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Abstract

Little is known about the factors that shape the ecology of RNA viruses in nature. Wild birds
are an important case in point, as other than influenza A virus, avian samples are rarely tested
for viruses, especially in the absence of overt disease. Using bulk RNA-sequencing (‘meta-
transcriptomics’) we revealed the viral diversity present in Australian wild birds through the
lens of the ecological factors that may determine virome structure and abundance. A meta-
transcriptomic analysis of four Anseriformes (waterfowl) and Charadriiformes (shorebird)
species sampled in temperate and arid Australia revealed the presence of 27 RNA virus
genomes, 18 of which represent newly described species. The viruses identified included a
previously described gammacoronavirus and influenza A viruses. Additionally, we identified
novel virus species from the families Astroviridae, Caliciviridae, Reoviridae, Rhabdoviridae,
Picobirnaviridae, and Picornaviridae. We noted differences in virome structure that reflected
underlying differences in location and influenza A infection status. Red-necked avocets
(Recurvirostra novaehollandiae) from Australia’s arid interior possessed the greatest viral
diversity and abundance, markedly higher than individuals sampled in temperate Australia. In
Ruddy Turnstones (Arenaria interpres) and dabbling ducks (Anas spp.) viral abundance and
diversity was higher and more similar in hosts that were positive for influenza A infection
compared to those that were negative for this virus, despite samples being collected on the
same day and from the same location. This study highlights the extent and diversity of RNA
viruses in wild birds, and lays the foundation for understanding the factors that determine

virome structure in wild populations.

Keywords: virus evolution; ecology; host - pathogen interactions; influenza A virus; virome;
wild birds

Introduction

Wild birds are ubiquitous, found on every continent, and a massive biomass of these animals
move across the globe on annual cycles of migration creating a truly interconnected planet
(Bauer & Hoye 2014). In addition to natural environments, birds can be found in our cities,
using waste water treatment plants, landfills, and our drinking water reservoirs. Beyond wild
birds, it is estimated that 1 out of every 7-14 birds on earth are raised for human consumption

(i.e. chickens) (Barrowclough et al. 2016; Food and Agriculture Organization of the United
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Nations 2012), which may act as important amplifiers of potentially zoonotic avian viruses,
such as influenza A virus (IAV) (Gao et al. 2013; Wan 2012; Yoon et al. 2015). Despite our
important relationship with birds, we have only a limited understanding of the diversity of
avian viruses. Indeed, most studies of avian viruses have focused on those that cause mass
mortality in wild birds (e.g. Wellfleet bay virus (Allison et al. 2014; Ballard et al. 2017)),
result in substantial economic losses in food production birds (e.g. avian avulavirus type 1
(Alexander 2000; Leighton & Heckert 2007; Tolf et al. 2013)), or are zoonotic (e.g. IAV
(Gao et al. 2013; Wan 2012; Yoon et al. 2015)).

Avian viruses have a rich and complex ecology (van Dijk et al. 2018), with patterns of
prevalence affected by seasonality (Latorre-Margalef et al. 2014), host species (Munster et al.
2007), host age (van Dijk et al. 2014), latitude (Lisovski et al. 2017), and urbanization (Wille
et al. 2017). However, although most studies of virus ecology and evolution have implicitly
assumed a “one-host, one-virus” model of host-pathogen interactions, such as the Mallard
(Anas platyrhynchos) — IAV model (van Dijk et al. 2014), both hosts and their viruses exist in
communities, and it is likely that these communities are the drivers of viral ecology. For
example, despite intensive focus on the Mallard — IAV system (Latorre-Marglalef et al. 2014,
van Dijk et al. 2014), IAV is in reality a multi-host virus detected in over 100 species of wild
birds, with different avian species playing different roles in virus ecology and evolution
(Olsen et al. 2006). For example, gulls are reservoirs for evolutionary distinct IAV subtypes
(Wille et al. 2011), and rare subtypes may be maintained in members of the Anseriiformes
and Charadriiformes that are infrequently sampled (Wille et al. 2018). In turn, numerous
viruses have been detected in wild bird populations, and Mallards maybe co-infected with at
least three different RNA viruses simultaneously in the absence of overt signs of disease
(Wille et al. 2015; Wille et al. 2017). These other avian RNA viruses — avian coronavirus and
avian avulavirus type 1 — have seasonal prevalence patterns that generally mirror that of 1AV,
and it is therefore possible that they may also share similar host taxonomic or geographic
differences in viral community structure (Wille et al. 2017). Virus co-infection may also be
an important driver of viral prevalence, as virus-virus interactions may enhance or interfere
with infection (Diaz-Munoz 2017; Elena & Sanjuan 2005; Henle 1950; Jolly & Narayan
1989). As a case in point, a higher prevalence of avian coronavirus was found in a bird
population experiencing IAV infection, suggesting that the latter might play a role in
structuring avian viromes in general (Wille et al. 2015).
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Although one in 10 bird species is found in Australia, we know little of the accompanying
viral diversity and abundance in these animals, nor of the large-scale ecological factors that
determine virome composition. We used a recently developed unbiased meta-transcriptomic
pipeline based on bulk RNA-sequencing (Shi et al. 2018Db) to reveal the viromes of four
Australian avian species, and to evaluate how the structure of entire viral communities is
impacted by a variety of ecological correlates. In particular, we assessed the role of host
taxonomy, location, and co-infection with IAV on virome structure. This study illustrates the
extent of RNA viral diversity in wild birds, and the importance of the expansion of traditional
host-pathogen systems beyond simple one-host, one-virus systems to disentangle ecological

processes in viral presence and abundance.

