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Abstract

Background: The blood–brain barrier acts as a highly regulated interface; its dysfunction may exacerbate, and perhaps 
initiate, neurological and neuropsychiatric disorders.

Methods: In this narrative review, focussing on redox, inflammatory and mitochondrial pathways and their effects on 
the blood–brain barrier, a model is proposed detailing mechanisms which might explain how increases in blood–brain 
barrier permeability occur and can be maintained with increasing inflammatory and oxidative and nitrosative stress being 
the initial drivers.

Results: Peripheral inflammation, which is causatively implicated in the pathogenesis of major psychiatric disorders, is 
associated with elevated peripheral pro-inflammatory cytokines, which in turn cause increased blood–brain barrier per-
meability. Reactive oxygen species, such as superoxide radicals and hydrogen peroxide, and reactive nitrogen species, 
such as nitric oxide and peroxynitrite, play essential roles in normal brain capillary endothelial cell functioning; however, 
chronically elevated oxidative and nitrosative stress can lead to mitochondrial dysfunction and damage to the blood–
brain barrier. Activated microglia, redox control of which is mediated by nitric oxide synthases and nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidases, secrete neurotoxic molecules such as reactive oxygen species, nitric oxide, 
prostaglandin, cyclooxygenase-2, quinolinic acid, several chemokines (including monocyte chemoattractant protein-1 
[MCP-1], C-X-C motif chemokine ligand 1 [CXCL-1] and macrophage inflammatory protein 1α [MIP-1α]) and the 
pro-inflammatory cytokines interleukin-6, tumour necrosis factor-α and interleukin-1β, which can exert a detrimental 
effect on blood–brain barrier integrity and function. Similarly, reactive astrocytes produce neurotoxic molecules such as 
prostaglandin E2 and pro-inflammatory cytokines, which can cause a ‘leaky brain’.

Conclusion: Chronic inflammatory and oxidative and nitrosative stress is associated with the development of a ‘leaky 
gut’. The following evidence-based approaches, which address the leaky gut and blood–brain barrier dysfunction, are 
suggested as potential therapeutic interventions for neurological and neuropsychiatric disorders: melatonin, statins, 
probiotics containing Bifidobacteria and Lactobacilli, N-acetylcysteine, and prebiotics containing fructo-oligosaccharides 
and galacto-oligosaccharides.
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Introduction

The blood–brain barrier (BBB) is a highly regulated inter-
face between the central nervous system (CNS) and the 
peripheral circulatory system. It has an indispensable role 
in maintaining homeostasis in the brain, and consequently, 
in brain functioning, influencing microglia activation as 
well as neuronal function and survival (Abbott et al., 2010; 
Hawkins and Davis, 2005; Jin et al., 2013). In particular, 
the BBB exerts tight regulation over the movement of ions, 
molecules and cells between the cells in the CNS and the 
blood (Daneman, 2012; Wong et al., 2013). It thus main-
tains the homeostasis of ions, hormones, neurotransmitters 
and the regulation of nutrients in the brain, while ensuring 
the segregation of neurotransmitters and other neuroactive 
molecules in the peripheral circulation and the CNS (Abbott 
et al., 2006; Luissint et al., 2012). The BBB also regulates 
the influx of immune cells and xenobiotics from the periph-
eral circulation into the brain and regulates the interstitial 
fluid (ISF) compartment (Abbott et al., 2010; Hawkins and 
Davis, 2005; Wong et al., 2013). Furthermore, the BBB 
plays an important role in the transport and metabolism of 
psychotropic agents used for the treatment of neurodegen-
erative and neuropsychiatric disorders (Abbott et al., 2010; 
Daneman, 2012; Wong et al., 2013). Unfortunately, many 
of the interactions that at physical and biochemical level 
maintain the integrity and function of the BBB, break down 
in the context of neuropsychiatric and neurological dis-
eases. This paper aims to propose a model that can explain 
the mechanisms by which the increases in BBB permeabil-
ity, seen in all neuropsychiatric (Najjar et al., 2013, 2017; 
Pollak et al., 2017) and neurological (Stanimirovic and 
Friedman, 2012; Takeshita and Ransohoff, 2015; Yamazaki 
and Kanekiyo, 2017) disorders, may occur.

BBB composition

All of the functions described above are enabled by the pres-
ence of highly specialized brain microvascular endothelial 
cells (BMECs) (Aird, 2007; Dejana, 2004). These possess 
highly organized tight junctions (TJs) and adherent junc-
tions (AJs) as well as a range of specialized transporters, 
pumps and receptors. The TJs and AJs restrict the paracel-
lular transport of polar substances, including hexose sugars, 
amino acids, nucleosides, monocarboxylic acids and vita-
mins (Grammas et al., 2011; Mokgokong et al., 2014). In 
addition, a plethora of specialized pumps and receptor trans-
porters facilitate and regulate the entry, endocytosis and 
transendothelial transport of amino acids, nutrients and cer-
tain proteins such as insulin, leptin, transferrin and insulin-
like growth factors, from the peripheral circulation into the 
brain (Abbott et al., 2010; Lajoie and Shusta, 2015; Meng 
and Takeichi, 2009; Ueno et al., 2010; Upadhyay, 2014).

AJs are formed by the haemophilic association between 
complementary members of the cadherin (calcium-dependent 

adhesion molecules) protein superfamily on the neighbour-
ing membranes of BMECs. Catenins are found in com-
plexes with cadherin molecules and include α-catenin and 
β-catenin subtypes. α-Catenin can bind to β-catenin. 
Cadherins are covalently linked to complementary mem-
bers of the catenin superfamily in the cytoplasm. Catenins, 
in turn, are associated with several components of the cell 
cytoskeleton such as microtubules and actin filaments 
(reviewed by Harris, 2012; Hiroki, 2012; Meng and 
Takeichi, 2009). The most extensively researched example 
of the cadherin family in AJ formation is the vascular 
endothelial cadherin (VE-cadherin), while α-catenin, β-
catenin and vinculin are the most extensively researched 
members of the catenin family in the same domain (Dejana, 
2004; Dufour et al., 2013).

TJs are primarily formed among membrane proteins 
called claudins (Jia et al., 2014), with occludins and other 
proteins playing a secondary role (Furuse and Tsukita, 
2006; Hawkins and Davis, 2005). In the TJs, these proteins 
are anchored to the actin cytoskeleton via the zona occludin 
(ZO) adaptor proteins (ZO-1 and ZO-2) (Greene and 
Campbell, 2016; Hawkins and Davis, 2005). The claudin 
superfamily is composed of over 20 proteins, which are all 
indispensable players in TJ formation (Günzel and Yu, 
2013). Of all the claudin superfamily, claudin-5, which has 
an important role in the regulation of paracellular ionic 
selectivity, is the most common isoform located in the BBB 
and the dominant player involved in the TJs (Hewitt et al., 
2006; Jia et al., 2014), with claudin-s12 and -1 also playing 
a role, at least in some conditions (Abbott et al., 2006; Liu 
et al., 2012). It is important to note that the performance of 
TJs and AJs are structurally and functionally interdepend-
ent. For example, changes in the conformation and location 
of VE-cadherin result in upregulating transcription of the 
gene encoding claudin-5 (Dejana, 2004; Taddei et al., 
2008).

BMECs also possess a significantly increased density of 
mitochondria when compared with endothelial cells in the 
peripheral vasculature, which is likely reflective of the 
energy-dependent nature of their specialized transport roles 
(Lee and Pienaar, 2014; Nag, 2011). Structurally, BMECs 
are in intimate contact with pericytes and astrocytic end-
feet, which ensheathes the brain vasculature, via the basal 
lamina, forming an additional continuous stratum, called 
the glia limitans, which separates blood vessels from the 
brain parenchyma. These astrocytes also enable contact 
between neurons, astrocytes, microglia, extracellular 
matrix components and myocytes (Hawkins and Davis, 
2005; Stanimirovic and Friedman, 2012). The functional 
and signalling associations between these players enable 
the supply of blood to neurons to match changes in demand 
and form the neurovascular unit (NVU), which plays an 
indispensable role in maintaining the integrity and func-
tional competency of the BBB (Hawkins and Davis, 2005; 
Najjar et al., 2013; Stanimirovic and Friedman, 2012). 
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Figure 1 exhibits a diagammatic representation of the NVU. 
Figure 2 shows a representation of BMEC TJ.

BBB and psychiatric disorders
Given the critical role of the BBB in neurophysiology, it is 
unsurprising that BBB dysfunction may play a role in neu-
ropathophysiology including in the exacerbation and 
 perhaps even the initiation of neurological illnesses 
(Stanimirovic and Friedman, 2012; Takeshita and 
Ransohoff, 2015; Yamazaki and Kanekiyo, 2017). Such 
neurological disorders include stroke (Sandoval and Witt, 
2008; Ronaldson and Davis, 2012), Alzheimer’s disease 
(AD) (Banks, 2012; Zlokovic, 2011), multiple sclerosis 
(MS) (Miller, 2012; Zlokovic, 2008) and Parkinson’s dis-
ease (PD) (Bartels, 2011; Zlokovic, 2008). There are also 
accumulating data indicating that BBB disruption and/or 
dysfunction is involved in the pathogenesis and pathophys-
iology of psychiatric disorders such as schizophrenia (SZ) 
(Najjar et al., 2013, 2017; Pollak et al., 2017), major depres-
sive disorder (MDD) (Najjar et al., 2013) and bipolar disor-
der (BD) (Patel and Frey, 2015).

