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Multiple imputation has entered mainstream practice for the analysis of incomplete data. We have used it exten-

sively in a large Australian longitudinal cohort study, the Victorian Adolescent Health Cohort Study (1992–2008).

Although we have endeavored to follow best practices, there is little published advice on this, and we have not pre-

viously examined the extent to which variations in our approach might lead to different results. Here, we examined

sensitivity of analytical results to imputation decisions, investigating choice of imputation method, inclusion of aux-

iliary variables, omission of cases with excessive missing data, and approaches for imputing highly skewed contin-

uous distributions that are analyzed as dichotomous variables. Overall, we found that decisions made about

imputation approach had a discernible but rarely dramatic impact for some types of estimates. For model-based

estimates of association, the choice of imputation method and decisions made to build the imputation model had

little effect on results, whereas estimates of overall prevalence and prevalence stratified by subgroup were more

sensitive to imputation method and settings. Multiple imputation by chained equations gave more plausible results

than multivariate normal imputation for prevalence estimates but appeared to be more susceptible to numerical

instability related to a highly skewed variable.

longitudinal cohort study; missing data; multiple imputation; sensitivity analysis

Abbreviations: AC, available case; CC, complete case; CCA, complete case adult data with partial adolescent data; MICE, multiple

imputation by chained equations; MVNI, multivariate normal imputation; PMM, predictive mean matching; VAHCS, Victorian

Adolescent Health Cohort Study.

The method of multiple imputation for handling the anal-
ysis of incomplete data was first described in detail by Rubin
(1). However, it has only achieved widespread application
over the past decade or so because of the availability of suit-
able software tools (2–6). The method involves 2 distinct
phases: first, multiple copies of the incomplete data set are
completed by imputation of missing values, and second,
the desired analysis is performed within each imputed data
set, with final results obtained by appropriate combination
of results over the imputed data sets. The second phase is rel-
atively straightforward (1, 7), but the first phase, which in-
volves implementation of an imputation method including
the specification of an appropriate imputation model, must
be done carefully to provide confidence in the validity of
the resulting inferences.

In this article, we examine the effect of variation in impu-
tation methods when imputing data for the large longitudinal
Victorian Adolescent Health Cohort Study (VAHCS) (8–11).
We and our colleagues have used multiple imputation exten-
sively for VAHCS analyses. It is attractive in this context, in
which analyses that use multiple waves of data may be com-
promised by incomplete responses and attrition. Although we
have endeavored to follow best practices in performing our
imputations, there has been limited systematic examination
of the extent to which variations in our approach might have
led to different results and, as observed elsewhere, there is lit-
tle published advice to guide practice (12–14).
Most of the published articles that have used multiple im-

putation in the VAHCS have used the method of multivariate
normal imputation (MVNI) as implemented originally by
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Schafer (2) and now widely available in major statistical pack-
ages such as SAS (SAS Institute, Inc., Cary, North Carolina)
and Stata (StataCorp LP, College Station, Texas). MVNI as-
sumes that all of the variables that require imputation follow
amultivariate normal distribution, and it produces imputed val-
ues by using a Bayesian Markov chain Monte Carlo (or “data
augmentation”) algorithm that alternates between estimating
the parameters of the multivariate normal distribution and pro-
ducing imputed values from the appropriate posterior predictive
distributions. The multivariate normal specification is clearly
unrealistic for many problems, but several studies have demon-
strated that the method often works well despite this (2, 15),
perhaps because most of the relevant information is contained
in the means, variances, and correlations (first and second mo-
ments), which are all reproduced under the MVNI model.