Materials and Methods

Ethics statement

This research was conducted under approval of the Deakin University Animal Ethics
Committee (permit numbers A113-2010 and B37-2013). Banding was performed under
Australian Bird Banding Scheme permit (banding authority numbers 2915 and 2703).
Research permits were approved by the Department of Environment, Land, Water and
Planning Victoria (permit numbers 10006663 and 10005726), Department of Environment,
Water and Natural Resources South Australia (research permit numbers M25919-1,2,3,4,5)
and the Department of Primary Industries, Parks, Water and Environment Tasmania (permit
number FA 13032).

Sample selection

Samples were collected as part of a long-term 1AV surveillance study (Ferenczi 2016;
Ferenczi et al. 2016). Birds were captured using baited funnel walk-in traps, cannon nets or
mist nets as described previously (Ferenczi 2016). Importantly, none of the birds in this study
exhibited any signs of disease. Samples were collected from (i) three temperate locations in
Australia — the Western Treatment Plant near Melbourne (37°59'11.62"S, 144°39'38.66"E),
Yallock Creek (38°13'51.6"S 145°28'43.9"E), King Island (39°55'52"S 143°51'02"E), and
(i) an interior arid location — Innamincka Regional Reserve (27°32"28"S 140°35'47"E).
Species selected for the study included both those known to be important in AV ecology
(Anas ducks and Ruddy Turnstone) and those in which 1AV has not been described
(Australian Shelduck and Red-necked Avocet) (Table 1).

This article is protected by copyright. All rights reserved.



Cloacal samples (from 2012, 2013) or a combination or oropharangeal and cloacal samples
(from 2014) were collected using a sterile-tipped swab and were placed in viral transport
media (VTM, Brain-heart infusion broth containing 2x10° U/I penicillin, 0.2 mg/ml
streptomycin, 0.5 mg/ml gentamicin, 500 U/ml amphotericin B, Sigma). All samples were

assayed for IAV as described previously (Ferenczi et al. 2016).

RNA library construction and sequencing

RNA was extracted using the MagMax mirVana™ Total RNA isolation Kit (ThermoFisher
Scientific) on the KingFisher™ Flex Purification System (ThermoFisher Scientific). All
extracted samples were assessed for RNA quality using the TapeStation 2200 and High
Sensitivity RNA reagents (Aligent Genomics, Integrated Sciences), and 10 samples with the
highest concentration were pooled (based on species, location, and 1AV infection status)
using equal concentrations and subsequently concentrated using the RNeasy MinElute
Cleanup Kit (Qiagen). Libraries were constructed using the TruSeq total RNA library
preparation protocol (Illumina) and host rRNA was removed using the Ribo-Zero-Gold kit
(Illumina). Paired end sequencing (100bp) of the RNA library was performed on the
HiSeq2500 platform. All library preparation and sequencing was carried out at the Australian
Genome Research Facility (AGRF, Melbourne).

RNA virus discovery

Sequence reads were demultiplexed and trimmed with Trimmomatic followed by de novo
assembly using Trinity (Grabherr et al. 2011). No filtering of host/bacterial reads was
performed before assembly. All assembled contigs were compared to the entire non-
redundant nucleotide (nt) and protein (nr) database using blastn and diamond blast (Buchfink
et al. 2015), respectively, setting an e-value threshold of 1x10™° to remove potential false
positives. Abundance estimates for all contigs were determined using the RSEM algorithm
implemented in Trinity. All contigs that returned blast hits with paired abundance estimates
were filtered to remove plants and invertebrate reads that likely correspond to the host diet, as
well as fungal, bacterial and host sequences. Blast results were used to initially classify
viruses to their appropriate family and genus level, and the virus list was further filtered to
remove viruses with invertebrate (Shi et al. 2016), plant or bacterial host associations using
the Virus-Host database (http://www.genome.jp/virushostdb/).
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To compare relative viral abundance across libraries, three host reference genes were mined
from the data using a custom blast database. As not all host reference genes are stably
expressed, we utilized three genes that are stably expressed in the Mallard (Anas
playrhynchos) lower gastrointestinal tract (Chapman et al. 2016): Ribosomal Protein L4
(RPL4), Ribosomal Protein S13 (RPS13) and NADH dehydrogenase 1 alpha subcomplex
(NDUFA) from both Mallard (taxid: 8839), Chicken (Gallus gallus) (taxid: 9031) and Zebra
Finch (Taeniopygia guttata) (taxid: 59729).