Decreased BBB permeability and dysfunction of the 
NVU can be induced by peripheral inflammation in the 

guise of elevated pro-inflammatory cytokines (PICs) 
(Capaldo and Nusrat, 2009), peripheral and central oxida-
tive stress via elevated reactive oxygen species (ROS) and 
reactive nitrogen species (RNS), (Najjar et al., 2013) neu-
roinflammation characterized by activated microglia and 
astrocytes (Tu et al., 2011), elevated levels of circulating 
lipopolysaccharide (LPS) (Yu et al., 2015), mitochondrial 
dysfunction (Doll et al., 2015), or even changes in the com-
position of the gut microbiota (Braniste et al., 2014). These 
elements also have an acknowledged causative role in the 
pathogenesis of neurodegenerative and neuroprogressive 
illnesses (Lucas et al., 2015; Morris and Berk, 2015; Morris 
et al., 2015a). Hence, the BBB disruption and/or dysfunc-
tion seen in persons suffering from such disorders may 
have multiple causes, which poses a significant challenge 
in the quest to develop an effective restorative therapeutic 
intervention.

Arguably, this quest has been hampered by the absence 
of an integrative model detailing the mechanisms whereby 
inflammation, oxidative stress, mitochondrial dysfunction, 
bacterial translocation, dysbiosis and neuroinflammation 
cooperate to cause, maintain and even accelerate increases 
in BBB permeability in neurodegenerative, neuroinflam-
matory and neuroprogressive diseases. There also seems to 
be a dearth of research aimed at uncovering which, if any of 
these elements might have primacy, and which might be 
classified as ‘downstream’. Understanding such mecha-
nisms and their relative influence is an important step in the 
search for an effective therapeutic approach. In this con-
text, it is interesting to note that inflammation and periph-
eral oxidative and nitrosative stress (I&ONS), which are 
invariant companions (Morris and Berk, 2015; Nafar et al., 
2011; Vaziri, 2008), can induce BBB permeability (Morris 
et al., 2015a, 2015b) and intestinal barrier permeability 
(Al-Sadi et al., 2009; Banan et al., 2003; Lee, 2015; Tian 
et al., 2017) with the translocation of bacterial LPS and 
microbial metabolites into the peripheral circulation 
(Morris et al., 2016a, 2016b). In addition, peripheral 
I&ONS and LPS can also play a major role in the develop-
ment of neuroinflammation (Morris et al., 2015a, 2015b). 
Accordingly, this paper aims to propose a model detailing 
mechanisms that explain how increases in BBB permeabil-
ity might occur, and how they might be maintained, with 
elevated I&ONS being initial drivers of such permeability, 
both via direct effects on BBB endothelial cells, and indi-
rectly by activating microglia and astrocytes in the brain. 
Other I&ONS-driven consequences include increased 
intestinal permeability with subsequent LPS translocation 
into the systemic circulation, and the likely development of 
dysbiosis. It is proposed that neuroinflammation, LPS 
translocation and dysbiosis conspire with chronically ele-
vated I&ONS to produce the pathological consequences of 
BBB disruption. We will begin by examining the roles of 
I&ONS and then move on to examine the roles of activated 
microglia, LPS and then finally dysbiosis before suggesting 

Figure 1. Diagrammatic representation of the NVU 
comprising the BMECs and the basal lamina, surrounded by 
pericytes astrocytic end-feet microglia and neurons.
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therapeutic options based on underlying mechanisms driv-
ing BBB disruption.

Elevated inflammation and 
oxidative and nitrosative stress and 
increased BBB permeability

Peripheral inflammation and the role of PICs

Peripheral inflammation is causatively implicated in the 
pathogenesis of SZ, BD and MDD (Berk et al., 2013; Müller 
et al., 2015), which is relevant as acutely or chronically ele-
vated levels of PICs in the periphery are a major cause of 
increased BBB permeability and the development of the neu-
roinflammatory cascade characteristic of neurodegenerative 
and putatively neuroprogressive disorders (Morris et al., 
2015b). Some of the mechanisms underpinning this effect, 
such as inhibition of ZO-1 transcription and activation of 
nicotinamide adenine dinucleotide phosphate (NADPH)  
oxidase in BMECs, appear to be common to all cytokines 
described above (Capaldo and Nusrat, 2009). Other mecha-
nisms appear to be specific to a particular cytokine and vary 
according to tissue type, its levels and time.

For example, one mechanism underpinning the detri-
mental effect of the PIC interferon (IFN)-γ on endothelial 

cell TJs involves its decreased levels provoking cellular 
mislocalisation of ZO-1 (Blom et al., 2015; Blum et al., 
1997; Youakim and Ahdieh, 1999). However, IFN-γ also 
increases endocytosis of occluding claudin and junctional 
adhesion molecule-A (JAM-A) via increasing micropino-
cytosis into early recycling endosomes (Bruewer et al., 
2005; Utech, 2005). This, in turn, leads to an efflux of 
these proteins away from the area of cellular contact 
leading to discontinuous or disorganized TJs, which can 
be seen by electron microscopy (EM) (Hall, 1998; Utech 
et al., 2006). This process involves a significant increase 
in actomyosin contractility secondary to IFN-γ-induced 
activation of the small GTPase RhoA and the subsequent 
upregulation of Rho-associated kinase (ROCK) (Utech 
et al., 2006). The latter enzyme, in turn, phosphorylates 
and activates myosin light chain kinase (MLCK), which 
engages in actin remodelling, leading to the increased 
actomyosin contractility described above (Hall, 1998).

RhoA activation and subsequent MLCK phosphoryla-
tion, in this case ultimately mediated by tumour necrosis 
factor (TNF)-α-induced activation of NF-κB (nuclear fac-
tor kappa-light-chain-enhancer of activated B cells), also 
appears to be a cause of increased paracellular permeability 
following acutely elevated levels of the latter transcription 
factor (Ma et al., 2004, 2005, Ye et al., 2006). However, 

Figure 2. Diagrammatic representation of BMEC tight junction. The main TJ proteins are the transmembrane occludins and 
claudins which form dimers with equivalent proteins expressed on adjacent endothelial cells. ZO-1 binds both claudins and 
occludins as well as JAMs while linking each to the cytoskeleton. TJs are further reinforced by binding between ZO-2 and ZO-3, 
the cingulin-linking protein and actin. AJs are composed of transmembrane cadherin proteins bound to α, β and γ catenins which 
in turn are linked to α-actinin, vinculin and, once again, the cytoskeleton protein actin.
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evidence indicates that increased TJ permeability following 
exposure to chronically elevated levels of TNF-α appears 
to be mediated by mislocalisation of claudin-5 and JAM-1 
into the cytoplasm and by decreased translation of occludin 
(McKenzie and Ridley, 2007). There is also accumulating 
evidence indicating that another mechanism underpinning 
TNF-α-induced increases in paracellular transport involves 
the downregulation of occludin levels (Lv et al., 2010; 
Wang et al., 2011).

Interleukin (IL)-1β increases BBB permeability via 
mechanisms that are common to other cytokines (reviewed 
by Alluri et al., 2016; Michael et al., 2016). For example, 
one mechanism underpinning IL-1β-induced BBB disrup-
tion also involves the upregulation of matrix metallopepti-
dase-9 (MMP-9) (Alluri et al., 2014). Prolonged elevation 
of IL-1β also increases paracellular transport in brain capil-
lary endothelial cells (BCECs) by inducing β-catenin-
mediated downregulation of claudin-3 (Haines et al., 2016) 
and via the upregulation of RhoA kinase-mediated MLCK 
phosphorylation hyperpermeability (Lapointe et al., 2010; 
Wu et al., 2016). IL-1β also increases transcellular trans-
port by a mechanism involving upregulating phosphoki-
nase C (PKC) isoforms, which stimulate endocytosis and 
membrane trafficking (Alvi et al., 2007). However, the 
mechanism of inducing BBB disruption by summoning 
neutrophils to the BBB would appear to be unique to IL-1β 
(Blamire et al., 2000; Joice et al., 2009; Scholz et al., 2007). 
Finally, IL-1β elevation can also increase BBB permeabil-
ity indirectly by potentiating the adverse effects of TNF-α 
via engagement in paracrine signalling with this cytokine in 
a feed-forward loop (Didier et al., 2003).

Several transcellular BBB transport pathways can be 
adversely affected by systemic inflammation and oxidative 
stress. Examples include downregulation of transporters for 
organic anions (Wittmann et al., 2015a), monocarboxylates 
(Wittmann et al., 2015b), amino acids (Wittmann et al., 
2015a), prostaglandin E2 (PGE2) (Akanuma et al., 2011) 
and leptin (Nonaka et al., 2004). Experimental evidence 
indicates that peripheral inflammation also influences the 
expression of the multi-functional efflux transporter 
P-glycoprotein (Pgp) encoded by the ABCB1 gene (Liu and 
Liu, 2014; Löscher and Potschka, 2005). The weight of evi-
dence indicates that acute peripheral inflammation down-
regulates the expression of Pgp on the luminal and 
abluminal membranes of BMECs and on astrocytic end-
feet (Fernandez et al., 2004; Hartz et al., 2006; Pardridge 
et al., 1997). Prolonged or chronic peripheral inflammation 
however appears to upregulate the expression of the trans-
porter protein in the same regions (Liu and Liu, 2014). This 
may be of pathological importance as regional abnormali-
ties in the expression of Pgp in the BBB appear to be a 
feature of neurological illnesses (Qosa et al., 2015). This 
also appears to be the case for SZ and MDD, with Pgp 
being upregulated in the temporal cortex, basal ganglia and 
hippocampus of the former illness and upregulated in the 

frontal and temporal regions in the latter (De Klerk et al., 
2009, 2010). This upregulation could explain the develop-
ment of drug resistance in MDD and SZ and the initial 
downregulation of Pgp in the early phase of inflammation 
could conceivably contribute to loss of CNS homeostasis 
and exaggerated neuropathology contributing to initial 
BBB disruption from the ‘inside’ (Müller, 2018; Sita et al., 
2017). Preclinical data also suggest that peripheral inflam-
mation may induce upregulation of receptors and cytosolic 
proteins responsible for the uptake of TNF-α (Osburg et al., 
2002), monoamines (Wu et al., 2015) and insulin (Xaio 
et al., 2001), which may have additional detrimental effects 
on CNS homeostasis.