The other widely used approach is multiple imputation by
chained equations (MICE), which was first proposed by van
Buuren et al. (16) and further developed (for SAS software)
by Raghunathan et al. (17) and (for Stata software) by
Royston (3, 18). In this approach, imputation is performed se-
quentially for each variable containing missing values, using
a univariate regression model that can be tailored to the scale
of the variable, so that, in particular, categorical variables can
be imputed using appropriate generalized linear models. The
process cycles through the univariate imputation process

several times to allow imputed values on other variables to
enter the imputation for each variable. MICE has the appeal
of allowing considerable flexibility in the univariate model
specifications; for example, models may explicitly allow for
truncation or censoring, and logical dependencies may be in-
corporated (e.g., quantity of alcohol consumed is imputed
only if person is a drinker). MICE also allows nonlinear
terms or interactions between variables to be included as pre-
dictors in the univariate imputation models. Predictive mean
matching (PMM) can also be used to impute continuous var-
iables. In PMM, instead of replacing missing values with pre-
dicted values from the imputation model, an observed value
is selected from data values that are close to the predicted
value (19). On the other hand, the flexibility of the approach
means that it is possible for inconsistencies to arise between
the univariate regression models (20), with unclear potential
consequences. The MICE algorithm also encounters numer-
ical stability problems more frequently than MVNI when
large numbers of variables are involved.

There are other technical choices that need to be made
with multiple imputation. Here, we focus on investigating
the impact of 3 of these choices: the inclusion of auxiliary
variables, the omission of cases with an excessive amount
of missing data, and the handling of highly skewed continu-
ous variables.
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Figure 1. Sampling and ascertainment in the Victorian Adolescent Health Cohort Study, Australia, 1992–2008. There were 2 entry points (at wave
1 and wave 2). Intended sample sizes were 1,037 for wave 1 and 995 for wave 2, with a total intended sample size of 2,032. Ninety-six percent
(1,943) of the sample participated at least once in waves 1–6.
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Table 1. Description of Variables Used in Imputation Models and Summary of Percent Missing Data per Variable, by Imputation Data Set and Sex, in the Victorian Adolescent Health Cohort

Study, Australia, 1992–2008

Variable Waves
Variable
Type

Distribution Categories/Ranges

% Missing Values in Data Sets for Imputationsa

Analyses 1, 2, 3, 4, and 6b Analysis 5c Analysis 7d

Among Male
Participants
(n = 943)

Among Female
Participants
(n = 1,000)

Among Male
Participants
(n = 772)

Among Female
Participants
(n = 911)

Among Male
Participants
(n = 813)

Among Female
Participants
(n = 924)

Key Variables

Cannabis use in past
year

2–9 Ordinal Positively
skewed

Nonuser, occasional
user, weekly user,
or daily user

13–29 10–21 10–18 7–13 11–19 8–15

Cigarette smoking in
past month

2–9 Ordinal Positively
skewed

Nonsmoker,
occasional smoker,
or daily smoker

9–28 7–20 9–17 7–13 8–18 7–15

Alcohol use in past
weeke

2–6 Binary Not risky drinker or
risky drinker

16–34 15–23 15–24 14–19 15–25 14–18

7–9 Continuous Positively
skewed

0–286 Standard drink
units

26–36 16–26 14–23 10–19 16–27 11–21

Illicit drug use in past
yearf

7 and 8 Binary No or yes 22 and 26 13 and 18 9 and 12 7 and 10 12 and 15 8 and 12

9 Ordinal Positively
skewed

None, < weekly, or ≥
weekly

33 24 19 17 23 18

Sex Binary Male or female 0 0 0 0 0 0

Age at wave 2 (mean
centeredg)

2 Continuous Symmetrical −3.0 to 4.6 Years 0 0 0 0 0 0

School location at
study inception

Binary Urban or rural 0 0 0 0 0 0

Highest level of
parental education

Ordinal Positively
skewed

Did not complete high
school, completed
high school, or
university degree/
further qualification

3 3 1 1 1 1

Parental divorce/
separation in
adolescence

Binary No or yes 0 0 0 0 0 0

Parental smoking Binary Both nonsmokers or at
least 1 parent
smoked

3 3 1 1 1 1

Auxiliary Variables

Country of birth Binary Australia or other 8 8 5 5

Completed high
school

Binary No or yes 4 4 1 1

Ever had a baby 9 Binary No or yes 19 19 13 12

No partner 9 Binary No or yes 20 20 13 13

Table continues
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Table 1. Continued

Variable Waves
Variable
Type

Distribution Categories/Ranges

% Missing Values in Data Sets for Imputationsa

Analyses 1, 2, 3, 4, and 6b Analysis 5c Analysis 7d

Among Male
Participants
(n = 943)