Virus genome annotation and phylogenetic analysis

Contigs greater than 1000bp in length were inspected using Geneious R10 (Biomatters, New
Zealand), and open reading frames corresponding to predicted genome architectures based on
the closest reference genomes were interrogated using the conserved domain database (CDD,
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) with an e-value threshold of 1x10~.
Reads were subsequently mapped back to viral contigs to identify mis-assembly using the
Geneious mapping function. Viruses with full length genomes, or incomplete genomes but
that possess the full-length RNA-dependant RNA polymerase (RdRp) gene, were used for
phylogenetic analysis. Briefly, amino acid sequences of the polyprotein or gene encoding for
the RARp were aligned using MAFFT (Katoh & Standley 2013), and gaps and ambiguously
aligned regions were stripped using trimAL (Capella-Gutierrez et al. 2009). Final alignment
lengths are presented in Table S2. The most appropriate amino acid substitution model was
then determined for each data set, and maximum likelihood trees were estimated using
PhyML 3.0 (Guindon et al. 2010) with 1000 bootstrap replicates using the ATGC server
(http://www.atgc-montpellier.fr/phyml/execution.php). For IAV and gammacoronavirus,
phylogenies were also estimated using the nucleotide sequences of complete or partial
reference genome sequences to better place viruses in context of currently described avian
viral diversity. Similarly, the best-fit model of nucleotide substitution was selected, and
maximum likelihood trees were estimated using PhyML 3.0 with 1000 bootstrap replications.
Novel viral species were identified as those that had <90% RdRp protein identity, or <80%

genome identity to previously described viruses.
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Diversity and abundance across libraries

Relative virus abundance was estimated as the proportion of the total viral reads in each
library (excluding rRNA). All ecological measures were calculated using the data set
comprising “higher” vertebrate-associated viruses (i.e. those associated with birds and
mammals), albeit with all retroviruses and retrovirus-like elements removed (hereafter, avian
virus data set). Analyses were performed using R version 3.4.0 integrated into RStudio v
1.0.143, and plotted using ggplot2. Specifically, both the observed richness and Shannon
effective [alpha diversity] were calculated for each library at the family and genus levels
using the Rhea script sets (Lagkouvardos et al. 2017). Beta diversity was calculated using the
Bray Curtis dissimilarity matrix using the vegan package (Oksanen et al. 2007) at both family
and genus levels, and presented as a network using the igraph (Csardi & Nepisz 2006) and
ggnet (https://github.com/briatte/ggnet) packages. Non-metric multidimensional scaling
(NMDS) ordination was additionally calculated based on bray-curtis dissimilarity, and
Adonis tests (PERMANOVA) applied using the phyloseq package (McMurdie & Holmes
2013).

Results

RNA-Seq as a means to identify avian viruses

We characterized the total transcriptome of eight avian pools, representing two tribes in the
order Anseriiformes (waterfowl) and two families in the order Charadriiformes (shorebirds).
These pools were designed to answer specific questions on the determinants of virome
structure including the impact of bird taxonomy (within and between Anseriiformes and
Charadriiformes), location (temperate versus arid sampling sites) and effect of IAV infection
(Table 1). Each library comprised swab samples collected from 10 individuals at the same
time point and location, therefore increasing the chances of finding viruses at lower

prevalence.

RNA sequencing of rRNA depleted libraries resulted in a median of 44,345,130 (range
39,267,372 — 47,650,666) reads per pool, which were assembled into a median of 175,559
contigs (range 135,254 — 357,869). An assessment of the host reference gene RPS13, a proxy
for sequencing depth of libraries, revealed similar abundances (0.000102-0.000342% of
reads), suggesting similar host sequencing depth across the libraries (Fig S1). These eight

libraries had marked differences in the abundance of avian viral reads; Ruddy Turnstones

This article is protected by copyright. All rights reserved.



(Arenaria interpres) and Anas ducks that were 1AV positive (0.21% and 0.1% of reads), and
Red-necked Avocets (Recurvirostra novaehollandiae) from the interior (0.26% of reads) had
relatively high abundances of avian viruses, while lower abundance levels were observed in
Ruddy Turnstones and Anas ducks that were IAV negative (0.00006% and 0.00051% of
reads, respectively) (Fig 1).

Blast analysis and virus characterization revealed the genomes of 27 RNA viruses, of which
18 were newly described species — that is, of sufficient phylogenetic distinction to represent
new virus species) — but that belonged to existing families and were most closely related to
other avian viruses (Table S1). The viruses identified comprised double-stranded RNA
viruses (Reoviridae, Rotavirus; Picobirnaviridae), positive-sense single-stranded RNA
viruses (Caliciviridae; Astroviridae; Picornaviridae, genus Avihepatovirus, Megrivirus and
Unassigned genera; Coronaviridae, genus Gammacoronavirus) and negative-sense single-
stranded RNA viruses (Rhabdoviridae; genus Tupavirus; Orthomyxoviridae, genus Influenza
A virus). Members of the family Paramyxoviridae, known to circulate in wild birds (Ramey
et al. 2013; Wille et al. 2015), were notably absent. No DNA viruses (i.e. the RNA transcripts
of DNA viruses), were detected, potentially because cloacal and oropharangeal samples are a
richer source of shed viruses rather than those actively replicating within cells of the
gastrointestinal tract. An array of retroviruses, or retrovirus-like elements were also detected,
but due to the challenge in differentiating between endogenous and exogenous retroviruses
they will not be discussed here (Fig 1).

