5 2,173 522 109 63 51 47 47

Notes. � and � represent the slope and the standard deviation of the error in a linear regression of age 
against age markers estimatedy different aging techniques, respectively. The absolute value of �∕�, 
|�∕�|,is the key variable representing the accuracy of aging techniques in the estimation of age and 
thus in the estimation of mortality rate.

TA B L E  1   The minimum number of 
individuals required to estimate mortality 
rate with a specific accuracy (i.e., the 95% 
error percentage EP (95)) for various 
combinations of |�∕�| and expected 
mortality rate m



6  |     ZHAO et al.

In Figure 1, we translated the simultaneous variations in |�∕�| and m 
into the variation in the basic factor (i.e., 1

m
√
I(m)

) that correlates posi‐
tively with the error percentage EP(95) (Equation ). This factor, and 
thus EP(95), generally decreases with an increase in |�∕�|. However, 
in the range of 0.2 <|�∕�|<2, the basic factor decreases rapidly after 
which the basic factor changes little for |�∕�|>2 ,  plateauing around 
|�∕�|= 5.

An interaction exists between |�∕�|and m. When |�∕�|>0.5, the 
basic factor generally decreases with an increase in m, meaning that 
for a certain sample size the accuracy of an aging technique should 
increase when m decreases in order to keep EP

(
95

)
 stable. However, 

when |�∕�| <0.5, the basic factor and thus EP(95) increase rather 
than decrease with m. When mortality rate m tends to be high, and 
|�∕�| tends to be low, the � in Equation (22) is high. For large � values, 
for example, �>8, the basic factor in EP(95) is high, but the compu‐
tation of its exact value is numerically unreliable, due to the division 
of two extremely small numbers in element � ∫∞

−∞

�(z)

Φ(z)
� (z+�)dz in 

Equation  (i.e., in the computation of J, which is subsequently used in 
Equations  and ). We thus considered aging techniques yielding low 
|�∕�| values that result in μ > 8 as performing very poorly and unable 
to accurately estimate mortality rate. We like to stress that Equation 
(44) and hence Figure 1 and its properties sketched here are conse‐
quences of the model we have chosen via Equations (15) and (19).

Table 1 shows the minimum sample size n needed for a suffi‐
ciently accurate estimate of mortality rate. When the aging tech‐
nique performs poorly, that is,|�∕�| is low, the required sample size 
n to achieve a low EP(95) is large. For instance, more than 400 indi‐
viduals are required to achieve an EP(95) of 20% when |�∕�| < 0.2. 
Whether or not such a high sample size is difficult to achieve very 
much depends on the ease of obtaining animals for aging, which may 
be species and context dependent, and the (costs of the) methods 
involved in estimating age. Yet, it is clear that one should generally 
strive for the use of aging techniques with |�∕�|>0.2 when estimating 
mortality rate is one of the ultimate targets.

The eight aging techniques achieved highly different accuracies 
in terms of their R2 and |�∕�| (Table 2). Telomere length invariably 
yielded poor matches. On average, DNA methylation, sjTREC, and 
racemization performed slightly better. Otolithometry, age‐length 
keys, otolith ring count, and skeletochronology tended to provide 
the best outcomes. However, all aging techniques showed markedly 
different performances across taxa and studies with even the most 
promising techniques, otolith ring count and skeletochronology, oc‐
casionally proved to be unreliable.

Although showing a relatively good correlation with age in some 
fish studies, telomere length seems to be a generally poor proxy for 
age. In many studies, telomere length did not correlate with age and 
the median R2 across taxa was <0.35. With the exception of fishes, in 
most cases |�∕�| < 0.2 (Table 2), indicating that the method is not suf‐
ficiently adequate to estimate mortality rate from age distributions.

DNA methylation performed slightly better than telomere length, 
with a median R2 across taxa between 0.75 and 0.85. Although the 
median |�∕�| in mammals was just above 0.2, |�∕�| varied consider‐
ably across studies and was incidentally as low as 0 (Table 2).

sjTREC in humans performed slightly better than DNA methyl‐
ation, with a median |�∕�| of 0.47 (Table 2). However, the single ap‐
plication of sjTREC in mammals showed no correlation with age (Ito, 
Yoshimura, & Momoi, 2015).

