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Researchers are increasingly studying carbon (C) storage by natural ecosys-

tems for climate mitigation, including coastal ‘blue carbon’ ecosystems.

Unfortunately, little guidance on how to achieve robust, cost-effective esti-

mates of blue C stocks to inform inventories exists. We use existing data

(492 cores) to develop recommendations on the sampling effort required to

achieve robust estimates of blue C. Using a broad-scale, spatially explicit data-

set from Victoria, Australia, we applied multiple spatial methods to provide

guidelines for reducing variability in estimates of soil C stocks over large

areas. With a separate dataset collected across Australia, we evaluated how

many samples are needed to capture variability within soil cores and the

best methods for extrapolating C to 1 m soil depth. We found that 40 core

samples are optimal for capturing C variance across 1000’s of kilometres

but higher density sampling is required across finer scales (100–200 km).

Accounting for environmental variation can further decrease required

sampling. The within core analyses showed that nine samples within a core

capture the majority of the variability and log-linear equations can accurately

extrapolate C. These recommendations can help develop standardized

methods for sampling programmes to quantify soil C stocks at national scales.
1. Introduction
Research into carbon (C) storage by natural ecosystems is growing, propelled by

the urgent need to identify effective approaches to address climate change. Within

coastal ‘blue carbon’ environments in particular—which include seagrass

meadows, tidal marshes and mangroves — there are major efforts globally to esti-

mate carbon stocks and sequestration rates at local, regional and national scales to

inform carbon inventories and guide potential carbon offset initiatives [1,2].

With this heightened interest in blue carbon, there is a need to develop

standardized approaches for robustly quantifying blue carbon stocks to identify

gains and losses and inform greenhouse gas inventories as well as carbon mar-

kets. Several methodologies have been outlined for quantifying carbon stocks

[3] (figure 1). However, a weakness of all existing methodologies is that they
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Step 1
define and map the area and ecosystem

types to be sampled

Step 2
determine the no. cores
required along a given

stretch of coast to achieve
the project objectives while

maximizing efficiency

ecosystem

mangrove
seagrass
tidal marsh
soil carbon sampling locations

km

0 403020105

Step 3
determine the no. samples

required within a core to get
an accurate measure of

carbon stocks within the top
1 m of soil

Figure 1. Key steps in a soil coring campaign to develop spatially explicit maps of soil carbon stocks along a given area of the coast. This study focuses on providing
explicit guidance relating to steps 2 and 3. (Online version in colour.)

Table 1. Results from depth extrapolations of soil carbon down to 1 m using different methods from the literature. The method used is in the first column
followed by the equation for extrapolating C values associated with each method, the Spearman rank correlation coefficient (rho), the significance of the
correlation (sig), and the mean squared predictive error (MSPE, standardized). c ¼ C content (g), d ¼ non-cumulative C density (mg cm23), K and S ¼ slope
parameters, d ¼ depth in core, I ¼ intercept.

method equation

three samples seven samples

rho sig MSPE rho sig MSPE

log – log, ca log (SOCcontent) ¼ K log d þ I 0.59 ,0.001 0.485 0.75 ,0.001 0.485

log-linear, ca,b log (SOCcontent) ¼ K d þ I 0.6 ,0.001 0.485 0.78 ,0.001 0.485

log – log, da log (SOCdensity) ¼ S log d þ I 0.59 ,0.001 0.946 0.24 ,0.001 2.952

log-linear, da log (SOCdensity) ¼ S d þ I 0.49 ,0.001 0.496 0.19 ,0.001 3.055

linear, cc SOCcumulative ¼ K d þ I 0.33 ,0.001 0.488 n.a. n.a. n.a.

average %C

contentd

average percent C content (%dw) calculated from known

depths and multiplied to 1 m

0.61 ,0.001 0.563 0.69 ,0.001 0.558

aExtrapolation method applied in [9].
bExtrapolation method applied in [10].
cExtrapolation method applied in [11].
dExtrapolation method applied in [12].
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lack explicit guidance on the number of soil cores needed

within project boundaries and the number of analyses

needed per core to achieve robust estimates of blue carbon.

In this study, we provide guidelines to optimize effort

allocation within cores and across landscapes in blue carbon

projects, with the aim of obtaining robust estimates in soil

organic C while maximizing benefit–cost ratios of projects.