Substantial undescribed diversity of RNA viruses in wild birds

An average of 80% of virus species in each library were novel (range 50-100%) and in three
libraries all viruses were novel (Table S1), illustrating the large undiscovered viral diversity
in wild birds. Numerous new viral species were identified from viral families that are not
frequently screened for in wild birds, including rhabdoviruses, caliciviruses, picornaviruses
and rotaviruses. In the case of some viral families, complete viruses were only found in a
single species, such as the picobirnaviruses detected in Australian Shelducks (Tadorna
tadornoides) (Fig 2A). Other viruses, such as the caliciviruses, were highly abundant across
all avian hosts, and full genomes were found in all avian species included in this study (Fig 4,
Fig S9).
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Across all the RNA-dependant RNA polymerase (RdRp) phylogenies, the viral species from
wild birds generated in this study were in the most part similar to previously described avian
viruses, often forming an apparent “avian” clade within each group of viruses and suggestive
of a relatively long-term association with birds (Figs 2-6). Although there were some
exceptions, such as the Shelduck picornaviruses which were most closely related to those

viruses sampled in swine viruses, it is possible that this simply reflects poor sampling.

Wild birds have previously been described as hosts for coronaviruses, astroviruses, and IAVSs,
and the viruses identified in this study belonged to “wild bird” clades to which sequences
from poultry fell as outgroups (S3-S8 Figs). Specifically, four different IAV HA-NA
subtypes were found in this study; H12N5 and HIN3 viruses from Anas ducks, and HGN8
and H10N8 from Ruddy Turnstones (S3-S5 Figs). In addition to H12N5 and HON3 in Anas
ducks, one short contig from the HA of H10 influenza virus was also identified. These three
subtypes, all identified in Anas ducks, had different abundances in this library: H12N5
comprised 77% of all avian viral reads (0.081% of all reads in the library), compared to
HIN3 that comprised 0.5% of avian viral reads in the library (0.0005% of all reads), and H10
that represented only 0.0068% of avian reads. This is in comparison to the HGN8 and H1ON8
viruses identified in the Ruddy Turnstones that had similar abundances (25-35% of avian
viral reads, 0.05-0.07% of all reads in the library).

Broadly, the IAVs from Australian birds described here were most similar to viruses sampled
from Eurasian wild birds, which is expected given that Australian migratory birds use the
East-Asian-Australian flyway. However, while the H12 virus was more similar to viruses
from Eurasia, this virus was phylogenetically distinct from currently circulating viruses,
suggesting the presence of a potential “Australia-specific” clade. Additionally, the Ruddy
Turnstone H10 sequence fell into the North American clade rather than the Eurasian clade, in
contrast to the N8 segment which fell into a Eurasian clade. Such a phylogenetic pattern is
indicative of the intercontinental reassortment of these Ruddy Turnstone viruses. The
gammacoronavirus in this study, identified in Red-necked Avocets, was related to circulating
wild bird gammacoronaviruses from waterfowl from both Eurasia and the United States (S7-
S8 Figs).
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Novel dsRNA viruses. Two complete picobirnavirus genomes were found in wild birds
samples (Fig 2A). These viruses, all from Australian Shelducks, clustered together on the
phylogenetic tree, although a more divergent partial virus was also found. Australian
Shelducks are particularly rich in picobirnavirus diversity, with 21% of all avian viral reads
in the library derived from picobirnaviruses (0.002% of total reads), although this virus
family was also found at low abundance in Anas ducks from the interior. This potentially
suggests a preference for the Anseriiformes, although this will need to be confirmed with
more data (Fig 2A, Fig S9). In addition, rotaviruses were found in almost all libraries, and in
all host groups (Fig S9) with three different subtypes revealed (Fig 2B). Specifically, we
found previously described rotavirus D and G viruses in apparently healthy ducks and
avocets, respectively, even though they are known to cause enteritis in poultry. Unlike other
phylogenies in which wild bird viruses fell in clades that are distinct from poultry-associated
viruses, wild bird and poultry rotaviruses were phylogenetically similar and hence clustered
on the tree, although sample size was limited. Ruddy Turnstones, however, carried a highly
abundant (53% of avian viral reads, 0.11% of total reads in the library) and highly divergent
rotavirus, characterized by a long branch, that fell as a sister-species to rotavirus G (Fig 2B).