TA B L E  2   Summary of accuracy in aging across studies 
employing eight different aging techniques for a range of 
vertebrate taxa

N R2 |β/σ|

Telomere length

Human 14 0.30 (0.09–0.69) 0.03 (0.01–0.08)

Mammal 8 0.33 (0.02–0.64) 0.10 (0.03–0.42)

Bird 20 0.34 (0.00–0.82) 0.10 (0.00–1.60)

Fish 18 0.29 (0.00–0.85) 0.50 (0.01–1.02)

Shark 2 0.06 (0.03–0.10) 0.04 (0.04–0.05)

Reptile 6 0.05 (0.00–0.73) 0.02 (0.01–0.46)

DNA methylation

Human 9 0.82 (0.06–0.98) 0.15 (0.02–0.26)

Mammal 4 0.75 (0.00–0.93) 0.24 (0.00–0.37)

sjTREC

Human 6 0.76 (0.65–0.85) 0.47 (0.10–2.38)

Mammal 1 0.00 (0.00–0.00) 0.00 (0.00–0.00)

Racemization

Human 54 0.96 (0.55–0.99) 0.32 (0.06–2.39)

Mammal 2 0.92 (0.90–0.93) 0.38 (0.36–0.39)

Bird 3 0.45 (0.02–0.53) 0.17 (0.04–0.98)

Otolithometry

Fish 37 0.75 (0.28–0.92) 1.81 
(0.19–75.20)

Age‐length keys

Fish 18 0.78 (0.30–0.92) 1.89 
(0.23–12.58)

Otolith ring 
count

Fish 8 0.92 (0.60–1.00) 2.42 (1.27–Inf)

Skeletochronology

Mammal 1 1.00 (1.00–1.00) 4.80 (4.80–4.80)

Reptile 6 0.96 (0.00–1.00) 1.86 (0.00–Inf)

Amphibian 1 1.00 (1.00–1.00) Inf (Inf–Inf)

Notes. N, number of case studies; R2, � ,and � represent the coefficient of 
determination, the slope, and the standard deviation of the error in a 
linear regression of age against age markers estimated by different aging 
techniques, respectively. The absolute value of �∕�, |�∕�|,is the key vari‐
able representing the accuracy of aging techniques in the estimation of 
age and thus in the estimation of mortality rate. Humans considered 
separate from other mammals. N, median, and range for R2 and |�∕�| are 
provided for each taxon. Individual data for all case studies are provided 
in Supporting information Appendix S4.
sjTREC means signal-joint T-cell recombination excision circles; accura‐
cies of otolithometry and age‐length keys are probably inflated since 
these used otolith ring counts to assess true age without validation; Inf 
indicates infinite |�∕�| for σ = 0, that is, no error in age determination.
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Racemization performed similarly to DNA methylation and 
sjTREC with considerable variation within and between taxa. A num‐
ber of racemization studies in humans and mammals achieved a me‐
dian R2 > 0.9 and a median|�∕�| > 0.2. The R2 and |�∕�| of individual 
studies, however, could be as low as those found in studies employ‐
ing telomere length (Figure 2 and Table 2). Moreover, to date its ap‐
plication to nonhuman vertebrates has been highly limited (Table 2).

Otolith ring counts, which are limited to studies in fish, showed 
best correlations with age, with a median R2 and |�∕�| of 0.9 and 2.4, 
respectively (Table 2). This is therewith the only technique achieving 
a median |�∕�| higher than 2. One study even scored a 100% ac‐
curacy (Gooley, 1992). Both otolithometry and age‐length keys, for 
which we found studies in fish exclusively although indeterminate 
growth is also present in reptiles and amphibians, could likewise pro‐
vide good estimates of age, with |�∕�| close to 2. It should be noted 
that in all these studies where age was based on otolith ring counts, 
this age was considered to be the true age and that our estimates of 
accuracy for these studies are thus potentially inflated.