By capitalizing on one of the world’s largest blue carbon data-

bases encompassing landscape variability, we demonstrate

spatial variability in organic C estimates at a range of scales

and show how this can affect estimates of carbon storage at

regional levels.
2. Material and methods
(a) Soil sampling and carbon analysis
To develop sampling recommendations, we used two soil C data-

sets collected in blue carbon ecosystems [4]: 287 cores from 96 sites

across Victoria, Australia for the spatially explicit analyses (VIC;

electronic supplementary material, figure S1), and 220 up to
1 m-long soil cores from Australian blue carbon ecosystems for

the within core analyses (AUS). More details on sampling pro-

grammes are provided in the electronic supplementary material

along with detailed methods.
(b) Spatial sampling variability analyses
To determine how many samples are required to capture C varia-

bility over a broad landscape, we used a bootstrapping approach

[5] within and across all ecosystems, using the depth-averaged

C density (g cm23) value per core across two scales:

statewide ¼ 2000 km and CMA (Catchment Management

Authority)¼ 100–200 km. To determine how far apart to sample,

we used spline correlograms [6] to assess spatial correlation of C

(depth-averaged C density) values across the sampling extent in

Victoria within and across blue carbon ecosystems. To assess the

number of cores required to reach a desired power of 80% for pre-

cisely estimating soil C stocks across a landscape [7], we used

power analyses in the R package simr [8] to compare how many

cores are needed if/if not accounting for environmental variability

(elevation, aspect, slope, topographic position, land use; electronic

supplementary material, table S1).

http://rsbl.royalsocietypublishing.org/


Table 2. Results from the generalized linear mixed models (GLMMs) associating depth-averaged soil carbon stock values with landscape scale environmental
variables.

fixed effects coefficient abs (z-score) p-value

saltmarsh GLMM

(intercept) 7.180 79.8 ,0.001

slope 0.069 37.4 ,0.001

disturbance (within 5 km radius) 20.068 23.0 ,0.001

elevation 20.082 22.4 ,0.001

topographic position index (1000 m scale) 0.01 2.4 0.016

mangrove GLMM

(intercept) 7.356 39.2 ,0.001

cosine of aspect (northness) 20.144 35.2 ,0.001

bare land (within 2 km radius) 22.736 19.6 ,0.001

elevation 20.132 18.9 ,0.001

topographic position index (2500 m scale) 0.085 18.6 ,0.001

sine of aspect (eastness) 20.027 6.5 ,0.001

seagrass GLMM

(intercept) 7.712 214.0 ,0.001

disturbance (within 5 km radius) 20.167 17.6 ,0.001

slope 0.020 7.8 ,0.001

topographic position index (1000 m scale) 20.017 5.3 ,0.001
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(c) Within core sampling effort and depth
extrapolations

Using the AUS dataset, we assessed the number of samples

needed to reduce within-core variation by running a Markov

chain Monte Carlo (MCMC) procedure in Excel. Applying

multiple equations for a mix of organic and non-organic soils,

we extrapolated C values from the varied soil types in the AUS

dataset down to 1 m depth (table 1). We compared the predicted

C values from the extrapolations to the actual values by running

Spearman’s rank correlation analyses and calculating the mean

squared predictive error (MSPE).
3. Results and discussion
(a) Spatial sampling variability analyses
Results from the bootstrapping analyses revealed that

increasing sampling intensity decreased the unexplained

variance of C density estimates (electronic supplementary

material, figure S2) with a significant decrease in variation

after 40 cores. The variability in tidal marsh and seagrass

ecosystems decreased significantly with 40 cores and with

30 cores for mangroves. The bootstrapping analyses across

all ecosystems at the scale of the individual CMA areas

showed notable but not significant drops in variation at

sample sizes of 30–60 soil cores (electronic supplementary

material, figure S2b). These results demonstrate that substan-

tial variability can exist across core samples at broad scales

and Victoria experiences a known range of different biotic

and abiotic factors shown to influence C storage [13,14].

Based on the VIC dataset, we recommend sampling a mini-

mum of 40 cores to robustly estimate soil C stocks across

broad areas (e.g. Victoria) with a similar number of cores

required over smaller areas (e.g. CMAs).
The spline correlograms, used to assess spatial patterns in

C densities, showed positive spatial autocorrelation in the

depth-averaged density of soil C (g cm23) regardless of eco-

system type (electronic supplementary material, figure S4).

The positive correlation decreased with distances ranging

from 67 to 154 km, which is similar to the mean distance

across CMAs in Victoria. This threshold may indicate that

catchment-specific differences are driving the observed

spatial pattern and sampling should be stratified to take

into account this clustering. Differences in environmental

settings (e.g. soil texture and mineralogy, geomorphology)

among the CMAs studied may explain changes in the

number of cores required. However, given the narrow latitu-

dinal range (less than 1.58 latitude) of the Victorian coast, it is

less likely that climatic conditions may be influential [15].