Novel ssSRNA viruses. Two novel avastroviruses were identified in Red-necked Avocets,
both falling as outgroups to Group 2 viruses, the archetype of which is Avian Nephritis virus
(Fig 3, Fig S6). These viruses share 60% and 40% pairwise amino acid identity to Avian
Nepbhritis virus, respectively, suggesting that there is a large undescribed diversity of wild
bird avastroviruses. Calicivirus reads were identified in all libraries, with the exception of
Anas ducks from the interior of Australia. Furthermore, full genomes of five caliciviruses
were identified in four libraries at high abundance (Australian Shelducks 0.005% of total
reads, Ruddy Turnstone AV positive 0.006% of total reads, Anas duck 1AV positive 0.002%
of total reads, Avocet Interior 0.03% of total reads), and all these viruses belonged to the
same clade as currently described poultry viruses within an unassigned genus (Fig 4). Two
novel rhabdoviruses from Anseriiformes found in this study fell as a divergent group within
the genus Tupaviruses, within which Durham virus is the only avian virus previously
described (Fig 5). Specifically, Shelduck rhabdovirus and Duck rhabdovirus fell as relatively
distantly related sister species, as illustrated by long branch lengths on the phylogeny, and
thereby potentially represent a novel clade of wild bird viruses.
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Our virome sampling also revealed a great diversity of picornaviruses (Picornaviridae),
almost all of which were found in Red-necked Avocets (Fig 6). Megriviruses were
remarkably abundant in avocets, comprising 30% and 65% of all avian viral reads (0.004%
and 0.169% of total reads) from birds sampled in two locations, representing two locations.
Furthermore, megriviruses represent the only virus (other than IAV) found in more than one
library (Figs 6, 7). The library generated from avocets in the interior also contained (i)
Avocet picornavirus B-like A, that formed a sister group to pigeon picornavirus B, (ii)
Avocet picornavirus B-like B, a sister group to a clade containing both pigeon picornavirus B
and Avocet picornavirus B-like A, and (iii) Avocet picornavirus, a highly divergent virus that
likely represents a novel genus. Finally, in Anas ducks, we observed a divergent sister group
to Duck hepatitis A 1 and 3 (Wild Duck avihepatovirus-like) (Fig 6).

Factors affecting the structure and abundance of avian viromes

One of the most important results of our study was that 1AV status andlocation, but not host
taxonomy, was associated with differences in viral abundance and diversity. Because of the
potential impact of host phylogeny, we expected that virome structure would be similar
within the Anseriiformes and Charadriiformes but differ between these orders. However,
across all the libraries and controlling for location and IAV status, libraries from members of
the Anseriiformes were no more similar to each other than they were to those from the
Charadriiformes. This lack of taxonomic distinction was apparent whether the analysis was
performed at the level of viral species, genus, or family (Figs 7, $10-S12, viral family, R*=
0.142, p = 0.353, viral genus R*= 0.153, p = 0.251), although the sample size was relatively
small. To better control for other variables in our sampling scheme, we compared the libraries
from avocets and dabbling ducks as these were all IAV negative and sampled from the same
locations; in this case the relationship remains statistically insignificant (viral family,
R?=0.25, p=0.4; viral genus R?=0.28, p=0.3), although we lose statistical power due to the
small sample size. Furthermore, the three libraries from Anas ducks had a different
abundance and viral composition, and these three libraries represent differences in IAV
infection status and location (Fig 7, Figs S10-S12). No viral species were shared within host
species or family, with the exception of IAV and a megrivirus found in both avocet libraries
(Fig 7). Finally, there were no differences in viral family distribution at the level of host
species and order; all viral families were found in both Anseriiformes and Charadriiformes,

with the exception of picobirnaviruses which only occurred in the Anseriiformes (Fig S12).
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It might also been expected that birds in temperate locationss would have a higher viral
abundance and diversity than birds from the arid interior of Australia given greater
prevalence of 1AV in temperate latitudes (Lisovski et al. 2017). However, the library from
Red-necked Avocets from the arid interior had a higher viral abundance and diversity than
individuals from temperate Australia, and also had the highest viral abundance across all
libraries (0.26% total reads) (Figs 1,7-8, Figs S10-S11). There was also a clear virome
difference between Anas ducks across locations: a higher viral abundance and species
diversity was found in the ducks from the interior compared to the temperate ducks that were
negative for IAV. However, temperate ducks that were 1AV positive had a higher viral
diversity and abundance compared to ducks sampled from the interior (Fig 8A-B). Overall,
incorporating all libraries and controlling for IAV infection status and host species, location
did not predict higher similarity between the libraries, as libraries from the same location
were no more similar to each other than those from different locations (viral family, R = 0.1,
p = 0.554, viral genus R?=0.093, p=0.8) (Figs 7,8, Figs S10-S12). When comparing only
dabbling ducks that were IAV negative and avocets from arid and temperate locations, the
relationship remained statistically insignificant (viral family R?=0.199, p=0.9, viral genus

R?=0.2, p=1); however, there was limited statistical power due to small sample size.

Finally, we expected that, in accord with previous studies (Wille et al. 2015; Wille et al.
2017), libraries containing IAV would have higher viral diversity compared to those that
were negative for IAV. To address this, samples from IAV positive and negative birds were
selected from the same location during the same sampling expedition to remove any potential
bias. Libraries from both Ruddy Turnstone and Anas ducks that were positive for IAV indeed
had a higher viral abundance (Fig 8A) [0.21%, 0.1% compared to 0.000061%, 0.0005% viral
reads] and virus diversity (Figs 7, 8C, Figs S10-S11), at the family, genus and species levels
(Fig 7, 8C, Figs S10-S11). This trend remained when abundance or diversity attributable to
IAV was removed from the analysis. Furthermore, the two libraries containing 1AV were
statistically significantly more similar to each other in abundance and composition compared
to all other libraries sequenced (viral family including IAV reads, R? = 0.24, p = 0.008, viral
genus including 1AV reads, R?=0.24, p=0.014, viral family excluding IAV reads, R*=0.17,
p=0.04, viral genus excluding IAV reads R?=0.24, p=0.017) (Figs 7,8, Figs $11-512). Only
including the Turnstone and Anas duck libraries negatively affects statistical power due to

small sample size.
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Discussion

Despite the ubiquitous nature and economic importance of birds, we have a poor
understanding of the natural viral diversity in this major animal phylum. To this end, we
employed an unbiased metagenomics approach to reveal avian viromes, comprising 27 novel

and previously described viral species, in a framework of ecological hypothesis testing.