Albeit sample size was limited to one in both taxa, the (near) 
100% accuracy for skeletochronology in amphibians (Friedl & Klump, 
1997) and mammals (Castanet et al., 2004) indicates great promise 
for this technique (Table 2). This promise was supported by the larger 
sample of reptile studies yielding |β/σ| close to 2 (Table 2).

4  | DISCUSSION

Despite their wide use to this effect, half of the aging techniques 
reviewed were not sufficiently reliable to invariably yield satisfyingly 

accurate mortality rate estimates, for populations with a roughly con‐
stant mortality rate during adulthood. Telomere length performed 
worst; the two molecular methods, DNA methylation and sjTREC, 
and the chemical method, racemization, perform slightly better. The 
two techniques that can exclusively be used in fish (i.e., otolith ring 
count and otolithometry) and two techniques with potential wider 
application, that is, age‐length keys and skeletochronology, per‐
formed best. If we would consider error percentages ≤20% at an 
assumed mortality rate of the population of 0.3 as sufficiently ac‐
curate, |�∕�| would have to be higher than 0.34 when n = 500. Under 
this scenario, only 31% of the case studies using telomere length 
resulted in sufficiently accurate mortality rate estimates. This pro‐
portion increased to 62% in studies using DNA methylation, sjTREC, 
or racemization; 75% in skeletochronology; and increased to 92% in 
studies using otolith ring count, otolithometry, or age‐length keys. 
Thus, any application of these aging techniques for mortality rate es‐
timates would need to carefully evaluate the error in age estimation 
and should not take high accuracies in age estimation for granted. 
Finally, one could also resort to measuring and combining multiple 
age proxies to estimate age and therewith reduce error and improve 
accuracy. In Supporting information Appendix S2 Section 2, the sta‐
tistical basis for this approach is provided.

Although not explicitly addressed in our review since the ex‐
amples are few, we noted that the performances of some aging 
techniques varied considerably between populations, genders, and 
tissues examined, for example, between populations using otolith‐
ometry (Newman, 2002), genders using age‐length keys (Ordines, 
Valls, & Gouraguine, 2012), and tissues using telomere length (Izzo, 
2010). Thus, in addition to using multiple age proxies, the inclusion 

F I G U R E  2   Performance of the reviewed aging techniques. Box plots displaying the variations within and among the reviewed aging 
techniques (Supporting information Appendix S3) in their correlations with age in terms of |�∕�|. � and � represent the slope and the 
standard deviation of the error in a linear regression of age against age markers estimated by different aging techniques, respectively. 
The absolute value of �∕�, |�∕�|, is the key variable representing the accuracy of aging techniques in the estimation of age and thus in the 
estimation of mortality rate. Aging techniques along the x‐axis are ranked in order of increasing median |�∕�| across case studies. Numbers 
along the top of the panel denote number of case studies. The thick line within each box and whisker plot represents the median, and the 
lower and upper box border represent the first and the third quartile, respectively. Whiskers denote the lower and upper 95% confidence 
interval. Dots outside the whiskers are outliers above or below the 95% confidence interval.
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of covariates in the estimation of age from age proxies may be an 
additional avenue to improve accuracy.

Telomere length has been one of the first molecular indicators 
that were found to correlate with age. However, it was far from 
satisfying to allow for its use in “mortality rate from age distribu‐
tion modeling,” consistent to the conclusion by Dunshea et al. 
(2011) that telomere length is insufficiently accurate to estimate 
age in vertebrates. The aging techniques here reviewed are among 
the most promising or popular ones. In fish, growth ring counts in 
other hard structures, such as scales, vertebrae, and fins, have also 
been employed in age estimation but have generally been found to 
be less accurate than otolith ring counts (e.g., Vandergoot, Bur, & 
Powell, 2008, Ma, Xie, Huo, Yang, & Li, 2011). Other morphologi‐
cal measurements and molecular biomarkers have also been used 
in vertebrates. For instance, measurement of shoulder height in el‐
ephant (Shrader et al., 2006); pentosidine in many mammalian spe‐
cies (Brownlee, Vlassara, Kooney, Ulrich, & Cerami, 1986; Sell et al., 
1996) and poultry (Iqbal, Probert, & Klandorf, 1997); and lipofuscin 
in fishes (Girven, Gauldie, Czochanska, & Woolhouse, 1993) and hu‐
mans (Goyal, 1982). However, all these techniques were less accu‐
rate than the reviewed alternatives, especially at older age, and were 
thus not included in our review.