There can also be significant small-scale variation on carbon

stocks, depending on where cores have been taken, which

has likely contributed to some of the unexplained variability

[16]. The recommendations provided here are only indicative

and further studies are required to provide guidelines

for contrasting environmental and geomorphic contexts,

especially across the latitudinal range of mangroves.

The power analyses to determine the sample size required

to reach a desired power of 80% for precisely estimating

C densities, showed variation among ecosystems across

Victoria with and without incorporating landscape structure

(table 2). To reach a power of 80%, tidal marsh and mangrove

ecosystems required fewer core samples (70 and 40, respect-

ively) when incorporating landscape variation (table 2 and

figure 2) compared to 100 and 60 when excluding landscape

variables (figure 2a,b). However, seagrass ecosystems had an

opposite pattern with the model not including landscape vari-

ables requiring fewer samples (figure 2c). The opposite pattern

in seagrass is likely due to the inability of the topographic

http://rsbl.royalsocietypublishing.org/
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Figure 2. Results from the power analyses to determine the power associated
with different samples sizes within tidal marsh (a), mangrove (b) and sea-
grass (c) ecosystems.
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variables (i.e. elevation, slope) to capture landscape information

important to soil C densities in seagrass ecosystems [14]. The

models could potentially be improved with the incorporation

of more variables related to C sequestration (e.g. duration of

saturation, rainfall, tidal influence, estuary condition, species

composition) [14,17]. See electronic supplementary material,

figure S6 for a comparison of these methods applied to an inde-

pendent dataset along the New South Wales coastline for

mangrove and tidal marsh ecosystems.

(b) Within core sampling effort and
depth extrapolations

The results from the within core MCMC simulations to assess

how many samples within a core are needed to capture varia-

bility in soil C, showed a significant decrease in mean SE after
nine samples were taken from within the cores (electronic

supplementary material, figures S2 and S3). Based on these

results, we conclude that at least nine samples are needed to

capture variability in C throughout 1 m-long soil cores and

these samples should be stratified by depth to capture variabil-

ity as noted by Chimner et al. [18], with higher density of

sampling in the shallower half of the 1 m core. Approaches

such as homogenizing large portions of a whole core and

measuring C may also provide a cost-effective method [3].

The different methods for extrapolating C sampled within

the 0–30 cm depth range of the core down to 1 m varied in

their accuracy when compared to actual C values sampled

within those cores (table 1). Results from the depth extra-

polation analyses show that the log-linear C content

extrapolation using seven samples had the highest correlation

with observed C content values down to 1 m (r ¼ 0.78) and

one of the lowest MSPE (table 1). Generally, the predictions

for C content (Cg21 soil) were more accurate than for C den-

sity (g cm23) and accuracy tended to increase with samples

and the use of log transformations. Owing to bias toward sea-

grass in the AUS dataset, further studies will need to

determine if this pattern holds across more variability in

mangrove/tidal marsh ecosystems but we still feel that the

estimates are reasonable because extrapolation predictions

had similar accuracy across all ecosystems.

Overall, we were able to devise recommendations for opti-

mally sampling soil C across broad landscapes and within soil

cores including: 40 cores are optimal to capture C variability in

this region with higher density coring required at finer scales,

mangrove ecosystems may require more sampling due to

higher variability, incorporating environmental variability

can decrease sampling effort, nine samples are optimal for

capturing variation within cores and log-linear extrapolation

methods perform best when extrapolating cores to 1 m

depth. These can help scientists and managers design

sampling programmes to characterize blue carbon stocks for

assessing the C storage potential of these ecosystems.

Ethics. Research was conducted under a Department of Environment
and Primary Industries research permit (10007248).

Data accessibility. Data are available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.qj472r2 [4].

Authors’ contributions. All authors conceived this study, conducted
analyses, contributed to manuscript writing and revision, approved
the final version and agreed to be accountable for the content.

Competing interests. We declare we have no competing interests.

Funding. These works are part of The Nature Conservancy’s Great
Southern Seascapes programme and supported by The Thomas Foun-
dation, HSBC Australia, the Ian Potter Foundation, and Victorian and
New South Wales governments including Parks Victoria, Department
of Environment Land Waterand Planning, Victorian Fisheries Authority,
New South Wales Office of Environment and Heritage, and New South
Wales Department of Primary Industries. Funding was also provided by
an Australian Research Council Linkage Project (LP160100242).

Acknowledgements. Additional data collection support was provided by
the Victorian Coastal Catchment Management Authorities: Glenelg
Hopkins, Corangamite, Port Phillip/Westernport, West Gippsland
and East Gippsland.
References
1. Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I,
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