Given the long-term association between hosts and viruses, it was not unexpected that the
viruses revealed in this study were most closely related to other avian viruses (Shi et al.
2018a), especially virulent poultry viruses that have been an important focus in virus
characterization efforts (Boros et al. 2016; Day et al. 2010). Based on previous studies we
anticipated finding low pathogenic forms of coronaviruses, astroviruses, and avulaviruses
(Wille et al. 2015; Wille et al. 2017). While we did detect most of these viruses, the absence
of avian avulavirus was surprising. Avian avulavirus type 1 is present in wild birds in
Australia (Hoque et al. 2012a; Hoque et al. 2012b; Hore et al. 1973; Mackenzie et al. 1984;
Peroulis & O'Riley 2004) and globally (Alexander 2000; Austin & Webster 1993; Hanson et
al. 2005; Ramey et al. 2013; Tolf et al. 2013; Wille et al. 2015), and has been detected in co-
infection studies (Wille et al. 2015; Wille et al. 2017). We also genomically described 18
new viral species which belonged to previously identified avian clades (genera)
predominantly comprised of poultry viruses. For example, we identified five caliciviruses
from wild birds that belonged to a previously described avian clade in the Caliciviridae
comprised of chicken, turkey and goose caliciviruses (Liao et al. 2014; Wolf et al. 2012;
Wolf et al. 2011).

While virus species and genotypes that were sister groups to poultry viruses were revealed, it
is important to note all samples in this study were collected from birds with no clinical signs
of disease. This raises two important issues. First, with the sequencing of more wild birds,
those clades formally dominated by poultry will likely expand to include many viral species
and genotypes from wild birds. This will be central to a better understanding the movement
of avian viruses between wild bird reservoirs and poultry populations and hence of disease
emergence in general. Indeed, poultry production has rapidly expanded in the last century
(Kaleta & Rulke 2008), to the extent that ~70% of avian biomass on the planet are now
poultry (Bar-On et al. 2018), creating a relatively new, but large niche for viruses.

Furthermore, unlike wild birds, in viruses adapted to poultry such as Marek’s Disease virus (a
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double-stand DNA virus), there has likely been selection for high transmissibility and high
virulence (Rozins & Day 2017). As such, sequencing wild bird viruses is imperative in

understanding the evolutionary processes involved.

Second, these data raise the issue of how wild birds are able to tolerate such high levels of
virus diversity and abundance seemingly in the absence of overt disease (Medzhitov et al.
2012; Raberg 2014). In particular, cloacal swabs of Red-necked avocets from the interior had
a high viral abundance (0.26% of reads were from avian viruses) and these 10 birds shed 13
viral genera and eight viral species for which full genomes were revealed. Ruddy Turnstone
and Anas ducks that were infected with IAV similarly shed avian viruses at high abundance
(0.21% and 0.1%, respectively), albeit with lower viral diversity. Although this must impose
some physiological effect on the host, there continues to be conflicting data on the
physiological effect of IAV infection in isolation (Kuiken 2013), let alone the viral
abundance described in this study. A large viral diversity in healthy, individual wild birds
(Fawaz et al. 2016; Wille et al. 2015) and poultry (Day et al. 2010; Day et al. 2015; Lima et
al. 2017) has been previously described, in contrast to chickens in which viral diversity was
described in diseased animals (e.g. diarrhoea; (Boros et al. 2016)). The leading hypothesis
reflects a long history of host-pathogen co-evolution: chickens are a relatively new host niche
for 1AV, and following spill-over from wild birds highly pathogenic phenotypes evolve (for
example, H7 (Seekings et al. 2018), sometimes resulting in catastrophic mortality. This is in
contrast to wild birds that have likely been co-evolving with IAV over long time periods,
with natural selection perhaps favouring lower virulence; as a consequence, the highly
pathogenic IAV found in wild birds are most likely due to spill over from poultry (Barber et
al. 2008; Little et al. 2010; van Dijk et al. 2015). Indeed, a muted inflammatory response
translating to immunological tolerance to viral infections, may allow some hosts, such as
bats, to harbour a variety of viruses (Brook & Dobson 2015; Xie et al. 2018). Similarly,
Pekin Ducks (Anas platyrhynchos domesticus) and wild strain Mallard ducks appear to have a
controlled innate immune response against both low pathogenic IAV (Helin et al. 2018) and
highly pathogenic 1AV (Saito et al. 2018), with upregulation of the innate immune system
occurring on day 1 post infection and no evidence of hypercytokinemia, or “cytokine
storms”. Given the high (>0.1% of reads) viral abundance in some libraries, it is possible that
some of the viruses described here do not cause disease in the absence of some other
physiological or environmental stressor, although this is clearly an issue that needs to be
explored in more detail.
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Viral co-infection is likely to be the rule rather than the exception, and is shaped by both host
ecology and virus-virus interactions (Diaz-Munoz 2017). To date, much of what we know
about viruses in wild birds is derived from many years of research in IAVs (Ferenczi et al.
2016; Latorre-Margalef et al. 2014; Munster et al. 2007; Olsen et al. 2006) and those RNA
viruses that have similar patterns of host preference and seasonality (Wille et al. 2015; Wille
et al. 2017). Members of the Anseriiformes and Charadriiformes have proven to be excellent
model species for this study, and we detected viruses previously described in these hosts
(Chu et al. 2011; Muradrasoli et al. 2010; Wille et al. 2017; Wille et al. 2016) as well as a
suite of novel viruses. One of the key observations of our study is that avian taxonomy did
not drive virome structure; that is, there was no specific clustering of libraries in the NMDS
plots by avian order (Anseriiformes versus Charadriiformes), and the three Anas duck
libraries were different, although this analysis had limited statistical power. Given that IAV is
prevalent in both these avian orders, we suggest that host ecology may play a more important
role than host taxonomy in shaping virome diversity. For example, it is possible that
waterbirds share viral families, genera and species as shallow water bodies facilitating virus
transmission between individuals, as with IAV (Hoye et al. 2012; van Dijk et al. 2018). In
support of this there was a difference between birds sampled (Red-necked Avocets in