Chronically elevated oxidative and 
nitrosative stress and damage to the BBB

ROS, such as the superoxide radical (O2
− or O2

•−) and 
hydrogen peroxide (H2O2), and RNS, such as nitric oxide 
(NO or NO•) and peroxynitrite (ONOO−), play essential 
roles in cellular signalling in BCECs under physiological 
conditions (Morris et al., 2016c). NO derived from endothe-
lial nitric oxide synthase (eNOS) also exerts protective 
effects on BMECs via a number of routes, including free 
radical scavenging (Förstermann, 2006; Najjar et al., 2013; 
Pan et al., 2005; Stuehr et al., 2004). However, higher lev-
els of NO and ROS result in oxidative damage to lipids, 
proteins and deoxyribonucleic acid (DNA) resulting in 
escalating damage to endothelial cells and the BBB and a 
loss of the protective effects of NO derived from eNOS 
(Lucas et al., 2015; Morris and Maes, 2014). This process 
may be of relevance from a wider perspective so far as the 
pathogenesis of SZ and BD is concerned, as reduced levels 
and abnormalities in function or expression of eNOS appear 
to be related to several aspects of pathology in both ill-
nesses (Burghardt et al., 2013; Reif et al., 2006). It is also 
noteworthy that several authors have adduced evidence 
associating endothelial dysfunction with the development 
of MDD (Lavoie et al., 2010). While there is no direct evi-
dence that this phenomenon is caused by abnormal eNOS 
activity the high levels of oxidative stress seen in MDD 
patients makes this scenario quite likely.

Briefly, extra-endothelial NO production generated by 
the activity of neuronal nitric oxide synthase (nNOS) and 
inducible nitric oxide synthase (iNOS) in the extra-endothe-
lial environment is increased in an environment of oxida-
tive stress due to the positive modulation of the former by 
increased cellular calcium ion levels (Magenta et al., 2016) 
and the latter by increased levels of PICs and NF-κB sig-
nalling (Chuang et al., 2010; Galea et al., 1992). Elevated 
NO in combination with O2

− in an environment of chronic 
ONS results in the synthesis of the powerful and  excessively 
reactive oxidant peroxynitrite (NO• + O2

•− → ONOO−), 
which can inflict massive damage on the vascular endothe-
lium (Förstermann, 2006; Morris and Maes, 2014), and 
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ultimately lead to frank disruption of BBB integrity (Ding 
et al., 2014; Stuehr et al., 2004). In addition, the activity of 
eNOS is compromised in conditions of elevated oxygen as 
a result of changes in levels of calcium ions, arginine and 
the essential cofactor tetrahydrobiopterin (BH4) (Burghardt 
et al., 2013; Mitchell et al., 2007; Montezano and Touyz, 
2012). It should also be noted at this juncture that chronic 
peripheral inflammation can also impair endothelial eNOS 
function (Burghardt et al., 2013).

The mechanism underpinning reductions of BH4 levels 
involves ROS-induced oxidation of BH4 to dihydrobiop-
terin (BH2), thereby decreasing levels of this molecule in 
the endothelium (Najjar et al., 2013). The subsequent 
decrease in the BH4 to BH2 ratio inhibits the activity of 
eNOS while uncoupling arginine as its substrate and thus 
allowing engagement with molecular oxygen and increased 
production of O2 (Bouloumie et al., 1999; Moens and Kass, 
2006; Najjar et al., 2013). As mentioned above, O2

−, in turn, 
combines with NO to form ONOO−, thereby further increas-
ing the oxidative conversion of BH4 to BH2, which further 
lowers eNOS activity in a positive feedback loop (Chen 
et al., 2010; Szabó et al., 2007).

Reduced eNOS activity can decrease endothelial NO 
levels resulting in reduced cerebral blood flow (Najjar 
et al., 2013; Toda and Okamura, 2012). The development of 
cerebral hypoperfusion may also be linked to impaired vas-
odilation that is mechanistically linked to reduced neuro-
vascular eNOS-dependent NO biosynthesis (Li et al., 
2016a; Liu et al., 2016; Najjar et al., 2013). Moreover, sus-
tained cerebral hypoperfusion can further compromise 
endothelial mitochondrial oxidative function, increasing 
the formation of endothelial ROS (Aliev et al., 2010, 2014; 
Liu and Zhang, 2012), which in turn promotes eNOS 
uncoupling and lowers endothelial NO levels, thereby fur-
ther reducing cerebral perfusion in a positive feedback loop 
(Antoniades, 2006; Chen et al., 2010; Lavoie et al., 2010).

Mitochondrial dysfunction, which appears to be an 
invariant feature of SZ, BD and MDD (reviewed by 
Morris and Berk, 2015) can also be induced by high lev-
els of NO, peroxynitrite and ROS directly via oxidative 
damage to mitochondrial DNA, lipids and proteins, as 
well as by inhibiting enzymes of the electron transport 
chain (ETC) and the tricarboxylic acid (TCA) cycle 
(Morris et al., 2016c, 2017b). This is of importance as 
virtually every aspect of mitochondrial biology plays a 
significant role in maintaining the functions and integrity 
of endothelial cells in general and BMECs in particular 
(Doll et al., 2015).

In brief, mitochondria play an indispensable role in 
regulating endothelial cell signalling pathways by main-
taining intracellular calcium ion homeostasis and varying 
the production of ROS (reviewed by Caja and Enriquez, 
2017). There are also accumulating data suggesting that 
mitochondrial biogenesis dynamics, location and 
mitophagy also play a vital role in maintaining the optimal 

performance of these cells (reviewed by Kluge et al., 
2013). Mitochondria also act as guardians of endothelial 
cells capable of sensing changes in the intracellular envi-
ronment and protecting the cells against the ravages of oxi-
dative stress by engaging a number of ‘defensive’ responses 
(Koziel and Jarmuszkiewicz, 2013). One such response is 
the upregulation of uncoupling protein production which 
results in reduced mitochondrial respiration, and impaired 
mitochondrial membrane potential resulting in diminished 
adenosine triphosphate (ATP) and ROS production (Koziel 
et al., 2015; Szewczyk et al., 2015). It is noteworthy that 
this defence involving upregulation of uncoupling proteins 
has been associated with a decrease in the permeability of 
the intestinal epithelial barrier (Zhang et al., 2012). 
However, upregulation of uncoupling proteins may be 
something of a double-edged sword as far as BMECs are 
concerned, as the function of membrane pumps and the 
integrity of TJs and AJs are dependent on an adequate sup-
ply of ATP (Bacallao et al., 1994; Mandel et al., 1993). 
Moreover, recent experimental data have demonstrated 
that profound mitochondrial dysfunction is associated with 
a dramatic increase in the permeability of the BBB, which 
is unsurprising given its energy-dependent nature (Bukeirat 
et al., 2015; Doll et al., 2015).

Indirect detrimental effects of chronic 
inflammatory & oxidative and nitrosative 
stress on the BBB

PICs can communicate inflammatory signals to the CNS via 
neural and humoral pathways to activate microglia and astro-
cytes, which can exert detrimental effects on the integrity of 
the BBB from the abluminal side via the production of ROS, 
RNS, PICs and a range of neurotoxic molecules (Morris and 
Berk, 2015). One humoral route involves direct access to the 
brain via circumventricular organs such as the subfornical 
organ which lack a functional BBB and the neurons of which 
are protected by being enwrapped by astrocyte-like stem cells 
(Morris et al., 2013; Perry and Holmes, 2014; reviewed by 
Miyata, 2015). Microglia proximate to circumventricular 
organs in general, and the subfornical organ in particular, are 
exquisitely sensitive to even slight increases in peripheral 
cytokine levels, and the intensity of their activation is exces-
sive in relation to the strength of inflammatory stimuli and 
results in a range of cardiovascular and sympathetic responses 
(Furube et al., 2015; Wei et al., 2013). The weight of evidence 
suggests that such activation is initially defensive in nature 
and localized at low levels of peripheral inflammation, but 
becomes pathological and propagates throughout the CNS in 
wave-like patterns as levels of peripheral inflammation 
increase (Furube et al., 2018; Morris et al., 2013)

The other humoral pathways involve direct entry of PICs 
into the CNS via a saturable transport system in the BBB, or 
an indirect induction of cytokines and other inflammatory 
mediators such as prostaglandins and their subsequent release 
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into the CNS parenchyma, or via provocation of an increase 
in BBB permeability (Morris et al., 2015b; Seruga et al., 
2008). The neural route, on the other hand, involves direct 
stimulatory action of PICs on vagal afferent neurons (Goehler 
et al., 2000; Johnston and Webster, 2009). The stimulation of 
this nerve provides the main mechanism enabling the activa-
tion of microglia in the hippocampus following inflammatory 
insults such as the advent of an acute myocardial infarction 
(Francis et al., 2004a, 2004b). However, before moving on to 
consider the mechanisms underpinning BBB damage follow-
ing the activation of microglia, it should be stressed that these 
glial cells display region-specific variation in the immune and 
bioenergetic pathways engaged during their ‘quiescent’ stage 
and following their activation (reviewed by Grabert et al., 
2016 and Doorn et al., 2015). This is an important point as 
this state of affairs allows for considerable regional differ-
ences in the extent of BBB damage as a result of microglial 
activation driven by increased levels of peripheral I&ONS 
and could go some way to account for the regional variations 
seen in BBB disruption in diseases such as AD and PD (Gray 
and Woulfe, 2015; Zenaro et al., 2017), although disease-spe-
cific genetic and epigenetic factors are also involved 
(reviewed by Morris et al., 2017a). There is also evidence to 
suggest that the morphology, function and activation pattern 
of microglia in the brains of patients with SZ, BD and MDD 
display considerable regional variation (Jakobsson et al., 
2015; Setiawan et al., 2015; Steiner et al., 2006, 2008; Watkins 
et al., 2014). Moreover, these parameters may also vary with 
illness state and clinical subtype, with the former allowing for 
considerable within-patient variation in the permeability of 
the BBB over time (Frick et al., 2013; Jakobsson et al., 2015; 
Laskaris et al., 2016).