Besides the accuracy of aging techniques in terms of |�∕�|, sam‐
pling effort also plays a key role in the accuracy of mortality esti‐
mates. For populations with an expected m lower than 0.5, to obtain 
a mortality estimate with an error percentage under 20%, one has to 
sample a large number of individuals, for example, >400 when |�∕�| 
is below 0.2. Sampling effort under 180 individuals in this case can 
never achieve such proposed accuracy. Therefore, a combination of 
a reliable aging technique and a large sample size is crucial to obtain 
an accurate mortality estimate.

Although estimation of mortality rate from population age distri‐
butions has been widely applied, our model is the first to assess the 
accuracy of age distribution‐based mortality rate by taking errors in 
aging into consideration using a robust statistical model. The model 
makes a set of assumptions (see Section 4 of Supporting information 
Appendix S2) of which two are particularly noteworthy: (1) that the 
population is stable in the survival function of its individuals and (2) 
that mortality rate is constant across age groups. Fortunately, for as‐
sumption (1) to hold, the population need not be stable in numbers, 
but only in its age distribution. Nevertheless, we highlight that it 
should be realized that such age distributions are the result of popu‐
lation dynamic processes over time, including variations therein. The 
model assumes that such variations do not exist. If these variations 
do exist, as in wild populations, it will not detriment the performance 
of the model if those variations distribute around a mean and do not 
vary with age or time; such possibilities need to be considered in the 
interpretation of the model’s outcomes. As outlined in Materials and 
methods and Supporting information Appendix S2, assumption 2 is 
not a prerequisite to allow estimation of mortality rates from age dis‐
tributions taking errors in age proxies into consideration. However, 
assuming a constant mortality rate across age groups greatly reduces 
sample size requirements (to 

√
n; Supporting information Appendix 

S2), which is of great importance considering the still large sample 
sizes required using this simplifying assumption. Admittedly, a con‐
stant mortality rate with age does not conform with reality in a range 
of species. For vertebrates where this has been investigated in detail, 
it applied to 6 out of 23 species (Jones et al., 2014). Nevertheless, it 
is an importantly simplifying assumption that is frequently adopted 
in initial analyses of population dynamics, especially for populations 
under threat with a lack of historical data to derive an age‐specific 
mortality rate. Moreover, depending on the nature of mortality–
age relationships, of which many different forms exist (Jones et al., 
2014), deviations from a roughly constant mortality rate with age 
may only occur at a highly advanced age and apply to a small, poten‐
tially negligible fraction of the population only. Such deviations from 
constant mortality rate may also hold for immatures, which in many 
species can be easily identified and removed from the analysis. Our 
statistical model thus serves as a first step before considering more 
complex alternatives, which will either require considerably larger 
data sets or, if resorting to mark–recapture, large longitudinal data 
sets. Irrespectively, we emphasize that while our specific model does 
not account for potential differential mortality rates with age, it still 
provides a good impression on how errors in aging translate into er‐
rors in mortality rate estimation.

The specific model here presented is applicable to any proxy for 
age that has, or can be converted to, a linear relationship with age. 
The application of the model to the reviewed data highlights that 
a relatively accurate aging technique and large sampling effort are 
needed to yield reliable mortality rate estimates. However, as op‐
posed to mark–recapture studies, the method still has great poten‐
tial for conservation efforts where time is at a premium, allowing the 
estimation of mortality rate as a crucial population dynamic parame‐
ter within a limited period of time.
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