particular) in lakes of the arid interior as compared to temperate coastlines.

The ecological factors assessed here are not mutually exclusive, as shown by the complex
relationship between the three Anas duck libraries which had different structures given
different conditions (location and 1AV status). Samples from Ruddy Turnstones were
collected from the same beaches on the same sampling trip, yet the 10 birds positive and
negative for IAV had different viromes (total abundance, species abundances, and viral
diversity). Furthermore, the viromes of Anas ducks and Ruddy Turnstones that were positive
for IAV were more similar to each other than to all other libraries. Anecdotally, while we
were able to successfully culture HGN8 and H10N8 virus as part of an ongoing 1AV
surveillance project, the viruses from the Anas ducks were not successfully isolated,
demonstrating the power of the meta-transcriptomic approach used here. These trends,
however, may be biased due sample pooling, such that the patterns may be due to only a few
individuals in the pool. Ultimately, therefore, the validity of the patterns observed here need
to be re-assessed on the basis of individual transcriptomes, although such work will obviously
be both costly and time-consuming. In addition, it was previously shown (Wille et al. 2015)
that co-infection with 1AV was important in modulating the prevalence of other RNA viruses.
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In particular, IAV modulates the interferon response of the host, changing the antiviral state
(Garcia-Sastre 2001, 2011; Hale et al. 2008), and this may promote co-infection or prevent
viral clearance of certain viruses. We have a surprisingly poor understanding of virus-virus
interactions, although viruses do have mechanisms to mediate infection by other viruses. For
example, viruses may have synergistic (enhancing) or antagonistic (inhibiting) interactions,
and this may occur within and/or across viral species (Diaz-Munoz 2017; Elena & Sanjuan
2005; Henle 1950; Jolly & Narayan 1989). Regardless, virus-virus interactions are important
drivers of co-infection, and may be further affected by virus and host ecology (Diaz-Munoz
2017).

In sum, we have expanded our understanding of the diversity of avian viruses and laid the
foundation for future hypothesis testing of the factors associated with virome structure in
wild birds using high throughput metatranscriptomics. This study focused on avian orders
known to be central in the ecology of 1AV, but also a number of other RNA viruses.
Although this study is of a relatively limited scale from an ecological perspective, we have
successfully described viral diversity in samples collected from different sites, times, and
avian species and found evidence for differences across these factors.. Finally, we
demonstrate several potential applications of viral community analyses, and anticipate a rapid
expansion of viral ecology to move beyond the one, host — one virus, system, and to consider

both viruses and hosts as complex ecological communities.
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Tables and Figures

Table 1. Eight libraries were sequenced reflecting different avian taxonomy, location within Australia, and influenza A infection status.

Taxonomy Host Species Location | Sampling Location Influenza A | Sample type Year
status
Anseriiformes, Australian Shelduck Temperate | Western Treatment Plant, Negative Cloacal 2012
Anatidae, Tadorninae (Tadorna tadornoides) Victoria
Anseriiformes, Dabbling duck Temperate | Western Treatment Plant, Positive Cloacal 2013
Anatidae, Anatinae (Anas sp.) Victoria
Dabbling duck Temperate | Western Treatment Plant, Negative Cloacal 2013
Victoria
Dabbling duck Interior Innamincka Regional Reserve, | Negative Cloacal 2013
South Australia
Charadriiformes, Red-necked Avocet Temperate | Yallock Creek, Victoria Negative Cloacal 2013
Recurvirostridae (Recurvirostra
novaehollandiae)
Red-necked Avocet Interior Innamincka Regional Reserve, | Negative Cloacal 2013
South Australia
Charadriiformes, Ruddy Turnstone Temperate | King Island, Tasmania Negative Combined 2014
Scolopacidae (Arenaria interpres) oropharangeal/
cloacal
Ruddy Turnstone Temperate | King Island, Tasmania Positive Combined 2014
oropharangeal/
cloacal
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Fig 1. Abundance of viruses in each library. (A) Abundance of all exogenous viruses

including those from avian, invertebrate, lower vertebrate, plant, fungi or bacterial hosts. (B)