Among Female
Participants
(n = 1,000)

Among Male
Participants
(n = 772)

Among Female
Participants
(n = 911)

Among Male
Participants
(n = 813)

Among Female
Participants
(n = 924)

Highest level of
education

9 Ordinal Negatively
skewed

Secondary,
vocational, or
university

13 13 6 6

Receiving
government welfare

9 Binary No or yes 22 22 18 15

Not currently in paid
employment

9 Binary No or yes 21 21 13 14

CIS-R scoreh 2–7 Continuous Positively
skewed

0–55 9–28 8–15 9–17 7–11

Mixed
depression-anxietyi

8 and 9 Binary No or yes 26 and 27 18 and 20 12 and 13 10 and 13

Anxiety disorderj 9 Binary No or yes 33 24 19 16

Major depressive
disorderk

9 Binary No or yes 33 23 19 16

Cannabis
dependencyl

7–9 Binary No or yes 22–34 14–24 10–20 7–17

Abbreviation: CIS-R, Revised Clinical Interview Schedule.
a Range represents minimum and maximum rates of missingness if variable was measured at multiple waves; actual rates of missingness are given if variable was measured on 1 or 2

occasions only.
b Rates of missingness were comparable between male and female participants for parental divorce/separation and at waves 2 and 3 for CIS-R score and all licit and illicit drug use. For all

other variables with missing values, male participants had higher rates of missingness than female participants (P≤ 0.003).
c Rates of missingness were comparable betweenmale and female participants for all variables except cigarette smoking at wave 3, cannabis use and CIS-R score at wave 6 (P≤ 0.001), and

alcohol use at wave 6 (P = 0.007).
d Rates of missingness were comparable between male and female participants for all variables except cannabis use at waves 6 and 7; cigarette smoking at waves 5–7; alcohol use at waves

6, 7, and 9; and illicit drug use at waves 7 and 9 (P < 0.01).
e Risky drinking was defined as exceeding 14 standard drinks (1 standard drink = 10 g alcohol) in the week prior to the survey for male and female participants at all ages and in all

waves.
f Included the use of amphetamine, ecstasy/designer drugs, or cocaine. Data on use of each illicit drug were collected separately at each wave. Amphetamine use was collected at waves

2–9. However, before wave 7, frequency of amphetamine use was judged to be too low, and rates of missingness too high, to allow imputation. Therefore, only data on amphetamine use at

waves 7–9 were included in the imputation models.
g Participants’ ages were centered around mean age of 15.4 years.
h The CIS-R is a psychiatric interview designed to assess symptoms of depression and anxiety in nonclinical populations (35).
i Per the 12-Item General Health Questionnaire (36).
j Per the Composite International Diagnostic Interview short form (37). Participants were classified with anxiety disorder if they were diagnosed with generalized anxiety disorder, social

phobia, agoraphobia, or panic disorder.
k Per the Composite International Diagnostic Interview, CIDI-Auto (38).
l Per the Composite International Diagnostic Interview, CIDI 2.1, 12-month version (39).
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By definition, auxiliary variables are not required for the
analysis of interest but are included in the imputation model
because they are believed to improve the quality of imputa-
tion and so potentially reduce bias and/or variance of estima-
tion (14, 21). The “missing at random” assumption, which
underlies the standard approaches to imputation, asserts that
being missing is independent of any missing values given the
observed data, so the inclusion of auxiliary variables may
make this assumptionmore reasonable (21–23). Auxiliary var-
iables may be selected because they are correlated 1) with the
missingnessmechanism or 2)with the variables of interest that
have missing values. We investigated the effects of excluding
or including auxiliary variables in the imputation model.
Similarly, there are no accepted guidelines on whether re-

taining cases with large proportions of missing data is worth-
while or safe. To explore this issue,we performed analyses using
multiple imputation with data sets including all participants
or including only those who had observed values for 50%
or more of the variables included in the imputation model.
The final question of interest was how to handle highly

skewed variables. The analysis of interest required dichoto-
mizing a measure of alcohol consumption to identify high-
and low-risk drinkers. For both approaches, we explored
modeling the binary risk variable directly and transforming
the continuous variable prior to imputation to try to achieve
a more normal distribution. For MICE only, we modeled the
alcohol units using a truncated normal distribution to ensure
that all imputed values were plausible, with bounds of 0 and
the maximum number of alcohol units at each wave (4), and
we also used PMM (19). This article examines the sensitivity
of analytical results to the aspects of the imputation method
just described, in the context of a detailed analysis that has
been published elsewhere (24).