Activated microglia and reactive 
astrogliosis as a cause of a ‘leaky brain’

Activated microglia secrete a range of neurotoxic mole-
cules such as ROS, NO, PGE, cyclooxygenase (COX)-2, 
quinolinic acid, several chemokines such as monocyte che-
moattractant protein-1 (MCP-1), C-X-C motif chemokine 
ligand 1 (CXCL-1) and macrophage inflammatory protein 
1α (MIP-1α), and the PICs IL-6, TNF-α and IL-1β, which 
all exert a detrimental effect on the integrity and function of 
the BBB (Morris and Maes, 2014; Morris et al., 2013).

Redox control of activated microglia is mediated by NO 
synthases and NADPH oxidases (Rojo et al., 2014; Sumi 
et al., 2010). Microglial ROS induce BBB permeability via 
several different routes which include upregulation of the 
PI3K/Akt and c-Jun N-terminal kinase (JNK) signalling 
pathways, activation of MMP-9, MMP-3 and MMP-2 lead-
ing to cytoskeleton remodelling, and downregulation of TJ 
proteins claudins 5, 1 and 11 together with impaired tran-
scription of ZO-1 and occludin (Asahi et al., 2001; 
Rosenberg et al., 2001; Schreibelt et al., 2007; Yamagata 
et al., 2004). Unsurprisingly, experimental evidence 

indicates that the peroxidation of membrane lipids in 
BCECs is another mechanism which underpins increases in 
BBB permeability mediated by ROS produced by activated 
microglia (Chodobski et al., 2011).

IL-1β, produced in copious amounts by activated micro-
glia and astrocytes (Ravizza et al., 2008), mediates increases 
in BBB permeability directly by engagement with IL-1 recep-
tor type 1 (R1), its signalling receptor; these receptors are 
expressed liberally on BMECs, perivascular astrocytes and 
microglia (Vezzani et al., 2008). Indirect increased BBB per-
meability is caused by IL-1β via upregulation of NO and sev-
eral matrix metalloproteinases (MMPs) (Librizzi et al., 2012; 
Morin-Brureau et al., 2011), leading to redistribution of TJs 
and loss of ZO-1 with a resultant increase in BBB permeabil-
ity (Obermeier et al., 2013). It is noteworthy that BBB dam-
age ultimately originating from microglial derived IL-1 
activates many downstream signalling pathways compromis-
ing many aspects of neuronal activity, particularly gluta-
matergic neurotransmission (Coulter and Eid, 2012; Kofuji 
and Newman, 2004). IL-1β activation also induces increased 
transcription of a wide range of adhesion molecules (e.g 
E-selectin, P-selectin, intracellular adhesion molecule-1 
(ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) 
in BMECs. Upregulation of such molecules aids the adhesion 
of activated leukocytes at the luminal surface of these cells 
with the subsequent release damaging proteases and PICs 
ultimately allowing the entry of ions, proteins and other mac-
romolecules from the periphery, thereby further compromis-
ing BBB integrity (Fabene et al., 2008; Kim et al., 2009).

MCP-1 plays an important role in the maintenance of 
BBB integrity in physiological conditions (Yao and Tsirka, 
2011). However, evidence also suggests that this chemokine 
exerts a detrimental effect on BBB BCECs under neuroin-
flammatory conditions, provoking actin cytoskeleton 
remodelling and leading to the redistribution of occludin 
together with claudin-1, -5 and -11 (Dimitrijevic et al., 
2006; Stamatovic et al., 2006).

Other molecular players released by activated microglia 
that play an important role in inducing BBB damage ‘from 
the inside’ include vascular endothelial growth factor 
(VEGF), IL-6, TNF-α,  chemokine (C-C motif) ligand 2 
(CCL-2) and prostaglandins. For example, IL-6 and CCL-2 
play a major role in recruiting peripheral leukocytes which 
damage the BBB in the manner described above (Obermeier 
et al., 2013). VEGF, on the other hand, induces the down-
regulation of ZO-1 and promotes the angiogenesis and 
irregular proliferation of BCECs (Librizzi et al., 2012; 
Morin-Brureau et al., 2011).

Reactive astrogliosis and the development of 
a ‘leaky brain’

PICs and other neurotoxic molecules released from chroni-
cally activated microglia can induce activation, prolifera-
tion and a range of morphological and functional changes 
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in astrocytes described as reactive astrogliosis. Perhaps 
unsurprisingly, these functional and morphological changes 
produce detrimental effects on BBB permeability and the 
integrity of the NVU (Cabezas et al., 2014; Chapouly et al., 
2015). Reactive astrocytes produce a range of molecules 
capable of inducing BBB dysfunction or disruption, such as 
PGE2, IL-1β, IL-6 and TNF-α (Sofroniew, 2015). It is also 
worth noticing that chronic elevation of these cytokines 
leads to neurovascular uncoupling, or disruption of the 
relationship between local neural activity changes in cere-
bral blood flow. Neural activation normally is associated 
with neurotransmitter release as well as increased oxygen 
and ATP consumption. This releases vasoactive agents such 
as K+ and adenosine, which increase blood flow. Disruption 
of this process further increases BBB permeability and 
impairs the function of the NVU as a whole (Fujita et al., 
2009; Giralt et al., 2010). Neurovascular uncoupling can 
also lead to increased levels of oxidative stress and a self-
sustaining cascade of increased BBB permeability and 
frank disruption, mitochondrial dysfunction and oxidative 
stress, neuronal death and brain tissue atrophy (Lepore 
et al., 2008; Lewerenz et al., 2006).

Systemic LPS also induces reactive astrogliosis and may 
even induce apoptosis of these glial cells in certain circum-
stances (Biesmans et al., 2013; Cardoso et al., 2015). This 
leads to the disruption of the glia limitans and provides 
another mechanism underpinning BBB disruption (Asgari 
et al., 2015; Sofroniew, 2015). There are also data suggesting 
that LPS can induce disruptive structural changes in astro-
cytic end-feet, thus disrupting the architecture of the NVU per 
se (Fan et al., 2014). There is also accumulating evidence sug-
gesting that systemically elevated LPS also provokes wide-
spread changes in the transcription of astrocytic genes 
regulating cytotoxic and pro-inflammatory pathways, thereby 
increasing the production of PICs and other neurotoxins by 
these glial cells (reviewed by Zamanian et al., 2012). It is 
important to note that the development of reactive astrogliosis 
secondary to microglial activation, or indeed other inflamma-
tory stimuli, is also associated with a dysregulated expression 
or a myriad of regulatory genes in these glial cells (Zamanian 
et al., 2012). This latter point is particularly pertinent from the 
perspective of SZ, BD and MDD, as discussed below.

Abnormal expression of several genes involved in the 
regulation of astrocyte function has been reported in SZ, 
which may adversely affect neurotransmission. Such genes 
also play a regulatory role in the function of the NVU, which 
appears to be impaired in SZ patients (Bernstein et al., 2015; 
Najjar et al., 2017). Similarly, decreased astrocyte density 
and function appear to be a feature of BD, which may well 
play a role in the unbalanced neurotransmission seen in this 
disorder. Notably, lithium and other medicines used to treat 
BD, such as carbamazepine and valproate, modify the 
expression of several astroglial genes leading to positive 
shift in astroglial signalling and CNS homeostasis. It is 
tempting to speculate that such changes could improve the 

structure and function of the NVU, although it must be 
stressed that, to date, there is no evidence to support this 
hypothesis (Peng et al., 2016).

Several research teams have reported changes in the lev-
els of protein and messenger ribonucleic Acid (mRNA) for 
acknowledged astrocyte markers such as glial fibrillary 
acidic protein (GFAP), the water channel aquaporin-4 
(AQP4), gap junction proteins (connexion-40 and connex-
ion-43), the calcium-binding protein S100B and the excita-
tory amino acid transporters 1 and 2 in MDD patients. 
These observations are of relevance because of the indis-
pensable role astrocyte function plays in maintaining the 
integrity and function of the NVU, which is known to be 
dysfunctional in MDD patients (Najjar et al., 2013; 
Rajkowska and Stockmeier, 2013).

The relationship between 
inflammatory and oxidative and 
nitrosative stress and ‘leaky gut’

Inflammatory and oxidative and nitrosative 
stress and the development of a ‘leaky gut’

Several authors have proposed the presence of dysbiosis 
and a dysfunctional microbiota–gut–brain axis in the patho-
genesis and pathophysiology of SZ, BD and MDD (Kanji 
et al., 2018; Mangiola et al., 2016). Similarly, increased 
intestinal permeability and translocation of PS and other 
commensal antigens into the circulation have been demon-
strated in each of these illnesses (Maes et al., 2012, 2013; 
Severance et al., 2013). The pathophysiological importance 
of this phenomenon in SZ and MDD is emphasized by data 
demonstrating a correlation between the levels of LPS in 
the systemic circulation and levels of peripheral inflamma-
tion (Maes et al., 2012, 2013; Severance et al., 2013). In 
this context, it is noteworthy that increased intestinal per-
meability can be initially caused by elevated I&ONS.