Abundance of all viruses that are associated with birds. (C) Abundance of retroviruses or
retrovirus-like elements that have avian or mammalian signature. (D). Host reference gene

RPS13.
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dsRNA viruses
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Fig 2. Phylogenies of double-stranded RNA viruses. These trees show (a) segment 2 (RdRp)
of picobirnaviruses, and (b) the VP1 segment (RdRp) of the rotaviruses described in this
study. All phylogenetic trees were midpoint rooted for clarity only. The scale bar indicates
the number of amino acid substitutions per site. Bootstrap values >70% are shown for key
nodes. Viruses described in this study are marked with a filled circle.
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Fig 3. Partial RpRp phylogeny of members of the genus Avastrovirus. The tree is rooted
between the avian and mammalian astroviruses. The scale bar indicates the number of
nucleotide substitutions per site. Bootstrap values >70% are shown for key nodes. Viruses
described in this study are marked with a filled circle. The phylogeny of the full length
polyprotein is presented in Fig S6.
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Fig 4. Phylogenetic tree of the polyprotein, containing the RdRp, of members of the
Caliciviridae. The most divergent calicivirus, Atlantic Salmon calicivirus, was used as an
outgroup to root the tree. The scale bar indicates the number of amino acid substitutions per
site. Bootstrap values >70% are shown for key nodes. Viruses described in this study are
marked with a filled circle.

This article is protected by copyright. All rights reserved.



KM205011 Hart Park vieus

‘ KM205025
Hapavirus C- NC 011839 Wongabel hapavirus
Joya virus

NC 013955 Ngaingan hapavirug
KM205016 'ni aka virus

. HM451974 Bamimah virus
NC 002526 Bowina ephameral fever virus
3 JQ821664 Kimberley vwus
HMB56902 Obodhiang virus
JNGISIB0 Adelaide Hiver virus

e KMOBS029 inyan virus
ma—cumusss n’&;.?’&a.! wrus

(20804 Tibeogargan virus
J‘—ul_'lxwosms Brvens AT ruG
- KM204997 Sweetwatar Branch virue
e 0254473 Coastal Plains virus

Tibeovirus JX267815 Bas ng?o virusopd :
4— 204! Curlon: 18 virus
KM205012 Rochambaea virus

s vwrus
unoviFue KM204987 Aruac wrus

AF473864 Vesicular stomabts Indiana virus
KM205007 Morreton vesiculovinis
HQB860076 Maraba vius
EU373657 Cocal virus
EU373558 Vesicular stomatits A?goas Irus
JX121110 Vesicular slomatitis New Jersey vrus
M205015 C vinug
GU21 Chandipura virus
NC 020806 Isfahan vir

020803 Parch pa wius
: KC676792 Fikinni rhabdovus
: KCIBA953 Kolente virus
= KM204938 Oita wnus
— . KM205026 Mount Elgon bat virus
A x KM205021 Keuraliba veus
L k205006 Lo Dantec wus
KM204992 Kerm Canyon wus

1 Fuiuoka virus
204983 Barur veus
ABEOSG04 Neshimuro ledantavirus
KM205017 Nkobisson vilus
Q375258 Drosophlla melanogasier siymavirus HAPZ3
NC 022580 Dresophia cbscura sigmaveus 10A

. NC 007020 Tupaia virus
Tupavirus KN204095 Kiainah virus
FJos21 Durhara Vi ;
- muck ﬁanbso‘?im
_,4—2: JE705877 Oak Vale virus

KM204885 Kwalta virus
KFI95228 Sungury virug

X KM205004 Sana Maduréira virus
= KM205000 Chaco vrus
i KC588008 Nakha virus
KM205023 ggguv VLS ,
o~ NC 008528 Eurcpean bat 2 lyssavirus

EF614261 Kh&im yssaveus
EUBA3560 Rabws lyssavirus
AFOB1020 Australian bat lyssavrus

EF614259 Aravan lyssavirus

EFG14260 kkut lysSavirus

FJ305105 Lyssavirus Ozamoe

NC 020810 Duvenh lyssavirus

X1
0 KM205013 Sawgrass wus
KM205020 Connacticut vrus
- KM205009 New Minto virus
o FJ885749 Moussa virus

- KM205018 Bahiz Grande virus
it - KM205003 Harlingen virus
KM204980 Mulr Spreings virus

wus Puerto Aimendras virus
KC994844 Arboratum vinus
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2015)) were also included in the analysis. The scale bar indicates the number of amino acid
substitutions per site. Bootstrap values >70% are shown for key nodes. Viruses described in

this study are marked with a filled circle.
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The scale bar indicates the number of amino acid substitutions per site. Bootstrap values
>70% are shown for key nodes. Viruses described in this study are marked with a filled
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