METHODS

Sample

The VAHCS, a 9-wave cohort study of health in adoles-
cents and young adults in Victoria, Australia, was conducted
between 1992 and 2008. The cohort was defined by selection
of 2 classes from a statewide sample of 44 schools (24, 25).
One class entered the study in the latter part of the ninth
school year (wave 1; mean participant age = 15 years), and
the second class entered 6 months later (wave 2). Participants
were interviewed at four 6-month intervals during their teens
(waves 3–6) with 3 follow-up waves in young adulthood,
when participants were aged 20–21 years (wave 7), 24–25
years (wave 8), and 29 years (wave 9). A total of 1,943 stu-
dents participated at least once during the first 6 (adolescent)
waves (Figure 1), defining the initial cohort. We analyzed a
maximum sample size of 1,934 after omitting 9 participants
who died before wave-9 assessment.
The measures we used are described briefly below and

listed in Table 1. To simplify the examination of the imputa-
tion issues, we consider only a selection of the results from
the published VAHCS paper (24) here. However, all 38 var-
iables identified as being required for the analysis in the sub-
stantive paper were considered to be key variables and were
treated as if they were required for the imputation-based analy-

ses. Wave 1 measures were not included in the imputation
models or analyses because, by design, each of these variables
is missing 50% of values or more. However, if a participant
was seen only at wave 1 in adolescence, we included these par-
ticipants by bringing forward their wave-1 observations to
wave 2. This admittedly ad hoc approach was judged to be rea-
sonable because it affected only 57 participants (2.9%) in the
full data set, and the waves were only 6 months apart.
Key variables included licit and illicit drug use and poten-

tial confounders. At each wave (waves 2–9), participants
were asked to report their maximum frequency of cannabis
use, cigarette smoking, and, if they reported drinking alcohol
in the week prior to the survey, to complete a detailed diary of
their alcohol consumption, which was used to calculate total
number of standard drinks (1 standard drink = 10 g alcohol).
Because of the high percentage of nondrinkers in adoles-
cence (>70% in waves 2–4 and >60% in waves 5 and 6), a
binary measure of high-risk alcohol use was defined as ex-
ceeding 14 standard drinks per week, following Australian
guidelines (26). In the adult waves (waves 7–9), participants
were additionally asked about use of amphetamines, ecstasy/
designer drugs, and cocaine. Incident (new) amphetamine
usewas identified atwaves 8 and 9 in participantswho had not
reported use at previous waves. Potential confounders identi-
fied as relevant to the analyses of interest were sex, age at
wave 2, school location (urban or rural), and parental charac-
teristics (highest level of education, smoking status, and
divorce/separation during the participant’s adolescence).

Auxiliary variables

Prior to developing the imputation model for the substan-
tive paper (24), we identified 51 potential auxiliary variables
as associated with missingness in the data. Of these, 20 were
included in the final imputation model after a process of trial
and error in which candidate variables were included until
imputation models appeared unstable with respect to collin-
earities and convergence of the imputation algorithm. During
the development of the imputation model for this paper, sev-
eral of these variables were dichotomized prior to imputation
because their distributions were heavily skewed, and normal-
izing transformations did not appear to improve imputations
(see Diagnostics section below). Priority was given to vari-
ables with the lowest proportion of missing data and the
strongest association with missingness.

Analysis

The various approaches to managing missing data were
compared with respect to several key analyses from the sub-
stantive paper. Overall prevalence of cannabis use at wave 7
was estimated. Prevalence of amphetamine use at wave 9 was
estimated overall and by frequency of concurrent cannabis
use. Discrete-time proportional hazards models were used
to estimate the association between cannabis use at the previous
wave and the incidence of adult amphetamine drug use, after
controlling for potential confounders (27). Cannabis users at
the previous wave were classified as occasional (reference cat-
egory), weekly, or daily users, and nonusers were subclassified
as having never used or as being previous users.