Chronically elevated I&ONS induces increases in intes-
tinal permeability (Al-Sadi et al., 2009; Banan et al., 2003; 
Lee, 2015; Tian et al., 2017) leading to the translocation of 
LPS and other commensal antigens such as peptidoglycan 
and flagellin, which ultimately traverse from the gut lumen 
into the intestinal mucosa (Lucas et al., 2015; Morris et al., 
2016b). This creates a vicious feed-forward loop which 
accelerates the pattern of localized and systemic inflamma-
tion via several different mechanisms (Delzenne and Cani, 
2011; Zhang and Zhang, 2013).

LPS in the colon exacerbates intestinal inflammation 
and reduces the frequency of regulatory T cells (or Tregs), 
thereby increasing the expression of PICs (Im et al., 2012). 
Excessive levels of LPS in the colon also increase epithelial 
TJ permeability by increasing the secretion of IL-8 by 
intestinal epithelial cells (Angrisano et al., 2010). 
Translocated LPS also increases TJ permeability by induc-
ing increased expression and changes in the location of 
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toll-like receptor (TLR) 4 and cluster of differentiation 
(CD) 14 in enterocytes (Guo et al., 2013).

The development of gut inflammation has serious con-
sequences including, but not limited to, the recruitment of 
macrophages into mucosal tissue from the peripheral circu-
lation that also produce PICs that alter epithelial permeabil-
ity. Chronic accumulation of LPS, and other inflammatory 
molecules such as peptidoglycan and flagellin, in the intes-
tinal mucosa creates a self-amplifying feed-forward loop 
which exacerbates localized inflammation, further increas-
ing intestinal permeability leading to the translocation of 
LPS and other commensal antigens into the blood stream 
(Delzenne and Cani, 2011; Zhang and Zhang, 2013). 
Prolonged translocation of LPS into the systemic circula-
tion leads to the activation of TLR4 and TLR2 on antigen-
presenting cells (APCs) and T lymphocytes and the 
development of chronic systemic inflammation and chronic 
immune activation, further increasing levels of systemic 
PICs with increased detrimental effects on BBB integrity 
and/or function (Morris et al., 2015a, 2015b). The potential 
pathogenic consequences of translocation of bacterial com-
ponents into the systemic circulation is emphasized by data 
demonstrating that this phenomenon is a major contributor 
to the chronic systemic immune activation, inflammation 
and oxidative stress seen for example in HIV seropositive 
people (Brenchley and Douek, 2008; Shan and Siliciano, 
2014). LPS translocation into the systemic circulation fol-
lowing the advent of dysbiosis and increased intestinal per-
meability is now considered to be a source of metabolic 
endotoxemia, increasingly appreciated as an important 
driver of pathogenesis and pathophysiology in type 2 dia-
betes mellitus, metabolic syndrome and MS (Cani et al., 
2008, 2009; Puddu et al., 2014; Riccio and Rossano, 2015).

‘Leaky gut’ and the development of a  
‘leaky brain’

Chronically elevated LPS exerts its adverse effects on the 
integrity and function of the BBB and the NVU via several 
different mechanisms. For example, LPS has been shown 
to induce BBB dysfunction via NADPH oxidase-derived 
ROS (Liu et al., 2012; Zhou et al., 2014). Other mecha-
nisms include the upregulation of diffusible mediators such 
as NO and metalloproteinases (Qin et al., 2015; Wong 
et al., 2004). The presence of increased levels of this com-
mensal antigen at the peripheral side of the brain endothe-
lium also leads to the upregulation of COX and inflammatory 
intracellular signalling systems, which involves mitogen-
activated protein (MAP) kinase signalling (Aid et al., 2010; 
Banks et al., 2015; Qin et al., 2015), MLC phosphorylation 
(possibly associated with MLCK transcription), and a 
change in and rearrangement of filamentous (F)-actin, 
which in turn may disrupt TJ assembly (He et al., 2011). 
There is also some evidence to suggest that LPS signalling 

induces mitochondrial dysfunction in highly energy-
dependent brain endothelial cells (Doll et al., 2015).

Upregulation of MAP kinase signalling may also under-
pin LPS-induced damage to the brain endothelium, which 
involves disturbances to the integrity of endothelial cell 
membranes and mitochondrial damage which may ulti-
mately result in frank apoptosis (Cardoso et al., 2012; 
Karahashi et al., 2009). This phenomenon may also stem 
from LPS-induced acceleration of glycocalyx degradation 
(Wiesinger et al., 2013). This glycoprotein lines the apical 
surface of the endothelium and there is accumulating evi-
dence to indicate that it is an important player in maintain-
ing barrier integrity and inhibiting paracellular transport 
(Woodcock and Woodcock, 2012; reviewed by Reitsma 
et al., 2007). The mechanisms underpinning LPS-induced 
degradation of glycocalyx remain to be fully delineated but 
there is evidence to suggest that this phenomenon is driven 
at least in part by secondary activation of TNF-α (Wiesinger 
et al., 2013), ROS (Moseley et al., 1997) and MMPs 
(Lipowsky, 2012).

LPS also increases the expression of calveolin-1 (Jiao 
et al., 2013; Martins, 2015), which is significant given the 
role of the latter in regulating endocytotic transport across 
BBB endothelial cells and BBB permeability (Gu et al., 
2011). Briefly, the small number of endocytotic vesicles 
and caveolae in BBB endothelial cells relative to the 
peripheral vasculature, and subsequently a lower rate of 
transcytosis, is one of the mechanisms maintaining the 
relative impermeability of the brain endothelium (Nag, 
2003). Caveolae are indispensable players in the endocy-
totic pathway and are largely composed of calveolin-1 
(Feng et al., 2013; Simionescu et al., 2009). Crucially, 
LPS-mediated phosphorylation of calveolin-1 increases 
the number of caleveoli and endocytotic vesicles, resulting 
in increased transendothelial permeability of brain 
endothelial cells (Wang et al., 2015). This is an alternative 
mechanism underpinning BBB permeability, which 
appears to be of prime importance in an inflammatory 
environment (Cipolla et al., 2004; Lossinsky and Shivers, 
2004). Furthermore, in such an environment, stimulation 
of vesicular processes, which promotes transcytotic leak-
age, may be the dominant form of initial BBB impairment 
(Banks et al., 2015) and precedes paracellular opening 
(Fleegal-DeMotta et al., 2009; Knowland et al., 2014). 
This is a complex argument and readers who are interested 
in the details are invited to consult the work of Jiao et al. 
(2011) and Krueger et al. (2013). Finally, evidence sug-
gests that systemically elevated LPS can also contribute to 
the development of BBB permeability via the activation of 
microglia throughout the brain following initial activation 
of microglia adjacent to circumventricular organs such as 
the subfornical organ in much the same manner as periph-
eral PICs discussed above (Radler et al., 2014; reviewed 
by Furube et al., 2018).
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The role of microbial metabolites 
in the genesis of a ‘leaky brain’

Increases in systemic and intestinal inflammation are associ-
ated with the development of dysbiosis (Rawls, 2007) and a 
concomitant decrease in bacterial genera such as Bacteroides 
Firmicutes, Ruminococcus and Faecalibacterium and 
Roseburia, which produce short-chain fatty acids (SCFAs) 
(Cantarel et al., 2015; Tremlett et al., 2016; Yamada et al., 
2015; reviewed by Forbes et al., 2016). Notably, this pattern 
has been repeatedly demonstrated in MDD patients during 
periods of relapse and remission, and decreased levels of 
Faecalibacterium have also been reported in BD patients 
(Evans et al., 2017; Jiang et al., 2015; Zheng et al., 2016; 
reviewed by MacQueen et al., 2017). There is also evidence 
suggesting that the extent of such a decrease correlates with the 
severity of both depression and mania (reviewed by Evans 
et al., 2017). The situation in SZ, however, appears to be more 
complex as a recent study investigating the  composition of the 
gut microbiota reported relatively increased levels of the 
Lactobacillaceae, Brucellaceae, Halothiobacillaceae and 
Micrococcineae, whereas levels of the Veillonellaceae family 
were decreased (Kelly et al., 2017). The authors of this study 
also reported that the increase in Lactobacillus group numbers 
correlated  positively with the severity of psychotic symptoms 
displayed by patients in the study (Kelly et al., 2017). This may 
signal a departure from evidence of reduced SCFA producing 
bacteria in MDD and BD as members of the Lactobacillus 
group are held to encourage the production of SCFAs (LeBlanc 
et al., 2017). The patients in this study were, however, pre-
scribed anti psychotics which are known to have their own 
independent effect on the composition of the microbiota, and 
even potentially upregulating levels of Lactobacillaceae (Bahr 
et al., 2015) rendering any study in this area carried out on 
patients who are not treatment-naïve very difficult to interpret 
(Kelly et al., 2017).