924 Romaniuk et al.
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Imputation. A list of the imputation approaches, with a key
used in figures and tables, is shown in Table 2 along with 3 ap-
proaches to analysis that did not use multiple imputation. All
key variables were included in the imputation models for all
approaches, with auxiliary variables included in imputation ap-
proaches 1–5 only. We imputed 20 data sets for each of the 12
multiple imputation approaches. Data from male participants
were imputed separately from those of female participants,
with imputed data sets combined for final analyses. After impu-
tation, estimates were obtained by averaging results across the
20 imputed data sets with inferences under multiple imputation
obtained using Rubin’s rules (1). Data imputation and analysis
were undertaken using Stata, version 11, software (6).

MVNI. Data were imputed using the mi impute mvn
procedure. Default options were used for the expectation-
maximization and Markov chain Monte Carlo algorithms.
Prior to imputation, skewed ordinal and continuous measures
were transformed to 0 skewness using shifted logs. All other

variables were included in the imputation model as defined in
Table 1. For analysis, log-transformed variables were trans-
formed back to their original scales, imputed binary variables
were converted to binary values using adaptive rounding
(28), and ordinal variables were recorded by rounding im-
puted values to the nearest category.

MICE. MICE imputations were performed using the ice
procedure (4). Prior to imputation, skewed continuous mea-
sures were transformed using shifted logs, except adult alco-
hol consumption for PMM (MICE_3; see Table 2 for list of
analysis labels). Imputation models were set up so that binary
variables were modeled using logistic regression when they
were outcomes and included as single dummy variables
when they were covariates. Ordinal variables were modeled
using ordinal logistic regression when they were outcomes
and as a series of dummy variables when they were included
as covariates. Continuous variables were modeled using lin-
ear regression and included as single linear terms when they

Table 2. Summary of Analysis Data Sets and Settings for Imputation-Based Analyses in the Victorian Adolescent

Health Cohort Study, Australia, 1992–2008

Analysis Data Set Method
Auxiliary
Variables

Participants
Included

Adult Alcohol
Variables

Analysis
Label

Participants Analyzeda

No. %b

Observed

Available casec AC 1,384–1,586 71–82

Complete cased CC 516 27

Complete case adult
data with partial
adolescent datae

CCA 941 49

Imputed MVNI Yes All Continuous MVNI_1 1,934 100

MVNI Yes All Binary MVNI_4 1,934 100

MVNI Yes ≤50% Missingf Continuous MVNI_5 1,679 87

MVNI No All Continuous MVNI_6 1,934 100

MVNI No ≤50% Missingf Continuous MVNI_7 1,731 90

MICE Yes All Continuous MICE_1 1,934 100

MICE Yes All Continuous
(truncated)g

MICE_2 1,934 100

MICE Yes All Predictive mean
matching

MICE_3 1,934 100

MICE Yes All Binary MICE_4 1,934 100

MICE Yes ≤50% Missingf Continuous MICE_5 1,679 87

MICE No All Continuous MICE_6 1,934 100

MICE No ≤50% Missingf Continuous MICE_7 1,731 90

Abbreviations: MICE, multiple imputation by chained equations; MVNI, multivariate normal imputation.
a The following numbers of participants who had died by wave 9 were dropped from analysis data sets: 9

participants from data sets 1, 2, 3, 4, and 6; 4 participants from data set 5; and 6 participants from data set 7.
b Percentage of total cohort alive at wave 9.
c Complete data for subset of variables were used in analysis. Available case analyses were conducted only for

prevalence of drug use (overall and by level of concurrent cannabis use) at waves 7–9.
d Complete data for all variables were used in all analyses.
e Complete data for 3 or more of 5 adolescent waves.
f Participants were included in the imputation data set if they had 50% or more observed data for all of the variables

included in the imputation model.
g Alcohol units at each adult wave were imputed using a truncated normal distribution with bounds of 0 and the

maximum number of reported units.
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were covariates. Default options were used for other settings,
including treatment of perfect prediction (29).

Available case analysis. For the prevalence estimates
and cross-sectional analysis of concurrent drug use, we used
available case (AC) analysis, in which all participants who
had observed data for the measures being analyzed were in-
cluded. This approach maximizes sample size but uses differ-
ent samples for each analysis.

Complete case analysis. Two approaches were adopted
for complete case (CC) analysis. The first, described herein
as CC analysis, required that participants have data for all
the key variables. The second, complete case adult data with
partial adolescent data (CCA) analysis, required that partici-
pants have complete data from 3 or more adolescent waves,
from all adult waves, and for demographic variables.

Diagnostics. Simple diagnostics were run (30, 31) to as-
sess whether the imputed data sets were reasonable. We com-
pared summary statistics calculated just from the observed
data with those from only imputed data, as well as with those
from the data sets containing both observed and imputed
data.Forcategorical variables,wecompareddistributions, and
for continuous variables, we compared means and variances.

Large differences may (but do not necessarily) reflect inade-
quacies in the imputation model, so these were flagged for
further consideration (32).

RESULTS

Description of missingness

In data sets that included all participants (MVNI/MICE_1,
2, 3, 4, and 6), for variables measured repeatedly across waves,
the proportion missing was lowest at wave 2 and increased at
each subsequent adolescent wave, with a plateauing of the
rate of missing data in the adult waves (Table 1). For data sets
in which participants with more than 50% missing values had
been dropped (MVNI/MICE_5 and 7), the rates of missingness
were lower, most noticeably for the time-constant auxiliary var-
iables and, to some extent, for the time-varying key variables.

Convergence

MVNI. Convergence was checked prior to imputed data
sets being generated by inspecting graphs of the worst linear

0

10

20

30

40

50

%
 o

f C
as

es

Reported Level of Cannabis Use

A) B)

C)

0

10

20

30

40

50

%
 o

f C
as

es

Reported Level of Cannabis Use

0

10

20

30

40

50

%
 o

f C
as

es

Reported Level of Cannabis Use

Observed
Imputed

Daily WeeklyOccasionalNone Daily WeeklyOccasionalNone

DailyWeeklyOccasionalNone

Figure 2. Comparison of distributions for available cases and imputed values for cannabis use in wave 7 of the Victorian Adolescent Health
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function of parameter estimates (2) after 2,000 Markov chain
Monte Carlo iterations had been run.

MICE. Prior to imputing data sets, convergence was
checked by running 100 cycles of regression switching and
saving the mean of the imputed values at each cycle. For
each variable, the means were plotted against cycle number
and inspected to assess convergence. A visual inspection of
the convergence graphs for each approach showed that it was
reasonable to assume convergence had been achieved, with
20 cycles adequate for MICE.

Diagnostics

For most variables, the imputed distributions were similar
to the distributions of observed values for all imputation ap-
proaches. There were some exceptions. For example, when
alcohol units were imputed as a log-shifted continuous vari-
able, some of the imputed values were unfeasibly large. For
several variables, we found higher rates of risky behavior for
the imputed data compared with the observed. However, this
seemed plausible given that participants with riskier behavior
might be more likely to drop out of the longitudinal study,
miss a wave, or be reluctant to respond to these types of ques-
tions. Figure 2 shows the distribution of cannabis use at wave
7, with observed percentages shown for AC and the imputed

and observed percentages in each category for MVNI_4 and
MICE_4. According to the AC analysis, the distribution of
observed cannabis use is bimodal. MVNI and MICE differ
in their method of imputing ordinal variables, and this is
reflected in the imputed percentages, with MICE imputed
values being bimodal andMVNI imputed values being unim-
odal. MICE imputed a higher proportion of participants to the
highest level of drug use compared with MVNI. Overall, the
combined distribution for cannabis use did not differ dramat-
ically across the 3 approaches, although MICE led to a final
distribution that was more different from the AC distribution
than MVNI. Examination of known cannabis use at other
waves for those who had missing data on cannabis use at
wave 7 shows that it was plausible to expect higher rates of
daily use in the imputed data sets (Figure 3).