Reduced production of SCFAs is problematic on several 
counts. First, SCFAs of microbial origin play an indispensa-
ble role in the maintenance of intestinal barrier integrity via 
ligation of glucagon-like peptide (GLP)-43, which leads to 
the synthesis of GLP-1 and GLP-2 (Bischoff et al., 2014; 
Ferreira et al., 2014). Consequently, a relative paucity of 
SCFA producers can result in increased intestinal permeabil-
ity by provoking detrimental changes in the distribution and 
localization of occludin and ZO-1, resulting in increased 
LPS translocation into the periphery and increased levels of 
inflammation (Cani et al., 2009; Morris et al., 2016a). 
Second, there is accumulating evidence that SCFA transloca-
tion into the peripheral circulation exerts a broadly anti-
inflammatory effect by suppressing the activity of 
macrophages, dendritic cells (DCs) and T lymphocytes (Kim 
et al., 2014; Masui et al., 2013; reviewed by Sivaprakasam 
et al., 2016). Finally, the weight of evidence suggests that 
SCFAs play an indispensable role in the formation and main-
tenance of the BBB by modulating different pathways 

involved in the gut–brain axis (Braniste et al., 2014; Frohlich 
et al., 2016; Hoyles et al., 2017). The mechanisms underpin-
ning these phenomena involve either direct interaction with 
the vagus nerve (Kimura et al., 2011) and the enteric nervous 
system (Obata and Pachnis, 2016), or engagement with BBB 
endothelial cells via translocation from the gut into the 
peripheral circulation (MacFabe, 2012; Morris et al., 2016a). 
Importantly, the evidence suggests that lowered levels of 
microbial SCFA production in the gut lumen and the periph-
eral circulation in a state of chronic intestinal and systemic 
inflammation compromise BBB function and/or integrity via 
a number of different routes (Braniste et al., 2014; Fessler 
et al., 2013; Frohlich et al., 2016; Hoyles et al., 2017). Figure 
3 illustrates the microbiota gut brain axis.

There are accumulating data suggesting that one such 
route involves entry into BMECs via monocarboxylate 
receptors (MacFabe, 2012) and thereafter acting as histone 
deacetylase (HDAC) inhibitors. Rescuing such inhibition 
rescues histone acetylation and the acetylation of other pro-
teins, thereby modulating the expression of genes and the 
function of a range of proteins playing an indispensable 
role in the performance of cellular signalling systems and 
organelles, and so modulating epigenetic processes (Morris 
et al., 2016a). There is accumulating evidence indicating 
that the HDAC activities of SCFAs are directly responsible 
for maintaining the permeability of the BBB in animal 
models of various neurological diseases by increasing the 
expression of occludin and ZO-1 (Li et al., 2016b; Park and 
Sohrabji, 2016). SCFA acting as HDACs may also exert 
protective effects on BBB integrity via more indirect routes 
such as increasing the resistance of brain endothelial cells 
to the corrosive effects of oxidative stress (Ferrante et al., 
2003) and exerting a range of anti-inflammatory effects 
leading to reduced T cell, DC, neutrophil and macrophage 
activity, thereby reducing PIC and inflammatory chemokine 
activity, which may be of major importance in neuropsychi-
atric and neurological diseases (Aoyama et al., 2008; Smith, 
2015; Tan et al., 2014).

Another potential mechanism underpinning the benefi-
cial effects of SCFAs on BBB integrity involves engage-
ment with aryl hydrocarbon (Arh) receptors, which are 
widely expressed on brain endothelial cells and throughout 
the CNS (Dauchy et al., 2008; Filbrandt et al., 2004; Jacob 
et al., 2011). Arh is a ligand-activated transcription factor 
that responds to planar aromatic hydrocarbons including 
cytochrome P450. Engagement and subsequent activation 
of Arh receptors on BBB endothelial cells results in a down-
regulation of connexin-43, which is an essential gap junc-
tion protein and, unsurprisingly, such downregulation is 
detrimental to BBB integrity (Andrysik et al., 2013; 
Kabatkova et al., 2015). From the perspective of this paper, 
it is noteworthy that this downregulation is mediated by 
activation of MAP kinase signalling and is potentiated by 
elevated TNF-α levels in an environment of chronic inflam-
mation (Kabatkova et al., 2015). Connexin-43 is also an 
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important player in maintaining immune quiescence within 
the CNS and reduced expression of this protein plays an 
independent role in the recruitment of immune cells from 
the periphery into the CNS by increasing the expression of 
chemokines and other chemoattractants, thereby further 
increasing BBB permeability and exacerbating any pre-
existing neuroinflammation (Boulay et al., 2015; Lee et al., 
2017). Neuroinflammation in the guise of activated micro-
glia and astrocytes can be induced by elevated I&ONS and 
LPS in the periphery as previously discussed (Morris et al., 
2013, 2015b). Importantly, the development and persistence 
of neuroinflammation is another cause of increased BBB 
permeability and/or disruption via several different mecha-
nisms, which we will now consider.

Consequences of BBB disruption

BBB disruption allows the unregulated influx of peripheral 
blood mononuclear cells (PBMCs) of the innate and adap-
tive immune systems, including macrophages, DCs, B lym-
phocytes and T lymphocytes, into the CNS where they 

execute a range of pro-inflammatory effects, which can ini-
tiate and/or exacerbate neuroinflammation (Prinz and 
Priller, 2017). For example, the infiltration of CD4+ T sub-
sets and their relative proportions have a crucial influence 
on the extent and polarization of microglial activation and 
consequent neuronal damage (Gonzalez et al., 2014; Lucin 
and Wyss-Coray, 2009). CD4+ T cells, such as Th1, Th17, 
gamma delta (γδ) T cells and granulocyte-macrophage col-
ony-stimulating factor (GM-CSF) producing CD4+ T cells, 
play a major role in maintaining and exacerbating chronic 
neuroinflammation, thereby perpetuating neurodegenera-
tive and neuroprogressive processes (Gonzalez and Pacheco, 
2014). Th17 T cells would appear to be the most common 
subset entering the CNS is the earliest stages of increased 
BBB permeability, which are further stimulated by micro-
glia, astrocytes and resident or infiltrated CNS macrophages, 
acting as APCs leading to further disruption of the BBB, 
both as a result of inflammatory mediators released by Th17 
lymphocytes and increased microglial activation (Carson 
et al., 2006; Murphy et al., 2010; Iruretagoyena et al., 2006; 
Ye et al., 2006). This increase in BBB disruption, in turn, is 

Figure 3. Schematic representation of the microbiota gut brain axis. There are five pathways involved in communicating 
between the microbiota and the brain. These are: the neuroanatomical pathway(represented by spinal afferent neurons and the 
vagus nerve), the neuroendocrine–HPA axis (facilitated by microbial production of hormones and neuropeptides), intestinal 
and systemic immune activation(characterized by LPS translocation and PIC production), altered permeability of the intestinal 
epithelium and blood–brain barrier (characterized by the production of SCFA and other metabolites) and, finally, the microbial 
production of neurotransmitters such as GABA and serotonin.
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thought to accelerate the entry of γδ T cells and Th1 lym-
phocytes and a self-perpetuating cascade of neuroinflamma-
tion and BBB disruption (Gonzalez et al., 2014).

There is also a growing awareness that cytotoxic CD8+ T 
cells play a major role both in the initial impairment of BBB 
integrity and the progress to BBB disruption via entry into the 
CNS and probably by stimulating the activation and/or prolif-
eration of microglia and astrocytes, compromising the integ-
rity of the NVU (Junker et al., 2007), as well as secreting the 
PIC IL-17 (Huber et al., 2013). This is a rapidly developing 
area of research, and readers interested in acquiring more 
details are invited to consult the work of (Pilli et al., 2017).

There is also accumulating evidence demonstrating that 
activated memory B cell infiltration into the CNS following 
BBB disruption and/or upregulation of integrins and selec-
tins on the surface of BMECs is a significant contributor to 
increased neuroinflammation and neuropathology along 
several different dimensions (Baker et al., 2017). Such 
pathology may stem from antibodies targeting astrocytes 
and microglia, following T cell-dependent activation or fol-
lowing T cell-independent activation and proliferation 
(Dang et al., 2014; Duddy et al., 2004; Harp et al., 2010). 
This latter route involves acting as APCs and stimulating 
activated Th1 and Th17 T cells to increase their production 
of pro-inflammatory mediators (Harp et al., 2010) or by 
directly secreting such molecules, particularly IL-17, IL-6 
and GM-CSF (Bao and Cao, 2014; Lund, 2008).

Unsurprisingly, myeloid DCs of peripheral origin also 
play a major role in maintaining or amplifying pathology in 
diseases associated with neuroinflammation and BBB dis-
ruption (Bossù et al., 2015). It is worthy of note that concen-
tration of peripheral DCs in the CNS in physiological 
conditions is low, but is dramatically elevated in conditions 
of BBB disruption and a neuroinflammatory environment 
(Bulloch et al., 2008; Greter et al., 2005). Moreover, in many 
neuroinflammatory illnesses, this increase in DC levels in 
the CNS is accompanied by a corresponding fall in the num-
bers of DCs in the periphery, indicating that CNS DCs have 
their origin in the periphery (Ciaramella et al., 2013). DCs 
act as an additional source of neuropathology, in much the 
same way as effector B cell subsets, namely by further stimu-
lation and polarization of T cells by acting as APCs and by 
secreting neurotoxic PICs (Ganguly et al., 2013; Ludewig 
et al., 2016).

Activated macrophages recruited into the CNS also 
induce or encourage the development of neuropathology and 
accelerated BBB disruption by acting as APCs and by the 
secretion of PICs. These monocyte derivatives also secrete a 
range of free radicals, MMPs and glutamate (Hendriks et al., 
2005). However, the overall effects of macrophage infiltra-
tion into the CNS are somewhat unpredictable and depend 
on their polarization, often described as M1 (pro-inflamma-
tory) or M2 (anti-inflammatory). Thus, influx of mac-
rophages can have neurotoxic or neuroprotective 
consequences (reviewed by Vogel et al., 2014).