Analysis results

Overall prevalence estimates. Both AC and CCA analy-
ses estimated similar percentages of cannabis use for all cat-
egories (Figure 4). CC estimates were quite different from all
other estimates, with wider 95% confidence intervals because
of smaller numbers. For the MVNI approaches, the preva-
lence of cannabis use was estimated fairly consistently for
all categories, although slightly lower values were seen for
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weekly and daily use for those approaches that excluded par-
ticipants with more than 50% missing values (MVNI_5 and
MVNI_7). MICE estimates were fairly stable for weekly and
occasional use, with more variation between estimates of
nonuse and daily use. In particular, estimates from MICE_1
(auxiliary variables, all participants, and adult alcohol units
imputed as log-shifted continuous variables) and MICE_3
(auxiliary variables, all participants, and adult alcohol units
imputed using PMM) differed substantially by margins of
up to 2 standard errors from the 2 approaches that excluded
participants with more than 50% missing values (MICE_5
and MICE_7). Comparing the estimates between the imputa-
tion methods, the prevalence of nonusers was higher under
MVNI versus many of the MICE approaches, and the preva-
lence of daily use was lower. Estimates of occasional and
weekly use were comparable for the 2 approaches.
Overall estimates of prevalence of amphetamine use exhib-

ited similar inconsistencies between the observed-data meth-
ods, as were seen for cannabis use (Figure 5A). MVNI
estimates showed little variation across settings. With the

exception of MICE_1 and MICE_3, MICE estimates were
also generally similar to each other. However, MICE tended
to estimate higher levels of amphetamine use than MVNI.

Subgroup prevalence estimates. Within the imputation
method,MVNI estimates varied little (Figure 5B–E).MICE es-
timates were also similar across approaches with the exception
of MICE_1 and MICE_3, which estimated somewhat higher
levels of amphetamine use for non–cannabis users. For non–,
occasional, and daily cannabis users, MICE estimated consis-
tently higher levels of amphetamine use than MVNI.

Association estimates. In contrast to the prevalence esti-
mates, there was relatively little variation in estimated rate ra-
tios across imputation model settings (Figure 6).

DISCUSSION

In a large longitudinal cohort study, we explored the effects
of decisions made when building an imputation model. Al-
though in a case-study analysis such as this there is no way of
knowing the “truth” with respect to the parameter values of
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Figure 4. Estimated prevalence of cannabis use at wave 7, by missing data method, in the Victorian Adolescent Health Cohort Study, Australia,
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interest, we believe it is informative to examine the extent to
which results vary across the different approaches to imputa-
tion. Minimal variation between estimates across a substan-
tial range of methods provides prima facie evidence of

validity, as long as the main assumptions of the imputation
methods also seem reasonable. Overall, we found that deci-
sions made about the imputation approach had a discernible
but rarely dramatic impact on final results.
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Figure 5. Estimated prevalence of amphetamine use at wave 9 by missing data method, overall and by level of concurrent cannabis use in the
Victorian Adolescent Health Cohort Study, Australia, 1992–2008. A) Overall prevalence; B) no cannabis use; C) occasional use; D) weekly use; and
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Compared with the CC analysis, all other approaches esti-
mated higher levels of cannabis use at wave 7 and amphetamine
use at wave 9. The CC analysis included only 27% of 1,934 par-
ticipants, and it is reasonable to assume that those who engaged
in risky or illicit behavior were less likely to participate at every
wave, so that the CC analysis would be expected to underesti-
mate the prevalence of drug use. The AC and CCA estimates of
cannabis and amphetamine usewere consistent with each other.
For the AC analyses conducted for this study, more than 70% of
participants were included in each analysis, and for CCA anal-
ysis, just less than half of the participants were included.
For MVNI, decisions about including auxiliary variables

and number of cases with complete data and how to impute
a highly skewed variable had little substantial impact on any
of the estimates of interest. These findings appear to support
previous claims that MVNI imputation models are robust to
potential model misspecification (2).
For MICE, there was greater variation in results according