Initial recruitment and adhesion of activated neutrophils to 
the BBB in response to BMEC chemokine synthesis and secre-
tion in inflammatory conditions plays a major role in the devel-
opment of BBB damage. Such adhesion and subsequent 
transmigration of neutrophils across the BBB depend on upreg-
ulation of ICAM-1, integrins and P-selectin on BMECs 
(Bernardes-Silva et al., 2001; reviewed by Varatharaj and 
Galea, 2017). Once across the BBB, transmigration of neutro-
phils increases parenchymal tissue inflammation and promotes 
further BBB disruption via the secretion of inflammatory 
chemokines, cytokines, angiogenic factors, lytic enzymes and 
MMP-9. The actions of neutrophils stimulate increased recruit-
ment of other PMBCs into the CNS, and a mutual interplay 
between CNS neutrophils, B cells and T cells ensures the long-
term survival of each species (Ransohoff and Brown, 2012).

The effects of increased BBB permeability on peripheral 
immune and inflammatory pathways appear to be under-
discussed, but there is increasing evidence supporting a 
pro-inflammatory effect (Bargerstock et al., 2014). For 
example, the entry of astrocyte-derived S100B into the 
peripheral circulation following BBB disruption may act as 
a damage-associated molecular pattern (DAMP) and acti-
vate TLRs expressed on APCs and elevate levels of periph-
eral inflammation (Bargerstock et al., 2014; Kanner et al., 
2003). This molecule may also have the potential to act as 
a specific serum marker for BBB disruption, which is of 
interest given a virtual absence of reliable markers that are 
predictive of patients who are of increased risk of develop-
ing chronic neuropathology (Marchi et al., 2003).

Potential therapeutic approaches

Melatonin

Melatonin has demonstrable in vivo protective and/or 
restorative effects on the function and integrity of the BBB 
via several routes. Such routes include inhibition of TLR4/
NF-κB signalling (Alluri et al., 2016; Hu et al., 2017), inhi-
bition of MMP-9 (Alluri et al., 2016), inhibition of NADPH 
oxidase-2 (Jumnongprakhon et al., 2016), inhibition of 
AMP-activated protein kinase (AMPK) activity (Wang 
et al., 2017), inhibition of nucleotide-binding domain and 
leucine-rich repeat pyrin 3 domain (NLRP3) inflammas-
ome assembly and/or function (Rahim et al., 2017) and 
variable levels of impact on silent information regulator 1 
(SIRT1) (Zhao et al., 2015). There is also an accumulating 
body of evidence indicating that melatonin administration 
decreases intestinal permeability and exerts restorative 
effects on a ‘leaky gut’ (Eliasson, 2014; Mei et al., 2011).

Melatonin has a broadly anti-inflammatory effect in an 
environment of chronically elevated I&ONS and neuroinflam-
mation (Carrillo-Vico et al., 2013) Importantly, from the  
perspective of the research questions addressed in this paper, 
there is a considerable body of data demonstrating that the ther-
apeutic administration of melatonin attenuates inflammatory 
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responses subsequent to the commensal LPS-mediated activa-
tion of TLR4 and consequent MyD88 (myeloid differentiation 
primary-response gene 88; an adaptor molecule) or TRIF (TIR-
domain-containing adaptor protein inducing IFN-β) upregula-
tion by LPS (Chuffa et al., 2015; Xia et al., 2012). In addition, 
melatonin therapy also appears to inhibit the activity of NF-κB 
by impairing the DNA binding capability of the molecule with 
a concomitant reduction in the activity of PICs and NLRP3 – 
both known to promote permeability of BBB and intestinal TJs 
as described above (Farez et al., 2015; Garcia et al., 2015; 
Tripathi and Jena, 2010). It is also noteworthy that in vivo evi-
dence indicates that the dose of melatonin needed to achieve 
such effects is of the order of 50–100 mg daily (reviewed by 
Acuna Castroviejo et al., 2011; Cardinali et al., 2013), and con-
ventionally prescribed doses of 1–5 mg daily would appear to 
produce no such benefits (Dowling et al., 2005; Medeiros et al., 
2007).

Melatonin also acts as a potent scavenger of RNS, ROS, 
carbonate ions and a number of organic radical species 
(Morris and Maes, 2017). The antioxidant properties of mel-
atonin also include the upregulation of catalase superoxide 
dismutase (SOD), glutathione reductase and glutathione per-
oxidase (Pandi-Perumal et al., 2013; Sharafati-Chaleshtori 
et al., 2017). Melatonin is also a positive modulator of mito-
chondrial performance by enhancing the activity of ETC 
enzyme complexes and by increasing mitochondrial ATP 
production (Cardinali et al., 2013; Ganie et al., 2016; 
Srinivasan et al., 2011).

Statins

There is a wealth of in vivo clinical evidence obtained from 
human studies of chronic illnesses demonstrating that statin 
therapy is associated with a reduction in plasma levels of 
C-reactive protein (CRP), IL-1, IL-6 and TNF-α (Albert 
et al., 2001; Ascer et al., 2004; Gilbert et al., 2017). 
Furthermore, several research teams have reported that statins 
reduce COX-2 and MMP-9 activity when used therapeuti-
cally in a range of inflammatory diseases (Massaro et al., 
2009; Turner, 2005). It is also noteworthy that the clinical use 
of statins reduces NF-κB activation (Ortego et al., 1999) leads 
to the upregulation of thioredoxin, reduced glutathione (GSH) 
and other cellular antioxidant enzymes (Haendeler, 2004; 
Umeji et al., 2006) and improves the bioavailability of 
endothelial NO (Antoniades et al., 2011; McFarland et al., 
2014). The mechanisms underpinning the anti-inflammatory 
effects of statins stem from their capacity to inhibit small 
GTPase prenylation with consequent downregulation of tran-
scription factors such as activator protein 1 (AP-1) and 
NF-κB, and subsequent inhibition of PIC production 
(Greenwood et al., 2006; Smaldone et al., 2009). Additional 
anti-inflammatory actions of statins also stem from their 
capacity to downregulate the expression of suppressor of 
cytokine signaling 3 (SOCS3), CD40, IL-6, IL-8 and MCP-1 
(Smaldone et al., 2009; Veillard et al., 2006).

Experimental evidence suggests that statins exert their 
antioxidant effects in the periphery and in the brains (Barone 
et al., 2011; Butterfield et al., 2012) of people with chronic 
disease via a number of different mechanisms. For example, 
some statins, most notably rosuvastatin, which is hydro-
philic, inhibit the Rho kinase pathway, which is widely dis-
tributed in the CNS in general and BMECs in particular 
(Bond et al., 2015; Rawlings et al., 2009; Tonges et al., 
2012). This is of interest given the role that activation of this 
enzyme plays in the development of TJ permeability and the 
exacerbation of the neuroinflammatory milieu (Tonges et al., 
2012). Another route enabling statin-induced reductions in 
peripheral and central O&NS in patients with cardiovascular 
diseases involves the inhibition of  Ras-related C3 botulinum 
toxin substrate 1 (RAC-1) (another small GTPase), which 
leads to reduced NADPH oxidase activity (Al-Shabrawey 
et al., 2008; Whaley-Connell et al., 2008; reviewed by Kwok 
et al., 2013). Yet another route involves upregulation of the 
Kelch-like ECH-associated protein 1 (Keap1) / nuclear fac-
tor erythroid 2-related factor 2 (Nrf2) pathway which is often 
described as acting as the master regulator of cellular anti-
oxidant defences. This is likely the main pathway driving the 
upregulation of non-enzymatic and enzymatic antioxidants 
such as catalase and SOD as well as thioredoxin and GSH as 
discussed above (Gorrini et al., 2013; Habeos et al., 2008; 
Mrad et al., 2012). Several authors have also adduced evi-
dence that administration of statins reduces the stability of 
membrane lipid rafts, thereby inhibiting the transduction of 
ROS-mediated signalling and downstream inflammatory 
pathways instigating cytokine and chemokine production 
(Hothersall et al., 2006; Wang, 2014). Statins also have the 
capacity positively to regulate mitochondrial biogenesis and 
oxidative phosphorylation via increasing the activity of 
AMPK, especially in an environment of chronic oxidative 
(Choi et al., 2008; Sun et al., 2006).

Several research teams have reported that the adminis-
tration of various statins ameliorates the neurotoxic conse-
quences of activated microglia and astrocytes, primarily by 
inhibiting the proliferation and phagocytic capacity of these 
glial cells and their production of PICs, ROS, RNS and 
other inflammatory mediators such as COX and PGE2, by 
inhibiting NF-κB and the small G-protein p21RAS (Kuipers 
et al., 2006; Li et al., 2009; Pahan et al., 1997).

There are also accumulating data suggesting that statin 
therapy increases the activity of eNOS in patients with ath-
erosclerosis and a range of other cardiovascular diseases 
(Kilic et al., 2015; Ota et al., 2010). The weight of evidence 
suggests that the underlying mechanisms enabling this effect 
involve increasing the levels of eNOS phosphorylation, 
upregulating levels of BH4 and in some instances SIRT1 
(Aoki et al., 2012; Hattori et al., 2003). It is also relevant that 
several research teams have reported that rosuvastatin and 
atorvastatin improve cerebral blood flow, once again via a 
mechanism involving the inhibition of Rho kinase (Rikitake 
et al., 2005; Su et al., 2014).
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Several randomized, placebo-controlled, double-blind 
studies have shown that statins may decrease β-amyloid lev-
els in the cerebrospinal fluid and improve cognitive function 
in AD patients in the early stages of their illness (Geifman 
et al., 2017; Shinohara et al., 2014; Simons et al., 2002). 
There is also evidence that chronic statin administration 
leads to decreased formation of β-amyloid in AD patients’ 
serum (Lee et al., 2013). However, in contrast, other authors 
reported that statin administration conferred no significant 
benefit on the progression of symptoms in early AD patients 
(Buxbaum, 2002). Several other authors have reported that 
statin therapy appears to have no effect on β- and tau-amy-
loid peptide (Höglund et al., 2005; Riekse et al., 2006; Sano 
et al., 2011). However, a number of studies have also pro-
duced evidence suggesting that prolonged statin use may be 
associated with a reduced risk of developing dementia 
(Sparks et al., 2005) and PD (Dufouil et al., 2005). Moreover, 
the authors of a recent systematic review concluded that sta-
tin use mitigated against cognitive decline in patients with 
mild cognitive impairment and early AD especially in 
patients carrying the APOE4 allele (Smith et al., 2017).