to decisions made when building the imputation model. In

particular, considerable variation was observed between the
overall prevalence estimates. In the first analysis (of cannabis
use prevalence), the approach in which the highly positively
skewed measure of alcohol use was imputed as continuous
after transformation using shifted logs led to substantially
lower estimated levels of nonuse and higher levels of daily
use compared with other approaches. Simple diagnostics
showed that, although all approaches in which the imputed
values were unconstrained estimated a small percentage of
values out of range (0.1%–0.5%), this approach imputed
many alcohol values as unfeasibly large. The approach that
used PMM to impute alcohol units also estimated higher lev-
els of daily use, for reasons that were not clear, because mean
and median units of alcohol were similar for the observed and
imputed values. This approach imputes values that are sam-
pled only from the observed values (19) and generally results
in a distribution of imputed values that closely matches the
observed data distribution (15), but it has been subject to lim-
ited systematic evaluation (33). Other MICE approaches
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Figure 6. Rate ratio estimates for incidence of amphetamine use by level of cannabis use at the previous wave (with occasional use as the ref-
erence category) and missing data method in the Victorian Adolescent Health Cohort Study, Australia, 1992–2008. A) No cannabis use at previous
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performedmore stably. For prevalence estimates by subgroup
and the association analysis, greater consistency was seen be-
tween the MICE approaches.

Comparing the MVNI and MICE approaches, apart from
the apparent instability of MICE in at least 1 setting, results
were different to an extent that would slightly alter some of
the substantive interpretation of the study’s findings. In par-
ticular, most of the MICE approaches estimated lower levels
of no cannabis use and higher levels of daily cannabis use than
the MVNI approaches, and most of the MICE estimates of
amphetamine use were considerably higher than the MVNI
estimates. These differences may reflect the way that ordinal
variables, especially the bimodally distributed cannabis vari-
ables, are imputed by each approach, with the MICE approach
not constrained to a unimodal distribution and therefore poten-
tially producing more appropriate imputations.

Our examination of the effect of excluding cases with more
than 50% data missing suggested that, in this setting, includ-
ing cases with a high proportion of missing information made
a minimal difference, no doubt in part because these exclu-
sions amounted to only 13% and 10% of the total sample
(in settings 5 and 7, respectively). Investigators are often
loath to reduce their apparent sample sizes even when faced
with largely incomplete information on participants, but in
many settings the additional information from these partici-
pants will be negligible. On the other hand, we saw little ev-
idence of instability or greater variance affecting the results
when the most incomplete cases were included.

The inclusion of auxiliary variables did not seem to influ-
ence the results in any of our approaches. This appears to be
because, in our setting, the auxiliary variables did not add
substantial independent predictive information for the miss-
ing values over and above the key variables that were already
included in the imputation models. It seems plausible that in
the setting of repeated measures over time for all of the out-
come variables, the inclusion of auxiliary variables is unnec-
essary. Furthermore, the inclusion of auxiliary variables in an
already “large” imputation model may lead to instability of
estimation in the imputation modeling. These conclusions are
supported by a recent study that found that inclusion of auxil-
iary variables in imputationmodels did not improve the bias or
precision of regression estimates from a logistic model (34).

Multiple imputation has proved to be a valuable technique
for analysis of the VAHCS, allowing us to conduct analyses
that include measures from all waves of data collection, thus
recovering information from incomplete cases and avoiding
potential selection biases. The sensitivity analyses presented
here revealed that MVNI produced stable estimates across all
variations in the method. However, stability of results is not
necessarily an indicator of validity, and parameter estimates
under MVNI are likely to be somewhat biased for measures
that have skewed or bimodal distributions, for which the more
flexible MICE approach is attractive. On the other hand,
MICE may produce less stable results when a large number
of variables are included, with particular sensitivity to highly
skewed distributions. Further work to delineate the advan-
tages and disadvantages of these 2 methods across a wider
range of settings is needed. It was reassuring, however, that
despite some sensitivity to the decisions made in building the
imputation model, results were generally not affected to the

extent that overall conclusions would change. A key finding
is that estimates of prevalence are more sensitive to imputa-
tion modeling decisions than estimates of association, as ob-
served elsewhere (12).
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