Probiotics and prebiotics

Rodent studies have demonstrated that probiotic treat-
ments containing Lactobacillus, Escherichia coli and 
Bifidobacterium can reduce intestinal epithelial gut per-
meability by upregulating essential transmembrane TJ 
proteins (Patel et al., 2012; Qin et al., 2007; Zyrek et al., 
2007). Examples of TJ proteins upregulated by specific 
strains of probiotics include occludin, claudin-2, cingulin 
and ZO-1 (Mennigen et al., 2009; Ulluwishewa et al., 
2011; reviewed by Yan and Polk, 2011). Several probiotic 
species were also reported to improve epithelial function 
by increasing IgA and mucin protection, thus also improv-
ing the physical defences against the attack by commensal 
species on the gastrointestinal epithelium (Natividad et al., 
2012; Tlaskalová-Hogenová et al., 2011). There is also 
evidence to suggest that at least some probiotic bacterial 
species protect the intestinal barrier by reducing the rate of 
epithelial cell apoptosis (Yan and Polk, 2011).

Some probiotic species exert anti-inflammatory and 
immunomodulatory effects (Konieczna et al., 2012). This is 
supported by a considerable body of research, most of which 
appears to have focused on preparations based on 
Bifidobacteria and Lactobacilli, and these have invariably 
demonstrated the capacity to modulate the systemic and intes-
tinal immune responses and reduce the level of inflammation 
(Hardy et al., 2013; Kanauchi et al., 2013; Shokryazdan et al., 
2017). It should be stressed, however, that such properties 
may extend to a wide array of other probiotics based on other 
commensal species (Konieczna et al., 2012).

This capacity also seems to extend to certain prebiotics, 
most notably formulations containing fructo-oligosaccha-
rides and/or galacto-oligosaccharide (GOS) (Gori et al., 

2011; Shokryazdan et al., 2017; reviewed by Pandey et al., 
2015), which also appear to exert direct and beneficial 
effects on the brain (Savignac et al., 2016). This latter find-
ing may well be of particular relevance in an environment 
of impaired BBB integrity in light of data produced by a 
more recent study which demonstrated a reduction in LPS-
mediated increase in IL-1β levels in mice fed on a commer-
cial non-digestible GOS preparation compared with a 
control sample (Savignac et al., 2016).

N-acetylcysteine

While N-acetylcysteine (NAC) does not appear normally to 
cross the BBB, it can protect from the effects of dysfunc-
tion of the latter. One method may entail hydrolysis of the 
NAC molecule to yield the amino acid cysteine, which can 
then be used to biosynthesize the tripeptide GSH, which 
consists of glutamic acid, cysteine and glycine, while 
another may involve the scavenging, by NAC, of radical 
species (Halliwell and Gutteridge, 2015).

Murine studies have shown that NAC has a neuroprotec-
tive action following traumatic brain injury; the mechanism 
appears to involve the inhibition of the normal increased cer-
ebral levels of NF-κB, IL-1β, TNF-α and ICAM-1, that is, an 
inhibition of the cerebral inflammatory response (Chen et al., 
2008). Wernicke’s encephalopathy, associated with a defi-
ciency of thiamine, is associated with BBB dysfunction, which 
appears to be mediated by the caveolin-1 pathway being 
induced by oxidative stress; again, other murine experiments 
have pointed to a reduction in this dysfunction by NAC, which 
is associated with normalization of caveolin-1 levels 
(Beauchesne et al., 2010). In a further finding, which is of 
potential interest in the treatment of AD, it has been shown that 
NAC protects against inflammation-induced dysfunction of 
BBB low-density lipoprotein receptor-related (LRP)-1, which 
in turn prevents LPS-induced dysfunction there of transport of 
amyloid β-peptide (Erickson et al., 2012).

Wang et al. (2016) recently carried out a particularly 
informative series of murine experiments relating to the 
diabetic brain, affirming: that type 2 diabetes mellitus is 
associated with an increased blood level of the glycating 
molecule methylglyoxal and showing that brain ischae-
mia–reperfusion is stimulated by diabetes, with the size of 
cerebral infarcts correlating positively with the ratio of 
methylglyoxal to GSH in the brain, and negatively with the 
brain GSH concentration; that administration of NAC is 
associated with increased cerebral GSH levels and attenu-
ation of ischaemia-reperfusion-induced cerebral infarc-
tion; and that the formation of protein carbonyls (promoted 
by oxidative stress) and methylglyoxal adducts is attenu-
ated by NAC.

Acute hepatic failure is associated with hyperammonae-
mia, which in turn is associated with neuroinflammation 
and neuropsychiatric presentations, such as hepatic enceph-
alopathy (Albrecht and Norenberg, 2006; Ott and Vilstrup, 
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2014). The ammonia crosses into BMECs, where it 
adversely affects the functioning and expression of breast 
cancer resistance protein (BCRP) by activation of ammo-
nia–ROS–extracellular-regulated protein kinase-1/2 
(ERK1/2) (Li et al., 2016c). Murine experimentation has 
recently shown that NAC (a ROS scavenger) restores the 
functioning and expression of BCRP (Li et al., 2016c).

Accumulating in vivo evidence indicates that NAC 
administration can exert positive effects on glutamatergic 
neurotransmission via NAC-induced stimulation of the 
cysteine-glutamate antiporter (system xc

−) in glial cells 
(Durieux et al., 2015; Kupchik et al., 2012). Increased glu-
tamate levels in the extra-synaptic space activates presyn-
aptic mGluR2/3, which results in the inhibition of glutamate 
release into the synaptic cleft thereby mitigating the devel-
opment of glutamate excitotoxicity (Dean et al., 2011; 
Kupchik et al., 2012). This property has attracted interest in 
NAC as a potential treatment for substance abuse disorder 
(SUD) as dysregulation of glutamatergic neurotransmis-
sion is considered to be a major element underpinning the 
development of craving, which appears to be a universal 
feature of addiction irrespective of the substance or behav-
iour involved (McClure et al., 2014).

Several large blinded RCTs have produced promising 
results in the area of cannabis and cocaine abuse, with a 
reduction in craving and drug intake in the former instance 
and a reduction in craving in the latter case which seems to 
have been limited to addicts already in a state of abstinence 
(Gray et al., 2012; LaRowe et al., 2013; Roten et al., 2013). 
These and other studies were examined in a recent meta-
analysis which concluded that larger trials involving the 
use of NAC as an adjunctive treatment of SUD should be 
considered given the promising, though inconsistent, 
results achieved thus far (Duailibi et al., 2017). The use of 
NAC in the treatment of methamphetamine addiction 
appears to be worthy of special focus as there is reasonable 
evidence that its use can reduce craving in individuals 
addicted to the substance (Mousavi et al., 2015). 
Furthermore, additional compelling data from animal stud-
ies exists demonstrating that NAC at 10 mg/kg/day protects 
against and may even prevent, methamphetamine-induced 
destruction of dopaminergic neurons (Chandramani 
Shivalingappa et al., 2012; Fukami et al., 2004). 
Unsurprisingly, there has also been considerable interest in 
the use of NAC as an adjunctive therapy in a range of neu-
rological and neuroprogressive disorders, for which, once 
again, the results of trials to date have been promising but 
not conclusive (Bavarsad Shahripour et al., 2014; Berk 
et al., 2014; Dean et al., 2011; Deepmala et al., 2015).

Summary and conclusion

The BBB acts as a highly regulated interface separating the 
CNS and the peripheral circulation. BMECs, with their 
attendant TJs and AJs, enable tight regulation to take place 

of the exchange of molecules between these two compart-
ments. BBB dysfunction may exacerbate, and perhaps even 
initiate, neurological disorders such as stroke, AD, MS and 
PD. Similarly, it appears to be of importance in the patho-
genesis and pathophysiology of psychiatric disorders such 
as SZ, MDD and BD.

Increased BBB permeability and NVU dysfunction can 
be induced by peripheral inflammation, which is associated 
with elevated PICs, ROS and RNS; neuroinflammation, 
associated with activated microglia and astrocytes and by 
increased LPS and mitochondrial dysfunction; and gut 
microbiota changes. In turn, all these factors are associated 
with the pathogenesis of neurodegenerative and neuropro-
gressive illnesses.

In this paper, the roles of I&ONS, LPS, dysbiosis and 
neuroinflammation in causing BBB dysfunction were 
detailed. In turn, it was shown that the consequences of 
such dysfunction include the unregulated influx of PBMCs 
into the CNS, causing pro-inflammatory actions. In light of 
the findings described in this paper, the following evidence-
based therapeutic approaches for neurological and neu-
ropsychiatric disorders were suggested: melatonin, statins, 
probiotics and prebiotics, and NAC.

In conclusion, multiple lines of evidence point to a con-
cerning influence of both a leaky gut and dysfunctional 
BBB in the pathogenesis and pathophysiology of a wide 
range of neurological and psychiatric disorders. Interventions 
which address these two factors may prove therapeutic for 
the associated neurological and psychiatric disorders.
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